Проекты по физике спо. Индивидуальный проект по дисциплине физика на тему: «Трансформаторы



ОБРАЗОВАТЕЛЬНОЕ ПОДРАЗДЕЛЕНИЕ № 2

РАБОЧАЯ ПРОГРАММА

ПО ИНДИВИДУАЛЬНОМУ ПРОЕКТУ

ПО ФИЗИКЕ В 10 КЛАССЕ

Разработала: Е.А. Орлова

2015 -2016 учебный год

    Пояснительная записка

Рабочая программа создана на основе:

Федерального государственного образовательного стандарта среднего (полного) общего образования (Утвержден приказом Министерства образования и науки Российской Федерации от 17.05.2014 г. № 413 (ред. от 29.12.2014) "Об утверждении федерального государственного образовательного стандарта среднего общего образования")

Цели:

Сформировать навыки коммуникативной, учебно-исследовательской деятельности, критического мышления;

Выработать способность к инновационной, аналитической, творческой, интеллектуальной деятельности;

Сформировать навыки проектной деятельности, а также самостоятельного применения приобретённых знаний и способов действий при решении различных задач, используя знания одного или нескольких учебных предметов или предметных областей;

Выработка способности постановки цели и формулирования гипотезы исследования, планирования работы, отбора и интерпретации необходимой информации, структурирования аргументации результатов исследования на основе собранных данных, проведенных экспериментов, презентации результатов.

Задачи:

Проводить обучающие семинары для учащихся по выполнению проектно-исследовательской работы;

Развивать ресурсную базу лицея, отвечающей системным образовательным запросам и индивидуальным возможностям обучающихся, включённых в проектную деятельность;

Мониторинг личностного роста участников проектно-исследовательской деятельности;

Организовывать консультации с учениками по работе над проектами и исследовательскими работами.

    Общая характеристика проектной деятельности

Индивидуальный проект представляет собой особую форму организации деятельности обучающихся (учебное исследование или учебный проект) и выполняется обучающимся самостоятельно под руководством учителя (тьютора) по выбранной теме в рамках одного или нескольких изучаемых учебных предметов, курсов в любой избранной области деятельности (познавательной, практической, учебно-исследовательской, социальной, иной). Исследовательский проект выполняется обучающимся в течение одного года, в рамках учебного времени, специально отведенного учебным планом, и должен быть представлен в виде завершенного учебного исследования или разработанного проекта: информационного, творческого, социального, прикладного, инновационного, конструкторского, инженерного.

Р езультатом (продуктом) проектной деятельности может быть любая из следующих работ:

    мультимедийная презентация;

    материальный объект, макет;

    Прибор;

    Видеофильм;

    Видеоклип;

    Газета и т.п.

В состав материалов, которые должны быть подготовлены по завершению проекта для его защиты, в обязательном порядке включаются:

    выносимый на защиту продукт проектной деятельности , представленный в одной из описанных выше форм;

    подготовленная учащимся краткая пояснительная записка к проекту (объемом не более 1 машинописной страницы)

    краткий отзыв руководителя , содержащий краткую характеристику работы учащегося в ходе выполнения проекта, в том числе:

а) инициативности и самостоятельности,

б) ответственности (включая динамику отношения к выполняемой работе),

в) исполнительской дисциплины.

При наличии в выполненной работе соответствующих оснований в отзыве может быть также отмечена новизна подхода и/или полученных решений, актуальность и практическая значимость полученных результатов.

3. Описание места индивидуального проекта в учебном плане

Итоговый индивидуальный проект обязателен для выполнения обучающимися по выбранному учебному предмету . В соответствии с учебным планом ГБПОУ «Колледж связи № 54» города Москвы им. П.М. Вострухина на выполнение итогового индивидуального проекта по физике в 10 классе выделено 68 часов (2 часа в неделю).

4. Личностные, метапредметные и предметные результаты освоения учебного курса социальный проект

Личностные:

    сформированность основ гражданской идентичности личности;

    готовность к переходу к самообразованию на основе учебно-познавательной мотивации , в том числе готовность к выбору направления профильного образования;

    сформированность социальных компетенций , включая ценностно-смысловые установки и моральные нормы, опыт социальных и межличностных отношений, правосознание.

Метапредметные:

    способность и готовность к освоению систематических знаний, их самостоятельному пополнению, переносу и интеграции;

    способность к сотрудничеству и коммуникации;

    способность к решению личностно и социально значимых проблем и воплощению найденных решений в практику;

    способность и готовность к использованию ИКТ в целях обучения и развития;

    способность к самоорганизации, саморегуляции и рефлексии.

Предметные:

    способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов;

    способность самостоятельно ставить цели эксперимента и проводить необходимые измерения;

    Способность анализировать полученные результаты.

Система оценки предметных результатов предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.

Ведущие формы и методы организации учебных занятий :

В ходе решения системы проектных задач, у обучающихся должны быть сформированы следующие способности:

    рефлексировать (видеть проблему; анализировать сделанное: почему получилось, почему не получилось, видеть трудности, ошибки);

    целеполагать (ставить и удерживать цели);

    планировать (составлять план своей деятельности);

    моделировать (представлять способ действия в виде модели-схемы, выделяя всё существенное и главное);

    проявлять инициативу при поиске способа (способов) решения задачи;

    вступать в коммуникацию (взаимодействовать при решении задачи, отстаивать свою позицию, принимать или аргументировано отклонять точки зрения других).

По окончании изучения курса «Индивидуальный проект” учащиеся должны научиться :

    основам методологии проектной деятельности;

    структуре и правилам оформления проектной работы.

По окончании изучения курса «Индивидуальный проект” учащиеся получат возможность :

    формулировать тему исследовательской и проектной работы, доказывать ее актуальность;

    составлять индивидуальный план исследовательской и проектной работы;

    выделять объект и предмет исследовательской и проектной работы;

    определять цель и задачи исследовательской и проектной работы;

    работать с различными источниками, в том числе с первоисточниками, грамотно их цитировать, оформлять библиографические ссылки, составлять библиографический список по проблеме;

    выбирать и применять на практике методы исследовательской деятельности адекватные задачам исследования;

    оформлять теоретические и экспериментальные результаты исследовательской и проектной работы;

    рецензировать чужую исследовательскую или проектную работы;

    наблюдать за биологическими, экологическими и социальными явлениями;

    описывать результаты наблюдений, обсуждения полученных фактов;

    проводить опыты в соответствии с задачами, объяснять их результаты;

    проводить измерения с помощью различных приборов;

    выполнять письменные инструкции правил безопасности;

    оформлять результаты исследования с помощью описания фактов, составления простых таблиц, графиков, формулирования выводов.

По окончании изучения курса «Индивидуальный проект” учащиеся должны владеть понятиями: абстракция, анализ, апробация, библиография, гипотеза исследования, дедукция, закон, индукция, концепция, моделирование, наблюдение, наука, обобщение, объект исследования, предмет исследования, принцип, рецензия, синтез, сравнение, теория, факт, эксперимент.

. .

Материально-техническое обеспечение образовательного процесса:

    Лаборатория « L MICRO », цифровая лаборатория «Архимед».

    Интерактивная доска.

    Мультимедийный проектор.

    Компьютерный класс с выходом в глобальную сеть Интернет.

    Смарт-класс.

Компетенции

Настоящий курс предусматривает формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций:

Определение сущностных характеристик изучаемого объекта; самостоятельный выбор критериев для сравнения, сопоставления, оценки и классификации объектов;

Использование элементов причинно-следственного и структурно-функционального анализа;

Исследование реальных связей и зависимостей;

Умение развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного);

Объяснение изученных положений на самостоятельно подобранных конкретных примерах;

Поиск нужной информации по заданной теме в источниках различного типа и извлечение необходимой информации из источников, созданных в различных знаковых системах (текст, таблица, график, диаграмма, аудиовизуальный ряд и др.);

Отделение основной информации от второстепенной, критическое оценивание достоверности полученной информации;

Передача содержания информации адекватно поставленной цели (сжато, полно, выборочно);

Перевод информации из одной знаковой системы в другую (из текста в таблицу, из аудиовизуального ряда в текст и др.), выбор знаковых систем адекватно познавательной и коммуникативной ситуации;

Выбор вида чтения в соответствии с поставленной целью (ознакомительное, просмотровое, поисковое и др.);

Уверенная работа с текстами различных стилей, понимание их специфики; адекватное восприятие языка средств массовой информации;

Самостоятельное создание алгоритмов познавательной деятельности для решения задач творческого и поискового характера;

Пользование мультимедийными ресурсами и компьютерными технологиями для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности;

Владение основными видами публичных выступлений (высказывание, монолог, дискуссия, полемика), следование этическим нормам и правилам ведения диалога (диспута).

Основные формы контроля (измерители обученности):

    создание индивидуального проекта и его презентация;

    творческие работы (презентации, рефераты, проблемные задания и др.)

    выступления во время дискуссий, заседаний круглых столов, интерактивных лекций, семинаров.

Итогом изучения курса является защита проектной работы.

Литература:

Основная:

1. Физика. 10 класс. В 2 ч. Ч.1: учеб. для общеобразоват. учреждений (базовый уровни) / Л.Э. Генденштейн, Ю.И.Дик – 4-е изд.,стер. – М.: Мнемозина, 2013. – 416 с.: ил.

2. Физика. 10 класс. В 2 ч. Ч.2: учеб. для общеобразоват. учреждений (базовый уровни) / Л.Э. Генденштейн, Ю.И.Дик – 4-е изд.,стер. – М.: Мнемозина, 2013. – 416 с.: ил.

Дополнительная литература

1. Сергеев И.С. Как организовать проектную деятельность учащихся: Практическое пособие для работников общеобразовательных учреждений. – М.: АРКТИ, 2007. – 80 с.

2. Сергеева В.П. Проектно – организаторская компетентность учителя в воспитательной деятельности. М. 2005.

3. Метод учебных проектов: Методическое пособие М. 2006.

4. Е.А. Марон «Опорные конспекты и дифференцированные задачи по физике10кл»-М.: Просвещение, 2008.

5. ЕГЭ. 2004-2005. Физика: контрольные измерительные материалы - М.: Просвещение, 2010-2011.

6. Фронтальные лабораторные работы по физике в 7-11 классах общеобразовательных учреждениях: Кн. для учителя / В.А. Буров, Ю.И. Дик, Б.С. Зворыкин и др.; под ред. В.А. Бурова, Г.Г. Никифорова. – М.: Просвещение: Учеб. лит., 1996.

7. Физика. 10 класс: дидактические материалы /А.Е. Марон, е. А. Марон. – 4-е изд., стереотип. – М.: Дрофа, 2007.

8. Мякишев Г.Я., Синяков А.З. Физика: Колебания и волны. 11 кл.: Учеб. для углубленного изучения физики. – 3-е изд. – М.: Дрофа, 2001.

9. Мякишев Г.Я., Синяков А.З. Физика: Молекулярная физика. Термодинамика. 10 кл.: Учеб. для углубленного изучения физики. – 3-е изд. – М.: Дрофа, 1998

10.Углубленное изучение физики в 10-11 классах: Кн. Для учителя / О.Ф. Кабардин, С.И. Кабардина, В.А. Орлова. – М.: Просвещение, 2002. – 127 с.

11.Сауров Ю. А. Физика в 11 классе: Модели уроков: Книга для учителя. – М.: Просвещение, 2005. - 271 с.: ил.

Интернет- ресурсы

Phys . htm - Образовательные ресурсы Интернета - Физика.

4.http :// school - collection . edu . ru / catalog / pupil /? subject =30 - Единая коллекция цифровых образовательных ресурсов.

5. - Учебно-методическая газета «Физика».

dic

Интернет-ресурсы:


Приведенные ниже темы исследовательских работ по физике являются примерными, их можно брать за основу, дополнять, расширять и изменять по собственному усмотрению, в зависимости от собственных интересных идей и увлечений. Занимательная тема исследования поможет ученику углубить свои знания по предмету и окунуться в мир физики.

  • Темы исследовательских проектов по физике 5 класс

  • Темы исследовательских проектов по физике 6 класс

  • Темы исследовательских проектов по физике 7 класс
Любые темы проектов по физике по фгос можно выбрать из списка перечисленных тем для любого класса общеобразовательной школы и раздела физики. В дальнейшем, руководитель проводит консультации для более точного определения темы проекта. Это поможет ученику сконцентрироваться на самых важных аспектах исследования.

На страничке можно перейти по ссылкам на интересные темы проектов по физике для 5 класса, 6 класса, 7 класса, 8 класса, 9 класса, 10 и 11 класса и темы для старших классов на свет, оптику, световые явления и электричество , на темы проектов по ядерной физике и радиации .


  • Темы исследовательских проектов по физике 8 класс

  • Темы исследовательских проектов по физике 9 класс

  • Темы исследовательских проектов по физике 10 класс

  • Темы исследовательских проектов по физике 11 класс
Представленные темы исследовательских работ по физике для 5, 6, 7, 8, 9, 10 и 11 класса будут интересны школьникам, которые увлекаются биографией физиков, любят проводить эксперименты, паять, не равнодушны к механике, электронике и другим разделам физики. Приобретённые навыки станут не только основой для последующей исследовательской деятельности, но и пригодятся в быту. К данным разделам тем проектных работ по физике можно перейти по ссылкам ниже.

Темы исследовательских работ на свет, оптику, электричество, ядерную физику



  • Интересные темы исследовательских работ по физике

  • Темы исследовательских работ на свет и оптику

  • Темы исследовательских работ на электричество

  • Темы исследовательских работ по ядерной физике

  • Темы для исследовательских работ по астрономии
(откроются в новом окне )

Помимо вышеупомянутых разделов с темами проектных работ по физике рекомендуем школьникам просмотреть общие и довольно актуальные и интересные темы проектов по физике , перечисленные ниже на данной странице нашего сайта. Предложенные темы являются общими и могут быть использованы на разных образовательных уровнях.

Темы проектов по физике (общие темы)

А.Д. Сахаров – выдающийся ученый и правозащитник современности.


Авиационные модели свободного полета.
Автожиры
Агрегатные состояния вещества.
Актуальные проблемы физики атмосферы.
Акустический шум и его воздействие на организм человека.
Алфёров Жорес Иванович.
Альберт Эйнштейн - парадоксальный гений и "вечный ребенок".
Анализ отказов микросборки .
Андронный коллайдер: миф о происхождении Вселенной.
Анизотропия кристаллов
Анизотропия физических свойств монокристаллов.
Аномальные свойства воды
Античная механика
Аристотель - величайший ученый древности.
Артериальное давление
Архимед - величайший древнегреческий математик, физик и инженер.
Аспекты влияния музыки и звуков на организм человека.
Атмосферное давление - помощник человека.
Атмосферное давление в жизни человека .
Аэродинамика на службе человечества
Аэродинамика полосок бумаги, или «И все-таки она вертится!»
Аэродинамические трубы.
Баллистическое движение.
Батисфера
Биолюминесценция
Биомеханика кошки.
Биомеханика человека
Биомеханические принципы в технике.
Бионика. Технический взгляд на живую природу.
Биоскафандр для полета на другие планеты.
Биофизика человека
Биофизика. Колебания и звуки
Бумеранг
В небесах, на земле и на море. (Физика удивительных природных явлений).
В погоне за циклом Карно.
В чем секрет термоса .
В.Г. Шухов – великий русский инженер.
В.К. Рентген – открытия, жизненный путь.
Вакуум на службе у человека
Вакуум. Энергия физического вакуума.
Введение в физику черных дыр.
Вертикальный полет
Ветер как пример конвекции в природе.
Ветер на службе у человека
Взаимные превращения жидкостей и газов. Фазовые переходы.
Взаимосвязь полярных сияний и здоровья человека.
Взвешивание воздуха
Виды загрязнений воды и способы очищения , основанные на физических явлениях.
Виды топлива автомобилей.
Виды шумового загрязнения и их влияние на живые организмы.
Визуализация звуковых колебаний в трубе Рубенса.
Виртуальные лабораторные работы на уроках физики.
Вихревые образования.

Темы исследовательских работ по физике (продолжение)


Вклад Блеза Паскаля в создание методов изучения окружающего мира.


Вклад М.В. Ломоносова в развитие физической науки.
Влажность воздуха и влияние ее на жизнедеятельность человека.
Влажность воздуха и ее влияние на здоровье человека.
Влажность. Определение содержания кислорода в воздухе.
Влияние внешних звуковых раздражителей на структуру воды.
Влияние громкого звука и шума на организм человека.
Влияние звука на живые организмы
Влияние звука на песок. Фигуры Хладни.
Влияние звуков, шумов на организм человека.
Влияние излучения, исходящего от сотового телефона, на организм человека.
Влияние изменения атмосферного давления на посещаемость занятий и успеваемость учащихся нашей школы.
Влияние невесомости на жизнедеятельность организмов.
Влияние качества воды на свойства мыльных пузырей.
Влияние лазерного излучения на всхожесть семян гороха.
Влияние магнитного и электростатического полей на скорость и степень прорастания семян культурных растений.
Влияние магнитного поля на прорастание семян зерновых культур.
Влияние магнитного поля на рост кристаллов.
Влияние магнитной активации на свойства воды.
Влияние магнитных бурь на здоровье человека
Влияние механической работы на организм школьника.
Влияние наушников на слух человека
Влияние обуви на опорно-двигательный аппарат.
Влияние погоды на организм человека
Влияние скоростных перегрузок на организм человека.
Влияние сотового телефона на здоровье человека.
Влияние температуры на жидкости, газы и твёрдые тела.
Влияние температуры окружающей среды на изменение снежных узоров на оконном стекле.
Влияние торсионных полей на деятельность человека.
Влияние шума на организм учащихся.
Вода - вещество привычное и необычное.
Вода в трех агрегатных состояниях .
Вода и лупа
Водная феерия: фонтаны
Водород - источник энергии.
Водяные часы
Воздух, который нас окружает. Опыты с воздухом.
Воздухоплавание
Волшебные снежинки
Волшебство мыльного пузыря.
Вращательное движение твердых тел.
Вредное и полезное трение
Время и его измерение
Всегда ли можно верить своим глазам, или что такое иллюзия.
Выращивание и изучение физических свойств кристаллов медного купороса.
Выращивание кристаллов CuSo4 и NaCl, исследование их физических свойств.
Выращивание кристаллов в домашних условиях.

Выращивание кристаллов поваренной соли и сахара в домашних условиях методом охлаждения.
Высокоскоростной транспорт, движимый и управляемый силой электромагнитного поля.
Давление в жидкости и газах.
Давление твердых тел
Дары Прометея
Двигатель внутреннего сгорания.
Двигатель Стирлинга - технологии будущего.
Движение в поле силы тяжести.
Движение воздуха
Денис Габор
Джеймс Клерк Максвелл
Динамика космических полетов
Динамическая усталость полимеров.
Диффузия в домашних опытах
Диффузия в природе
Диффузия и ювелирные украшения
Доильный аппарат "Волга"
Единицы измерения физических величин.
Её величество пружина.
Железнодорожная цистерна повышенной ёмкости.
Женщины - лауреаты Нобелевской премии по физике.
Живые сейсмографы
Жидкие кристаллы
Жизнь и достижения Б. Паскаля
Жизнь и изобретения Джона Байрда
Жизнь и творческая деятельность М.В. Ломоносова.
Жизнь и творчество Льва Николаевича Термена.
Жизнь и труды А.Ф. Иоффе
Зависимость времени закипания воды от её качества.
Зависимость коэффициента поверхностного натяжения моторного масла от температуры.
Зависимость коэффициента поверхностного натяжения мыльного раствора от температуры.
Зависимость скорости испарения воды от площади поверхности и от ветра.
Зависимость сопротивления тела человека от состояния кожного покрова.
Загадки кипящей жидкости
Загадки неньютоновской жидкости.
Загадки озоновых дыр
Загадочная лента Мёбиуса.
Закон Архимеда. Плавание тел.
Закон Паскаля и его применение
Значение паровой машины в жизни человека.
Игорь Яковлевич Стечкин
Из истории летательных аппаратов
Изготовление действующей модели паровой турбины.
Измерение больших расстояний. Триангуляция.
Измерение влажности воздуха и устройства для ее корректировки.

Измерение вязкости жидкости


Измерение плотности твердых тел разными способами.
Измерение температуры на уроках физики
Измерение ускорения свободного падения
Изобретения Герона в области гидродинамики
Изобретения Леонардо да Винчи, воплощенные в жизнь.
Изучение звуковых колебаний на примере музыкальных инструментов.
Изучение свободных механических колебаний на примере математического и пружинного маятников.
Изучение свойств постоянных магнитов.
Изучение сил поверхностного натяжения с помощью мыльных пузырей и Антипузырей.
Изучение сил поверхностного натяжения с помощью мыльных пузырей.
Илья Усыскин - прерванный полет
Инерция – причина нарушения правил дорожного движения.
Исаак Ньютон
Испарение в природе и технике.
Испарение и влажность в жизни живых существ.
Испарение и конденсация в живой природе
Использование тепловой энергии свечи в бытовых условиях.
Исследование атмосферных явлений.
Исследование движения капель жидкости в вязкой среде.
Исследование движения по окружности
Исследование зависимости периода колебаний тела на пружине от массы тела.
Исследование поверхностного натяжения.
Исследование поверхностных свойств воды.
Исследование способов измерения ускорения свободного падения в лабораторных условиях .
Исследование теплопроводности жира.
Исследование физических свойств почвы пришкольного участка.
Как управлять равновесием.
Квантовые свойства света.
Колокольный звон с физической точки зрения.
Коррозия металлов
Космические скорости
Космический мусор
Красивые тайны: серебристые облака.
Криогенные жидкости
Лауреаты Нобелевской премии по физике.
Леонардо да Винчи - художник, изобретатель, ученый.

Люстра Чижевского


Магнитная жидкость
Магнитное поле Земли и его влияние на человека.
Магнитные явления в природе
Междисциплинарные аспекты нанотехнологий.
Метеорная опасность для технических устройств на околоземной орбите.
Механика сердечного пульса
Мир невесомости и перегрузок.
Мир, в котором мы живем , удивительно склонен к колебаниям.
Мифы звездного неба в культуре латиноамериканских народов.
Мобильный телефон. Вред или польза?!
Моделирование физических процессов
Модель электродвигателя постоянного тока.
Мой прибор по физике: ареометр.
Молниеотвод
Мыльные пузыри как объект исследования поверхностного натяжения.
Нанобиотехнологии в современном мире.
Нанодиагностика
Наноструктурированный мелкозернистый бетон.
Нанотехнологии в нашей жизни.
Невесомость
Об использовании энергии ветра.
Ода вращательному движению
Озон - применение для хранения овощей.
Опасность электромагнитного излучения и защита от него.
Определение высоты местности над уровнем моря с помощью атмосферного давления .
Определение коэффициента взаимной индукции.
Определение коэффициента вязкости жидкости.
Определение коэффициента поверхностого натяжения воды с различными примесями.
Определение плотности тела неправильной формы.
Определение условий нахождения тела в равновесии .
Определение центра тяжести математическими средствами.
Относительность движения
Очевидное и невероятное при взаимодействии стекла и воды.
П.Л. Капица. Облик ученого и человека.
Парадоксы учения Лукреция Кара.
Плавание тел
Плавление и отвердевание тел.
Плазма.
Плазма – четвертое состояние вещества.
Плотность и плавучесть тела
Поверхностное натяжение воды.
Поверхностное натяжение воды в космосе.
Приливы и отливы
Применение информационных технологий при изучении криволинейного движения.
Применение силы Архимеда в технике.
Применение ультразвука в медицине.
Принцип относительности Галилея.
Простые механизмы в сельском хозяйстве.
Пушка Гаусса
Радиоволны в нашей жизни
Радиоприемник с регулируемой громкостью .

Развитие ветроэнергетики


Рафинирование селена методом вакуумной дистилляции.
Реактивная тяга
Реактивное движение в современном мире.
Реактивные двигатели
Резонанс при механических колебаниях.
Роберт Гук и закон упругости
Роль рычагов в жизни человека и его спортивных достижениях.
Свойства соленой воды. Море у меня в стакане.
Сегнерово колесо
Сила притяжения
Сила трения.
Сила трения в природе.
Современные средства связи. Сотовая связь.
Создание индикаторов течения воды, плотностью равных плотности воды.
Способы определения массы тела без весов.
Способы очищения воды, основанные на физических принципах.
Суда на подводных крыльях - одно из изобретений К .Э. Циолковского.
Тайны наклонной башни Демидовых
Такой ли пустой космический вакуум?
Температура нити накала
Тепловой насос
Трение в природе и технике.
Ультразвук в медицине
Ультразвук в природе и технике.
Устройство оперативной памяти.
Ускорители элементарных части: взгляд в будущее.
Феномен гениальности на примере личности Альберта Энштейна.
Ферромагнитная жидкость
Физик Гастон Планте.
Физика землетрясений и регистрирующая их аппаратура.
Физика и акустика помещений
Физика смерча. Смерч на службе человека.
Химия и цвет
Цунами. Причины возникновения и физика процессов.
Чем дизельный двигатель лучше бензинового?
Чуть больше о смерче
Экологический паспорт кабинета физики.
Экспериментальные методы измерения ускорения свободного падения.
Эксперименты с неньютоновской жидкостью.
Энергетика: вчера, сегодня, завтра.
Энергетические возможности магнитогидродинамического эффекта.
Энергия будущего
Энергосберегающие лампы: "за" или "против".
Янтарь в физике.




  • Кульков Алексей Владимирович , магистр, студент
  • Смоленский государственный университет, г. Смоленск
  • Понасова Дарья Сергеевна , бакалавр, учитель
  • МБОУ "СОШ №3" , г. Сафоново
  • ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ
  • ФИЗИКА
  • ИНДИВИДУАЛЬНЫЙ ИТОГОВЫЙ ПРОЕКТ

В работе рассмотрены примеры тем исследовательских индивидуальных итоговых проектов по физике основной школы. Также даны методические рекомендации по выполнению некоторых предложенных тем.

  • Необходимость и способы преподавания астрономического материала в школьном курсе физики
  • Практическая работа по астрономии «Заполнение диаграммы Герцшпрунга-Рассела»
  • Использование интерактивных программ для подготовки учеников 10-11 классов к олимпиадам по физике
  • Реализация регрессионного анализа в различных компьютерных программах

Индивидуальный итоговый представляет (ИИП) собой особую форму организации деятельности обучающихся и является основным объектом оценки метапредметных результатов, полученных учащимися в ходе освоения междисциплинарных учебных программ. Выполнение индивидуального итогового проекта является обязательным в условиях реализации Федерального образовательного стандарта . Выделяется несколько типов ИИП, которые учащиеся могут выбрать:

  • практико-ориентированный, социальный;
  • исследовательский;
  • информационный;
  • творческий;
  • игровой или ролевой.

Наиболее интересным и полезным для учащихся в приобретении навыков исследовательской деятельности является исследовательский проект. Исследовательский проект требует доказательство или опровержение какой-либо гипотезы. Данный тип проекта способствует подготовке учащихся к научно-исследовательской деятельности в высшем учебном заведении.

В работе предложена классификация тем исследовательского проекта по физике для основной школы, а так же приведены краткие примеры и даны методические рекомендации по выполнению исследовательского проекта по физике по некоторым предложенным темам.

Анализируя содержание предмета «Физика» в основной школе, можно отметить, что изучаемый объём материала и его изложение позволяет учащимся выполнять исследовательскую работу по физике. Исследовательская работа может быть связана как с теоретическими и практическими расчётами физических величин, так и с конструированием физических приборов, механизмов и установок. На основе этого, можно конкретизировать виды исследовательской работы по физике путём указания видов исследовательских проектов. В таблице 1 «Исследовательский ИИП» предложены виды и темы исследовательский проектов по физике.

Таблица 1. Исследовательский ИИП

№ п/п

Вид исследовательского проекта

Темы

Проект, позволяющий ответить на вопрос «Что будет, если… »

исчезнет сила трения

исчезнет атмосфера

построить здание высотой 3000 м

Землю сжать у полюсов на 10%

масса Земли увеличится в 2 раза

Масса Луны увеличиться на 50%

перестанет действовать всемирное тяготение

перестанет действовать закон Паскаля

Исследование физических явлений

Изучение явления свободного падения

Изучение свойств радуги

Изучение приловов и отливов

Исследование свойств физических тел

Исследование температуры остывающей жидкости со временем в различных условиях

Изучение силы упругости различных металлов

Изучение силы трения между различными поверхностями

Изучение тепловых свойств свинца

Изучение тепловых свойств воды

Изучение электрических свойств воды

Исследование зависимостей между свойствами тела (вещества)

Исследование зависимости сопротивления металла от его температуры

Исследование зависимости сопротивления воды от температуры

Исследование зависимости сопротивления воздуха от массы падающего тела

Зависимость массы планеты от её расстояния от Солнца

Расчёт и способы расчёта физических величин

Расчёт плотности планет Солнечной системы

Способы измерения расстояния

Способы нахождения силы

Исследование взаимосвязи физики с другими науками и техникой

Физика в литературных произведениях

Трение в природе и технике

Простые механизмы в живой природе

Простые механизмы в технике

Реактивное движение в живой природе

Конструирование физических приборов и устройств

Конструирование трубы Кеплера

Конструирование трубы Галилея

Модель паровой турбины

Модель трансформаторной будки

Конструирование маятника Ньютона

Проект, позволяющий ответить на вопрос «Что будет, если…» подразумевает расчёт характеристик тел и явлений в новых, изменённых условиях. Так при выборе темы «Что будет, если Землю сжать у полюсов на 10%» можно найти такие характеристик уже новой планеты как средняя плотность, ускорение свободного падания на полюсах и экваторе, объём. Также можно рассмотреть и объяснить физические явления, которые будут здесь происходить.

Проекты «Исследование физических явлений» в большинстве случаев подразумевают теоретические расчёты характеристик явлений и процессов. В теме «Изучение явления свободного падения» можно предоставить данные теоретических расчетов ускорения свободного падения в различных точках земного шара (на полюсе, на экваторе, в самом низком и высоком местах на Земле) и сделать вывод о различии силы тяжести на Земле.

Проект «Исследование свойств физических тел» связан с конструированием экспериментальной установки и измерением с её помощью физических величин. Рассмотрим тему «Изучение электрических свойств воды». В рамках выполнения данного проекта можно измерить сопротивление различной воды (водопроводной, дождевой, бутылочной покупной и т.д.) и сделать вывод о её пользе (или вреде) для организма человека с точки зрения физики. Для измерения сопротивления необходимо подготовить установку, которая позволит измерить сопротивление жидкости. На рисунке 1 «Экспериментальная установка по определению сопротивления жидкости» показан возможный пример такой установки.

Рисунок 1. Экспериментальная установка по определению сопротивления жидкости

Идея определения сопротивления жидкости основана на применении закона Ома. В разные края сосуд с водой опускаются два проводника, которые последовательно соединены с амперметром и источником тока. Параллельно сосуду подключён вольтметр. Таким образом, зная силу тока в цепи и напряжение на концах цепи (точки конца цепи эквивалентны точкам на проводниках, которые опускаются в сосуд с водой) по закону Ома I=U/R рассчитывается сопротивление воды. Если каждый тип воды наливать до одинакового уровня, а проводники опускать в воду на одинаковую глубину, то размеры жидкого проводника (воды) остаются неизменными.

Рассмотрим еще один пример. При выборе темы «Изучение тепловых свойств свинца» можно практически рассчитать такие тепловые характеристика, как удельная теплоёмкость, удельная теплота плавления, температура плавления. Если способ определения удельной теплоёмкости является классическим и ему посвящена лабораторная работа в курсе физики, то с определением удельной теплоты плавления возникает ряд вопросов. Во-первых, требуется определить то количество теплоты, которое отдано свинцу для его плавления. Это можно сделать следующим способом: количество теплоты, которое необходимо для полного плавления свинца можно считать равным той теплоте (в Дж), которое выделяется паяльником, которым данный свинец плавится. А паяльник отдаёт количество теплоты, которое примерно равно работе электрического тока, характеристики которого написаны на паяльнике. Таким образом, можно найти удельную теплоту плавления свинца.

При исследовании зависимостей между свойствами тела (или вещества) целесообразным будет построение графиков зависимости между данными свойствами, а так же выявить математический вид данной зависимости. Для этого можно воспользоваться табличным редактором Microsoft Office Excel. Данная программа позволяет на графике с отмеченными экспериментальными значениями построить график, который наилучшим образом описывает данные точки. Для этого на график добавляется линия тренда с соответствующим уравнением. На рисунке 2 «Зависимость в Excel» показан график зависимости температуры остывающей воды от времени, в течение которого происходило остывание.


Рисунок 2. Зависимость в Excel

Исследование зависимостей между характеристиками позволяет учащимся получить навыки обработки реальных данных.

Цель исследовательского проекта «Расчёт и способы расчёта физических величин » - рассчитать или предоставить способы расчёта различных физических величин. Например, при выборе темы «Расчёт плотности планет Солнечной системы» можно предложить способ расчёта плотности планет, который основать на использовании определения плотности (ρ= m / V ) и предположении о шарообразной форме планет (данное предположение позволяет находить объём планеты, как объём шара по известному значению среднего радиуса).

Таким образом, можно разделить исследовательский итоговый проект по физике на несколько видов. При выборе конкретного виды и, соответственно, темы, следует обращать внимание не только на заинтересованность темой, но и учитывать свои индивидуальные способности. Так, например, при ярко выраженных технических способностях следует выбирать темы, связанные с конструированием физических приборов и устройств. Если учащийся обладает хорошим логическим мышлением и любит экспериментировать, то можно остановиться на виде исследовательского проекта «Что будет, если…».

Список литературы

  1. Кузнецова Е.В. ФЕДЕРАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ И ИНДИВИДУАЛЬНЫЙ УЧЕБНЫЙ ПРОЕКТ // Современные наукоемкие технологии. – 2015. – № 12-1. – С. 103-107; URL: https://www.top-technologies.ru/ru/article/view?id=35218 (дата обращения: 15.01.2018).
  2. Кульков А.В..) – 2017 г..01.2018).

Исследовательский проект представляет собой самостоятельно проведенное исследование учащегося, раскрывающее его знания и умение их применять для решения конкретных практических задач. Работа должна носить логически завершенный характер и демонстрировать способность учащегося грамотно пользоваться специальной терминологией, ясно излагать свои мысли, аргументировать предложения.

Задачами работы над проектом являются:

  • развитие навыков самостоятельной исследовательской деятельности и их применение к решению актуальных практических задач;
  • проведение анализа существующих в отечественной и зарубежной науке теоретических подходов в области выполняемого исследования;
  • проведение самостоятельного исследования по выбранной проблематике;
  • систематизация и анализ полученных в ходе исследования данных;
  • защита проекта.

Защита исследовательского проекта – представление, обоснование целенаправленной деятельности теоретического и практического характера в области физического знания, предполагающая самостоятельное изучение и анализ литературных источников, наблюдения, эксперименты, анализ проделанной работы.

В качестве тем для выполнения проектов можно выбрать любую, каким-либо образом связанную с физическими явлениями, процессами; современной техникой и технологией. Проект, как и исследование, может иметь как теоретическую, так и прикладную направленность. Тема может быть тесно связана со смежными к физике областями: математикой, информатикой, астрономией и другими.

Структура работы

Структура работы должна быть представлена следующим образом:

  • титульный лист;
  • оглавление;
  • введение;
  • главы основной части;
  • заключение;
  • список литературы;
  • приложения.

Титульный лист является первой страницей научно-исследовательской работы и заполняется по определенным правилам. В верхнем поле указывается полное наименование учебного заведения, на базе которого осуществляется исследование. В среднем поле дается заглавие работы, которое оформляется без слова «тема» и в кавычки не заключается. Ниже, ближе к правому краю титульного листа, указываются фамилия, имя, отчество исполнителя, класс, ОУ, и далее фиксируется фамилия, имя, отчество руководителя, его научное звание (если имеется) и должность, место работы. В нижнем поле указываются местонахождение учебного заведения и год написания работы. Образец титульного листа приведен в приложении 1.

Оглавление должно быть на второй странице. В нем приводятся названия глав и параграфов с указанием страниц, с которых они начинаются. Заголовки оглавления должны точно повторять название глав и параграфов в тексте. При оформлении заголовки ступеней одинакового уровня необходимо располагать друг под другом. Заголовки каждой последующей ступени смещаются на пять знаков вправо по отношению к заголовкам предыдущей ступени. Все они начинаются с заглавной буквы без точки в конце. Номера страниц фиксируются по правому краю печатного поля.

Во введении фиксируется проблема, актуальность, практическая значимость исследования; определяются объект и предмет исследования; указываются цель и задачи исследования; коротко перечисляются методы работы. Все составляющие введения должны быть взаимосвязаны.

Работа начинается с постановки проблемы, которая определяет направление в организации исследования, и представляет собой обзор состояния знания в исследуемой области. Ставя проблему, исследователь отвечает на вопрос: «Что нужно изучить из того, что раньше не было изучено?» Важное значение в процессе формулирования проблемы имеет постановка вопросов и определение противоречий.

Выдвижение проблемы предполагает обоснование актуальности исследования. При ее формулировании необходимо дать ответ на вопрос: почему данную проблему нужно изучать в настоящее время?

После определения актуальности необходимо определить объект и предмет исследования.

В проектах по физике под объектом исследования можно понимать процесс, на который направлено познание, или явление, порождающее проблемную ситуацию и избранное для изучения.

Предмет исследования более конкретен и дает представление о том, как новые отношения, свойства или функции объекта рассматриваются в исследовании. Предмет устанавливает границы научного поиска в рамках конкретного исследования.

Под целью исследования понимают конечные, научные и практические результаты, которые должны быть достигнуты в итоге его проведения.

Задачи исследования представляют собой все последовательные этапы организации и проведения исследования с начала до конца. Как правило, цель исследовательской работы бывает одна, в то время как задач – несколько. Решение задачи позволяет пройти определенный этап исследования. Формулировка задач тесно связана со структурой исследования, причем отдельные задачи могут быть поставлены как для теоретической (обзор литературы по проблеме), так и для экспериментальной части исследования. Задачи определяют содержание исследования и структуру текста работы. Первое представляет собой все то, что делалось при проведении исследования.

Важным моментом в работе является формулирование гипотезы, которая должна представлять собой логическое научно обоснованное, вполне вероятное предположение, требующее специального доказательства для своего окончательного утверждения в качестве теоретического положения.

Гипотеза считается научно состоятельной, если отвечает следующим требованиям:

  • не включает в себя слишком много положений;
  • не содержит неоднозначных понятий;
  • выходит за пределы простой регистрации фактов, служит их объяснению и предсказанию, утверждая конкретно новую мысль, идею;
  • проверяема и приложима к широкому кругу явлений;
  • не включает в себя ценностных суждений;
  • имеет правильное стилистическое оформление.

Главы основной части посвящены раскрытию содержания работы.

Первая глава основной части работы обычно целиком строится на основе анализа научной литературы. В проекте необходимо дать краткую характеристику того, что известно об исследуемом явлении, в каком направлении оно ранее изучалось. Такая характеристика дается в обзоре литературы по проблеме, который делается на основе анализа нескольких работ.

В процессе изложения материала целесообразно отразить следующие аспекты:

  • определить, уточнить используемые в работе термины и понятия;
  • изложить основные подходы, направления исследования по изучаемой проблеме, выявить, что известно по данному вопросу в науке, а что нет, что доказано, но недостаточно полно и точно;
  • обозначить виды, функции, структуру изучаемого явления;
  • перечислить особенности формирования (факторы, условия, механизмы, этапы) и проявления изучаемого явления.

В целом при написании основной части работы целесообразно каждый раздел завершать кратким резюме или выводами. Они обобщают изложенный материал и служат логическим переходом к последующим разделам.

Структура главы может быть представлена несколькими параграфами и зависит от темы, степени разработанности проблемы, от вида научной работы учащегося.

В последующих главах работы, имеющих опытно-экспериментальный характер, дается обоснование выбора тех или иных методов и конкретных методик исследования, приводятся сведения о процедуре исследования и ее этапах. При описании методик обязательными данными являются: ее название, автор, показатели и критерии, которые в дальнейшем будут подвергаться статистической обработке.

Раздел экспериментальной части работы завершается интерпретацией полученных результатов. Описание результатов целесообразно делать поэтапно, относительно ключевых моментов исследования. Анализ экспериментальных данных завершается выводами. При их написании необходимо учитывать следующие правила:

  • выводы должны соответствовать поставленным задачам;
  • выводы должны являться следствием данного исследования и не требовать дополнительных измерений;
  • выводы должны формулироваться лаконично, не иметь большого количества цифрового материала;
  • выводы не должны содержать общеизвестных истин, не требующих доказательств.

Описание того, что и как делал автор исследования для доказательства справедливости выдвинутой гипотезы, представляет собой методику исследования. Она также должна быть описана в тексте работы. Далее представляются собственные данные, полученные в результате исследовательской деятельности. Полученные данные необходимо сопоставить друг с другом и данными из источников, содержащимися в обзоре литературы по проблеме. После этого следует сформулировать закономерности, обнаруженные в процессе исследования. Необходимо четко понимать разницу между рабочими данными и данными, представляемыми в тексте работы. В процессе исследования часто получается большой массив чисел (или иных данных, например, текстов), которые представлять не нужно. В тексте числа или конкретные примеры служат для иллюстрации полученных в ходе исследования результатов, на основании которых делаются выводы. Поэтому обычно рабочие данные обрабатывают и в тексте представляют только самые необходимые. Однако нужно помнить, что кто-то может захотеть познакомиться с первичным материалом исследования. Чтобы не перегружать основную часть работы, самый интересный первичный материал может выноситься в приложения. Наиболее выигрышной формой представления данных является графическая, которая максимально облегчает читателю восприятие текста.

Изложение содержания работы заканчивается заключением, которое представляет собой краткий обзор выполненного исследования. В нем автор может дать оценку эффективности выбранного подхода, подчеркнуть перспективность исследования. Заключение не должно представлять собой механическое суммирование выводов, находящихся в конце каждой главы основной части. Оно должно содержать то новое, существенное, что составляет итоговые результаты исследования. Выводы в заключении могут тезисно, по порядку выполнения задач, излагать результаты исследования. Выводы – это в своем роде краткие ответы на вопросы – как решены поставленные исследовательские задачи. Совокупность выводов является доказательством полноты достижения цели. Цель может быть достигнута даже в том случае, если первичная гипотеза оказывается несостоятельной.

Нужно хорошо понимать различие текста работы и доклада по ней. Главная задача докладчика – точно сформулировать и эмоционально изложить саму суть исследования, лаконично проиллюстрировав ее небольшим количеством ярко, образно оформленного, удобного для восприятия иллюстративного материала. В ходе доклада недопустимо зачитывание работы, перегрузка его “лишними” данными. Для освещения сути исследования 5-10 минут вполне достаточно. Все остальное, если у аудитории возник интерес, излагается в ответах на вопросы.

В конце, после заключения, принято помещать список литературы, куда заносятся только те работы, на которые есть ссылки в тексте, а не все статьи, монографии, которые прочитал автор в процессе выполнения исследовательской работы. В приложении даются материалы большого объема. Туда можно отнести первичные таблицы, графики, практические результаты экспериментальной деятельности и др.

Оформление исследовательской работы

Объем работы может быть разным, доклада – 1-5 страниц (в зависимости от класса и степени готовности ученика к такого рода деятельности). Для текста, выполненного на компьютере, – размер шрифта 12-14, Times New Roman, обычный; интервал между строк – 1,5; размер полей: левого – 30 мм, правого – 10 мм, верхнего – 20 мм, нижнего – 20 мм (при изменении размеров полей необходимо учитывать, что правое и левое, а также верхнее и нижнее поля должны составлять в сумме 40 мм). При правильно выбранных параметрах на странице должно умещаться в среднем 30 строк, а в строке – в среднем 60 печатных знаков, включая знаки препинания и пробелы между словами.

Текст печатается на одной стороне страницы; сноски и примечания печатаются на той же странице, к которой они относятся (через 1 интервал, более мелким шрифтом, чем текст).

Все страницы нумеруются, начиная с титульного листа; цифру номера страницы ставят вверху по центру страницы; на титульном листе номер страницы не ставится. Каждый новый раздел (введение, главы, параграфы, заключение, список источников, приложения) начинается с новой страницы.

Между названием раздела (заголовками главы или параграфа) и последующим текстом нужно пропускать одну строку, а после текста, перед новым заголовком – две строки. Заголовок располагается посередине, точку в конце заголовка не ставят.

Название главы печатается жирным шрифтом заглавными буквами, название параграфов – прописными буквами, выделение названий глав и параграфов из текста осуществляется за счет проставления дополнительного интервала. Порядковый номер главы указывается одной арабской цифрой (например: 1, 2, 3 и т.д.), параграфы имеют двойную нумерацию (например: 1.1, 1.2 и т.д.). Первая цифра указывает на принадлежность к главе, вторая – на собственную нумерацию.

Для подтверждения собственных выводов и для критического разбора того или иного положения часто используются цитаты. При цитировании следует выполнять следующие требования:

  • при дословном цитировании мысль автора заключается в кавычки и приводится в той грамматической форме, в которой дана в первоисточнике. По окончании делается ссылка на источник, в которой указывается номер книги или статьи в списке использованной литературы и номер страницы, где находится цитата, например: обозначение указывает, что цитата, использованная в работе, находится на странице 123 в первоисточнике под номером 4 в списке литературы;
  • при недословном цитировании (пересказ, изложение точек зрения различных авторов своими словами) текст в кавычки не заключается. После высказанной мысли необходимо в скобках указать номер источника в списке литературы без указания конкретных страниц, например: ;
  • если текст цитируется по другому изданию, то ссылку следует начинать словами «Цит. по...», например: (Цит. по кн. );
  • если цитата выступает самостоятельным предложением, то она начинается с прописной буквы, даже если первое слово в первоисточнике начинается со строчной буквы, и заключается в кавычки. Цитата, включенная в текст после подчинительного союза (что, ибо, если, потому что), заключается в кавычки и пишется со строчной буквы, даже если в цитируемом источнике она начинается с прописной буквы;
  • при цитировании допускается пропуск слов, предложений, абзацев без искажения содержания текста первоисточника. Пропуск обозначается многоточием и, ставится в том месте, где пропущена часть текста;
  • в цитатах сохраняются те же знаки препинания, что и в источнике;
  • если автор в приведенной цитате выделяет некоторые слова, то он должен это специально оговорить в скобках, например: (подчеркнуто мною – Ф. И. или (курсив наш – Ф. И.);
  • на одну страницу попадает две-три ссылки на один и тот же первоисточник, то порядковый номер указывается один раз. Далее в квадратных скобках принято писать [Там же] или при цитировании [Там же, с. 309];
  • все цитаты и ссылки в тексте работы должны быть оформлены одинаково.

Цифровые данные исследования группируются в таблицы, оформление которых должно соответствовать следующим требованиям:

  • слово «Таблица» без сокращения и кавычек пишется в правом верхнем углу над самой таблицей и ее заголовком. Нумерация таблиц производится арабскими цифрами без знака номер и точки в конце. Если в тексте только одна таблица, то номер ей не присваивается и слово «таблица» не пишется;
  • нумерация таблиц и рисунков может быть сквозной по всему тексту работы или самостоятельной в каждом разделе. Тогда она представляется по уровням подобно главам и параграфам. Первый вариант нумерации обычно применяют в небольших по объему и структуре работах. Второй – предпочтителен при наличии развернутой структуры работы и большого количества наглядного материала;
  • название таблицы располагается между ее обозначением и собственно содержанием, пишется с прописной буквы без точки в конце;
  • при переносе таблицы на следующую страницу заголовки вертикальных граф таблицы следует пронумеровать и при переносе таблицы на следующую страницу повторять только их номер. Предварительно над таблицей справа поместить слова «Продолжение таблицы 8»;
  • название таблицы, ее отдельных элементов не должно содержать сокращений, аббревиатур, не оговоренных ранее в тексте работы.

В качестве иллюстраций в исследовательских работах могут быть использованы рисунки, схемы, графики, диаграммы, которые обсуждаются в тексте. При оформлении иллюстраций следует помнить:

  • все иллюстрации должны быть пронумерованы. Если в работе представлены различные виды иллюстраций, то нумерация отдельно для каждого вида;
  • в текст работы помещаются только те иллюстрации, на которые в ней имеются прямые ссылки типа «сказанное выше подтверждает рисунок...». Остальной иллюстрационный материал располагают в приложениях;
  • номера иллюстраций и их заглавия пишутся внизу под изображением, обозначаются арабскими цифрами без знака номера после слова «Рис.»;
  • на самой иллюстрации допускаются различные надписи, если позволяет место. Однако чаще используются условные обозначения, которые расшифровываются ниже изображения;
  • на схемах всех видов должны быть выражены особенности основных и вспомогательных, видимых и невидимых деталей, связей изображаемых предметов или процесса.

Приложения по своему содержанию могут быть разнообразны. При их оформлении следует учитывать общие правила:

  • приложения оформляются как продолжения основного материала на последующих за ним страницах. При большом объеме или формате приложения оформляют в виде самостоятельного блока в специальной папке, на лицевой стороне которой дается заголовок «Приложения», и затем повторяют все элементы титульного листа исследовательской работы;
  • каждое приложение должно начинаться с нового листа, должно быть пронумеровано в правом верхнем углу, пишут: Приложение 1 (2, 3 ... и т. д.) без точки в конце;
  • каждое приложение имеет тематический заголовок, который располагается по середине строки;
  • нумерация страниц, на которых даются приложения, должна продолжать общую нумерацию страниц основного текста;
  • связь основного текста с приложениями осуществляется через ссылки словом «см.». Указание обычно заключается в круглые скобки, например: данные (см. приложение 1) можно сгруппировать следующим образом.

Список литературы исследовательской работы составляют только те источники, на которые в тексте имеются ссылки. При составлении списка в научных кругах принято применять алфавитный способ группировки литературных источников, где фамилии авторов или заглавий (если нет авторов) размещаются в алфавитном порядке.

Библиографический список оформляется в соответствии с ГОСТ 7.1-2003. «Библиографическая запись. Библиографическое описание документа. Общие требования и правила составления».

Правила оформления библиографических списков:

  • Для книг одного или нескольких авторов указываются фамилия и инициалы авторов (точка), название книги без кавычек с заглавной буквы (точка и тире), место издания (точка, двоеточие), издательство без кавычек (запятая), год издания (точка и тире), количество страниц в книге с прописной буквой «с» на конце (точка). Пример: Перре-Кпермон А. Н. Роль социальных взаимодействий в развитии интеллекта детей. – М.: Педагогика, 1991. – 248 с.
  • Для составительского сборника двух-трех авторов указывается название сборника (одна наклонная линия) далее пишется слово «Сост.» (точка) инициалы и фамилия составителей (точка, тире), место издания (точка, двоеточие), название издательства (без кавычек, запятая), год издания (точка, тире), количество страниц в сборнике с прописной буквы «с». Например: Советы управляющему / Сост. А. Н. Зотов, Г. А. Ковалева. – Свердловск.: Сред.-Урал. кн. изд-во, 1991. – 304 с.
  • При оформлении сборника с коллективом авторов под общей редакцией указывается название сборника (одна наклонная линия), далее могут быть 2 варианта: 1) слово «Сост.» и перечисление составителей (точка с запятой), слово «Под ред.» (точка), инициалы и фамилия редактора (точка, тире), место издания (точка, двоеточие), издательство (запятая), год издания (точка, тире), количество страниц (прописная «с», точка); 2) слово «Под ред.» (точка), инициалы и фамилия редактора (точка, тире), место издания (точка, двоеточие), издательство (запятая), год издания (точка, тире), количество страниц (прописная «с», точка). Например: Краткий толковый словарь русского языка / Сост. И. Л. Горецкая, Т. Н. Половцева, М Н. Судоплатова, Т. А. Фоменко; Под ред. В. В. Розановой. – М.: Русс, яз., 1990. – 251с. Психология. Словарь /Под общ. ред. А. В. Петровского, М. Г. Ярошевского. – 2-е изд. – М.: Политиздат, 1990. – 494 с.
  • Для статей в сборнике указывается фамилия и инициалы автора (точка), название работы (две наклонные линии), название сборника (точка, тире), место издания (точка, тире), заглавная буква «С» (точка), номер первой и последней страниц (точка). Пример: Леонтьев А. Я Общее понятие о деятельности // Хрестоматия по возрастной психологии. Под ред. Д. И. Фелъдштейна – М.: Междунар. педагогич., академия, 1994. – С. 112-121.
  • Для статей в журнале указывается фамилия и инициалы автора (точка), название статьи (две наклонные линии), название журнала без кавычек (точка, тире), год издания (точка, тире), номер журнала (точка, тире), заглавная буква «С» (точка) страницы (точка). Пример: Айнштейн В. Экзаменуемые и экзаменаторы // Высшее образование в России. – 1999. – МЗ. – С. 34-42.

Все кристаллы, окружающие нас, не образовались когда-то раз и навсегда готовыми, а выросли постепенно. Кристаллы бывают не только природными, но так же и искусственные, выращиваемые человеком. Зачем же создают еще и искусственные кристаллы, если и так почти все твёрдые тела вокруг нас имеют кристаллическое строение? При искусственном выращивании можно получить кристаллы крупнее и чище, чем в природе. Есть и такие кристаллы, которые в природе редки и ценятся дорого, а в технике очень нужны. Поэтому разработаны лабораторные и заводские методы выращивания кристаллов алмаза, кварца, сапфира и др. В лабораториях выращивают большие кристаллы, необходимые для техники и науки, драгоценные камни, кристаллические материалы для точных приборов, там создают и те кристаллы, которые изучают кристаллографы, физики, химики, металловеды, минералоги, открывая в них новые замечательные явления и свойства. В природе, в лаборатории, на заводе кристаллы растут из растворов, из расплавов, из паров, из твердых веществ. Поэтому представляется важным и интересным изучить процесс образования кристаллов, выяснить условия их образования, вырастить кристаллы без применения специальных приспособлений. Это и определило тему исследовательской работы.

Почти любое вещество может при известных условиях дать кристаллы. Кристаллы образуются чаще всего из жидкой фазы - раствора или расплава; возможно получение кристаллов из газовой фазы или при фазовом превращении в твердой фазе. Кристаллы выращивают (синтезируют) в лабораториях и на за­водах. Можно получать и кристаллы таких сложных природных ве­ществ, как белки и даже вирусы.

  • Многим известно, что растворимость веществ зависит от температуры. Обычно с повышением температуры растворимость увеличивается, а с понижением – уменьшается. Мы знаем, что одни вещества растворяются хорошо, другие - плохо. При растворении веществ образуются насыщенные и ненасыщенные растворы. Насыщенный раствор – это раствор, который содержит максимальное количество растворяемого вещества при данной температуре. Ненасыщенный раствор – это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данной температуре.

Я использовала самый простой способ выращивания кристаллов медного купороса и каменной соли из раствора. Сначала необходимо приготовить насыщенный раствор. Для этого в стакан наливают воду (горячую, но не кипящую) и в неё насыпают порциями вещество (порошок медного купороса или каменной соли) и размешивают стеклянной или деревянной палочкой до полного растворения. Как только вещество перестанет растворяться, это значит, что при данной температуре раствор насыщен. Потом он будет охлаждаться, когда вода станет постепенно испаряться из него, «лишнее» вещество выпадает в виде кристалликов. Сверху на стакан необходимо положить карандаш (палочку), вокруг которого обмотана нитка. К свободному концу нитки привешивается какой-нибудь груз, чтобы нитка распрямилась и висела в растворе вертикально, не доставая немного дна. Оставить стакан в покое на 2-3 дня. Спустя время можно обнаружить, что нитка обросла кристалликами. Результаты формирования кристаллов методом охлаждения представлены на фотографии.

Статьи по теме: