Схема вентиляции системного блока пк. Компьютер перегревается — как охладить

Доброго дня, дорогие читатели!

Как я и обещал в комментариях к статье «Что нужно знать о накопителях и безопасности данных - 20 самых важных моментов» , сегодняшняя статья будет посвящена вопросам охлаждения компьютеров.

Актуальность вопроса очень высока. Об этом свидетельствует хотя бы то, какой поток писем я получаю на данную тему. И дело здесь не только в том, что уже совсем скоро придет солнечное и жаркое лето…

Вопрос актуален применительно и к настольным компьютерам, и к ноутбукам, потому как совершенно любой компьютер совершенно любого уровня нуждается в охлаждении для нормальной работы. Разница лишь в том, что одни устройства выделяют больше тепла, а другие - меньше…

Сегодняшнюю статью я предлагаю вам в виде сборника наиболее важных вопросов и нюансов, как это было в предыдущем материале про жесткие диски, чтобы вы могли, не тратя много времени, сразу же понять самое важное и главное.

Да, всех аспектов не затронешь в рамках одной статьи, но я постарался собрать всё особенно важное под одним заголовком, чтобы получившийся материал дал ответы на самые критичные вопросы.

Итак, начнем!

Настольные компьютеры

Начнем с самого главного. Несмотря на то, что сегодня ноутбуков продается больше, чем настольных ПК, тем не менее - от «настольников» никто не отказывался и отказываться в будущем не собирается. В конце концов, пока заменить полноценную настольную рабочую станцию ноутбуком или чем-то другим просто невозможно.

Как следствие своей мощности, вопрос охлаждения настольных ПК не снимается с повестки дня обычных пользователей никогда.

1. Основные источники тепла.

Таковыми в настольном ПК являются: процессор, видеокарта, элементы системной платы (такие как чипсет, питание процессора…) и блок питания. Тепловыделение остальных элементов не так значительно, по сравнению с вышеприведенными.

Да, многое зависит от конкретной конфигурации и ее мощности, но все же в пропорциональном отношении мало что меняется.

Процессоры средне-производительного сегмента могут выделять от 65 до 135 ватт тепла; обычная видеокарта игрового уровня в процессе работы может разогреваться до 80-90 градусов Цельсия и это является абсолютно нормальным для таких производительных решений; блок питания может запросто разогреться до 50 градусов; чипсет на системной плате так же может разогреваться до 50-60 градусов и т.п.

Всегда стоит помнить, что чем мощнее используемые компоненты, тем больше тепла они выделяют.

Процессор и видеочип графической карты можно сравнить с конфорками электрической плиты. В плане тепловыделения - аналогия абсолютная. Всё то же самое, только чипы способны разогреваться гораздо быстрее, чем конфорка современной печи: всего за секунды…

2. Насколько это важно?

По сути, если, скажем, графический чип работает без охлаждения, то он может выйти из строя за считанные секунды, максимум - за несколько минут. То же самое касается процессоров.

Другое дело - что все современные чипы оснащаются защитой от перегрева. При превышении определенного порога температуры он просто выключиться. Но не стоит испытывать судьбу - здесь это правило верно как никогда, поэтому, проблем с охлаждением лучше не допускать.

3. Всё замыкается на корпус…

Нельзя забывать, что все эти «жаркие» компоненты находятся в рамках довольно ограниченного пространства корпуса системного блока:

Следовательно: все эти большие объемы тепла не должны «застаиваться» и «прогревать» весь компьютер. Отсюда вытекает небольшое важное правило, которого нужно всегда придерживаться при организации охлаждения:

«Внутри корпуса всегда должен быть «сквозняк».

Да, только так, когда горячий воздух выбрасывается за пределы корпуса можно исправить ситуацию.

4. Следите за температурами.

Старайтесь хотя бы иногда интересоваться температурами компонентов компьютера. Это поможет вам вовремя выявить и устранить проблему.

В этом вам может помочь программа EVEREST или SiSoftware Sandra Lite (бесплатная). В этих системных утилитах есть соответствующие модули, которые выводят температуру устройств.

Приемлемые «градусы»:

Процессор: рабочая температура в 40-55 градусов Цельсия считается нормальной.

Видеокарта: все зависит от ее мощности. Бюджетные недорогие модели могут не прогреваться и до 50 градусов, а для топовых решений, класса Radeon HD 4870X2 и 5970 - 90 градусов при нагрузке может считаться нормой.

Жесткий диск: 30-45 градусов (полный диапазон).

Примечание: По своему опыту могу сказать, что относительно точно можно измерить программным способом только температуру вышеприведенных устройств. А состояние всех остальных компонентов (чипсет, память, окружение видеокарты и системной платы) довольно часто определяется ошибочно измерительными утилитами.

Например, достаточно часто можно встретить, что какая-то программа показывает температуру чипсета, скажем, в 120 градусов или температуру окружения в 150 градусов. Естественно - это не реальные значения, при которых компьютер уже бы давно не работал исправно.

Однако, если Вы организуете правильное охлаждение внутри корпуса, используя дальнейшие советы, то я могу гарантировать - что измерять что-либо кроме температуры процессора, видеокарты и диска попросту не придется, т.к. при правильных условиях охлаждения они не будут перегреваться.

Так что вполне достаточно будет временами поглядывать на значения температур основных компонентов, приведенных выше, для отслеживания общей ситуации…

5. Хороший корпус…

Да, тепловыделение компонентов компьютера может сильно различаться. Если вести речь про маломощные машины «офисного» уровня, то да - тепловыделение будет небольшим.

Что касается средне-производительных и «топовых» решений, которые составляют большинство современных домашних настольных ПК, то здесь системный блок может вполне себе играть роль обогревателя.

В современных условиях наличие корпуса, с достаточным внутренним пространством для циркуляции воздуха - необходимость. Причем не важно, какова производительность вашего компьютера.

В любом случае - и офисный и игровой ПК нуждается в нормальной циркуляции воздуха внутри корпуса. Иначе, даже простой офисный ПК из-за образования так называемых “воздушных пробок” внутри корпуса может начать перегреваться.

Воздушные пробки внутри корпуса - “бытовое” название явления, когда воздушные потоки (вызываемые вентиляторами и кулерами) циркулируют неправильно. Например: когда нагретый воздух не выводится наружу; или если отсутствует подача свежего воздуха в корпус; или когда какие-либо вентиляторы установлены неправильно, скажем, если из-за особенности конструкции процессорный кулер

6. Немного о мебели…

Особый вопрос в теме качественного охлаждения касается мебели - вашего рабочего стола.

Конструкция стола может либо сильно затруднять охлаждение, либо же наоборот способствовать максимальной вентиляции.

Одно дело, когда системный блок просто стоит рядом со столом - здесь претензий никаких, за исключением разве что того, что категорически не рекомендуется размещать системный блок рядом с радиатором отопления и обогревателями, не рекомендуется ставить какие-либо еще предметы вплотную к системному блоку.

Если рядом находится какая-то мебель или предметы, позаботьтесь о том, чтобы со всех сторон от системного блока оставались зазоры хотя-бы 7-10 см.

Однако, в большинстве случаев системный блок расположен не рядом со столом, не на столе, а в столе:

Как видите - в этом случае пространство вокруг системного блока жестко ограничено столом и пространства для циркуляции и выхода воздуха - минимум…

Поскольку основные отверстия для вентиляции в системном блоке находятся сзади, впереди и на левой стенке, то я рекомендую сдвинуть системный блок относительно бокса стола вправо, чтобы слева (см. снимок выше) оставалась как можно бОльшее пространство.

Чтобы избежать “воздушных пробок”: когда весь нагретый воздух поднимется вверх и будет там находится - не рекомендуется закрывать дверцу бокса для системного блока вашего стола.

При соблюдении всех этих пунктов охлаждение будет вполне достойным: горячий воздух будет скапливаться вверху и выходить из стола под действием естественного перемешивания (т.к. слева имеется достаточный зазор).

В некоторых случаях, если в вашем компьютере очень производительное «железо», рекомендуется полностью снять левую сторону корпуса системного блока - в таком случае эффективность охлаждения повышается в разы.

Например, я сам сделал точно так же, поскольку мой компьютер выделяет ну очень много тепла:

7. О процессорном кулере.

Этот вопрос больше актуален для производительных ПК. Если говорить о маломощных ПК, то смысла говорить о кулерах нет, т.к. такой процессор выделяет немного тепла, и штатного (идущего в комплекте с процессором) более чем достаточно.

Если вы покупаете процессор и в его названии присутствует слово BOX - значит он поставляется в полной комплектации, которая предусматривает кулер.

Если в прайс-листе вы видите пометку ОЕМ - это значит при покупке, кроме самого процессора вы не получите больше ничего.

Здесь можно дать такой совет: если вы покупаете недорогой современный процессор - то лучше выбрать BOX-комплектацию. В конечном счете такой процессор не потребует мощного кулера - производительность невысока, а нынешние технологии обеспечивают небольшое энергопотребление, следовательно, большого выделения тепла здесь ждать не приходится.

А если вы желаете приобрести какую-либо мощную модель, скажем, для домашнего ПК, то лучше выбирать ОЕМ-комплектацию - в любом случае, штатного кулера вам будет недостаточно.

Почему так происходит?

Сегодня производители, на мой взгляд, стали крайне халатно относиться к штатным кулерам - его размеры и характеристики не всегда соответствуют мощности процессора. Например:

Такой кулер идет в комплекте с двухъядерными и четырехъядерными процессорами Intel Core 2. Ладно, для 2-ядерных моделей его, может быть, и хватит, но для 4-ядерных - явно недостаточно…

Кроме того, если затронуть устаревшие модели, то ситуация такая: если вы купили, скажем, процессор 3 года назад, то в то время технологии не обеспечивали такого энергосбережения, как сейчас.

Именно поэтому, скажем, вполне себе недорогой и маломощный Pentium D 4-х летней давности греется даже сильнее, чем современные Core i7 топового уровня.

В этом случае - хороший кулер просто необходим. И я рекомендую устанавливать кулер башенного типа на тепловых трубках:

Тепловые трубки - выполненные из меди элементы, которые пронизывают алюминиевые (как на фото выше) или медные пластины кулера и способствуют более быстрому и эффективному отводу тепла от горячего процессора. Они обеспечивают в разы более эффективное охлаждение, по сравнению с обычными кулерами.

Тепловая трубка - устройство герметичное, внутри которого находится вода, которая циркулирует по трубке естественным образом. Этому движению способствуют тысячи мельчайших «зазубрин» на внутренней стороне трубки, которые позволяют воде подниматься вверх.

Вне зависимости от того, насколько мощный процессор вы хотите охладить - я всегда рекомендую кулеры только на тепловых трубках. Покупка обычного кулера на базе алюминиевого или медного радиатора - не оправдана.

Именно башенный кулер на тепловых трубках обеспечивает наибольшую эффективность.

Еще пример такого кулера:

8. Корпусный вентилятор - обязателен.

Следующее, что необходимо для организации правильного охлаждения - наличие корпусного вентилятора.

Современные корпуса предлагают возможность установки как минимум двух вентиляторов.

На передней панели: воздух при этом может поступать через перфорацию (как на фото), либо же снизу - если передняя панель не перфорирована:

При этом получается, что вентилятор становится как раз напротив жестких дисков и поэтому выполняет две важные функции: подает свежий воздух внутрь корпуса и охлаждает жесткие диски:

Наличие как минимум одного корпусного вентилятора - обязательно для любого компьютера! Вентилятор «прокачивает» воздух внутри и препятствует образованию «воздушных пробок».

Установка вентилятора на выдув на задней стороне не является обязательным, но тем не менее в некоторых случаях помогает сделать систему охлаждения еще лучше:

Но при этом не стоит забывать, что если у вас установлен кулер башенного типа, то в этом случае вентилятор кулера в большинстве случаев будет напротив гнезда для корпусного вентилятора на задней стенке (см. фото ниже), с той лишь разницей, что вентилятор кулера может располагаться с левой или правой стороны кулера

Если (как на фото) У вас не установлено корпусного вентилятора - то все нормально. Вентилятор кулера будет либо выбрасывать горячий воздух в это отверстие, либо затягивать его оттуда (в зависимости от расположения вентилятора на кулере). При этом лучше, чтобы он выбрасывал туда уже нагретый воздух, а не затягивал его.

На фото расположение кулера неоптимальное: горячий воздух при этом выбрасывается в корпус, а не в отверстие для крепления корпусного вентилятора.

Если же вы захотите установить еще и корпусный вентилятор, убедитесь, чтобы вентилятор и кулер не «конфликтовали», т.е. не направляли воздух друг на друга. Устанавливайте корпусный вентилятор так, чтобы он помогал процессорному кулеру.

Вне зависимости от того, на какую панель вы хотите установить вентилятор, я рекомендую использовать ТОЛЬКО 140-мм вентиляторы!

9. Расположение кабелей.

Большой проблемой для охлаждения являются неправильно уложенные кабели. Находясь в разбросанном состоянии они затрудняют циркуляцию воздуха внутри корпуса, иногда до такой степени, что даже мощный вентилятор не в состоянии «прокачать» весь объем корпуса…

Но при укладке кабелей внутри корпуса - не переусердствуйте! Не стоит излишне гнуть (на излом) и создавать натяжение - это может повредить кабели и привести к ошибкам и сбоям в работе ПК! Такие случаи не редки…

Просто постарайтесь уложить кабели максимально компактно. Настолько, насколько это возможно:

10. Позаботьтесь об особо горячих поверхностях.

Таковыми в компьютере являются прежде всего видеокарты. Особенно, если говорить о таких горячих и мощных моделях, как Radeon HD 4870X2 и HD 5970.

Позаботьтесь о том, чтобы сверху на видеокарте не лежали никакие кабели:

Это очень важно! В процессе работы видеокарта может разогреваться до температуры, близкой к 100 градусам!

11. О термопасте…

Устанавливая кулер всегда используйте термопасту. Ни в коем случае не ставьте кулер «на сухую»! Эффективность охлаждения упадет в разы…

Наносить термопасту нужно только на процессор, очень тонким, полупрозрачным слоем.

«Чем больше термопасты - тем лучше охлаждение» - это самый большой миф, среди начинающих пользователей!

Термопаста является связующим звеном, она соединяет поверхность процессора с поверхностью кулера, заполняя микроскопические неровности между этими поверхностями, в которых может находится воздух. А воздух, как известно, очень сильно препятствует отводу тепла.

А если термопаста будет наложена толстым слоем, то она превращается уже не в проводник тепла, а в изолятор - толстое «одеяло» между кулером и процессором.

Наносить ее можно чем угодно: выдавливаете небольшое количество пасты в центр на процессор, и затем немного размазываете по сторонам. Затем приступайте к установке кулера. Окончательно термопаста разойдется идеальным слоем только после того, как вы установите кулер.

Примечание: подробно процедуру установки кулера я показываю в бесплатном курсе по самостоятельной сборке компьютера .

Многие спорят о том, какая паста лучше… По своему опыту могу сказать, что разница между различными ее марками минимальна. Поэтому, не стоит обращать на это внимание.

Например, термопаста TITAN, продается вот в таких маленьких тюбиках:

Один такой тюбик рассчитан, как минимум, на ДВА раза.

При условии выполнения всех вышеприведенных рекомендаций по сути никаких проблем с охлаждением у вашего ПК не будет.

Ноутбуки

12. Особенности ноутбуков.

Все компоненты внутри ноутбука собраны в крайне малом пространстве мобильного корпуса. Помимо процессора в ноутбуке может быть установлена мощная видеокарта, жесткий диск…

Эти и другие устройства отделяют друг от друга считанные сантиметры, и при этом никакого пространства для циркуляции воздуха - внутри ноутбука просто нет.

Именно поэтому компоненты практически всегда работают при повышенных температурах. Исправить это, к сожалению, никак нельзя; но однако же можно уберечь ноутбук от дополнительного нагрева, таким образом продлив ему срок службы и избавив от критического перегрева.

13. Рабочее место…

Как я уже не раз упоминал здесь на блоге - старайтесь по возможности не располагать ноутбук на мягких поверхностях и коленях, особенно - когда за ноутбуком вы работаете с ресурсоемкими задачами (например, обработка фото или видео). При несоблюдении этого простого правила перегрев компонентов ноутбука, включая батарею - обеспечен…

Старайтесь располагать ноутбук на ровной и твердой поверхности рабочего стола. При этом убедитесь, что никакие предметы, которые лежат лядом, не мешают току воздуха под- и вокруг ноутбука:

По сути - это самое главное и самое эффективное, что только можно сделать для избежание перегрева.

14. Погода…

Не работайте за ноутбуком под прямыми солнечными лучами. Они очень быстро и очень сильно нагревают его поверхность (особенно, если ноутбук темный) и быстро прогревают всё внутри корпуса.

В этом случае возможны даже повреждения отдельных компонентов от перегрева.

И последний совет, который я бы хотел дать в рамках этой статьи, для всех пользователей, в не зависимости от того, ноутбук ли у вас или же настольный ПК:

15. Регулярно выполняйте очистку от пыли!

Для настольных ПК: Они очень быстро накапливают пыль. Старайтесь по крайней мере раз в 6 месяцев открывать системный блок и очищать все внутренние компоненты от пыли.

Пыль препятствует отводу тепла от компонентов и существенно ухудшает теплообмен. Из-за пыли особенно могут перегреваться жесткие диски, видеокарта и процессор.

Отдельно хочу упомянуть о вентиляторах. Помните: забитый пылью вентилятор подает воздух намного менее эффективно:

Для очистки внутренних компонентов я обычно использую кисть и слегка влажную ткань. КАТЕГОРИЧЕСКИ не рекомендую использовать пылесос! В процессе чистки им можно случайно повредить хрупкие компоненты. Такое случается довольно часто.

Приступайте к процедуре очистки ТОЛЬКО если компьютер выключен!

Для ноутбуков: Здесь ситуация несколько сложнее…

Дело в том, что ноутбуки обладают различными корпусами: некоторые открывают сразу доступ к системе охлаждения так, что можно почистить кистью вентилятор; а в некоторых, чтобы добраться до вентиляторов нужно разобрать полноутбука…

Здесь единственный совет, который я могу вам дать: не беритесь за разбор ноутбука, если вы не уверены в том, что сможете собрать всё назад…

Системы охлаждения компьютера бывают разных типов и разной эффективности. Вне зависимости от этого, у них у всех одна и та же цель: остудить устройства внутри системного блока, чем предохранить их от сгорания и повысить эффективность работы. Разные системы предназначены для охлаждения разных устройств и делают они это при помощи разных способов. Это, конечно, не самая захватывающая тема, но меньше важной она от этого не становится. Сегодня мы подробно разберемся какие системы охлаждения нужны нашему компьютеру, и как добиться максимальной эффективности их работы.

Для начала предлагаю быстренько пробежаться по системам охлаждения вообще, дабы к изучению компьютерных их разновидностей мы подошли максимально подготовленными. Надеюсь, что это сэкономит наше время и упростит понимание. Итак. Системы охлаждения бывают…

Воздушные системы охлаждения

Сегодня это наиболее распространенный тип систем охлаждения. Принцип его действия очень прост. Тепло от нагревающего компонента передается на радиатор с помощью теплопроводящих материалов (может быть прослойка воздуха или специальная теплопроводящая паста). Радиатор получает тепло и отдает его в окружающее пространство, которое при этом либо просто рассеивается (пассивный радиатор), либо сдувается вентилятором (активный радиатор или кулер). Такие системы охлаждения устанавливаются непосредственно в системный блок и практически на все греющиеся компьютерные компоненты. Эффективность охлаждения зависит от размеров эффективной площади радиатора, металла из которого он сделан (медь, аллюминий), скорости проходящего потока воздуха (от мощности и размеров вентилятора) и его температуры. Пассивные радиаторы устанавливаются на те компоненты компьютерной системы, которые не очень сильно греются в процессе работы, и возле которых постоянно циркулируют естественные воздушные потоки. Активные системы охлаждения или кулеры разработаны в основном для процессора, видеоадаптера и прочих постоянно и напряженно работающих внутренних компонентов. Для них иногда могут устанавливаться и пассивные радиаторы, но обязательно с более эффективным чем обычно отводом тепла при низкой скорости воздушных потоков. Это дороже стоит и применяется в специальных бесшумных компьютерах.

Жидкостные системы охлаждения

Чудо-диво-изобретение последней десятилетки, используется в основном для серверов, но в связи с бурным развитием техники, со временем имеет все шансы перебраться и в домашние системы. Дорого и немного страшно, если представить, но достаточно эффективно, поскольку вода проводит тепло в 30 (или около того) раз быстрее воздуха. Такой системой можно практически без шума одновременно охлаждать несколько внутренних компонентов. Над процессором помещается специальная металлическая пластинка (теплосъемник), которая собирает тепло с процессора. Поверх теплосъемника периодически прокачивается дистиллированная вода. Собирая с него тепло, вода попадает в радиатор охлажденный воздухом, остывает и начинает свой второй круг с металлической пластины над процессором. Радиатор при этом рассеивает собранное тепло в окружающую среду, охлаждается и ждет новую порцию нагретой жидкости. Вода в таких системах может быть специальная, например, с бактерицидным либо антигальваническим эффектом. Вместо такой воды может использоваться антифриз, масла, жидкие металлы или еще какая-нибудь жидкость, обладающая высокой теплопроводностью и высокой удельной теплоемкостью, дабы обеспечить максимальную эффективность охлаждения при наименьшей скорости циркуляции жидкости. Конечно, такие системы более дорогие и сложные. Они состоят из помпы, теплосъемника (ватерблок или головка охлаждения), прикрепленного к процессору, радиатора (может быть как активным, так и пассивным), обычно прикрепленного к задней части корпуса компьютера, резервуара для рабочей жидкости, шлангов и датчикв потока, разнообразных измерителей, фильтров, сливных кранов и пр. (перечисленные компоненты, начиная от датчиков, опциональны). Кстати, замена такой системы - занятие не для слабонервных. Это вам не вентилятор с радиатором поменять.

Фреоновая установка

Маленький холодильник, устанавливаемый прямо на нагревающийся компонент. Они эффективны, но в компьютерах применяются в основном, исключительно для разгона. Знающие люди говорят, что у него больше недостатков, чем достоинств. Во-первых, конденсат, который появляется на детальках, более холодных, чем окружающая среда. Как вам перспектива появления жидкости внутри святая святых? Повышенное энергопотребление, сложность и немалая цена – меньшие недостатки, но от этого достоинствами тоже не становятся.

Системы открытого охлаждения

В них используется сухой лед, жидкий азот либо гелий в специальном резервуаре (стакане), установленном прямо на охлаждаемом компоненте. Используется Кулибиными для самого экстремального разгона или оверклокинга, по нашему. Недостатки те же – дороговизна, сложность и пр. + 1 очень существенный. Стакан надо постоянно наполнять и периодически бегать в магазин за его содержимым.


Системы каскадного охлаждения

Две и более последовательно подключенные системы охлаждения (например, радиатор + фреон). Это самые сложные в реализации системы охлаждения, которые в состоянии работать без перерывов, в отличие от всех остальных.

Комбинированные системы охлаждения

Такие сочетают в себе элементы охлаждения систем различных типов. В пример комбинированных можно привести Ватерчпперы. Ватерчипперы = жидкость + фреон. Антифриз циркулирует в системе жидкостного охлаждения и кроме нее охлаждается еще и фреоновой установкой в теплообменнике. Еще более сложно и дорого. Сложность в том, что теплоизоляция понадобится и всей этой системе, зато этот агрегат можно применять для одновременного эффективного охлаждения сразу нескольких компонентов, что довольно сложно реализуется в других случаях.

Системы с элементами Пельтелье

Они никогда не используются самостоятельно и кроме этого, имеют наименьшую эффективность. Их принцип работы описал Чебурашка, когда предложил Гене понести чемоданы (“Давай я понесу чемоданы, а ты понесешь меня”). Элемент Пельтелье устанавливают на нагревающий компонент, а другую сторону элемента охлаждают другой, обычно воздушной или жидкостной системой охлаждения. Поскольку возможно охлаждение до температуры ниже окружающей среды, то проблема конденсата актуальна и в этом случае. Элементы Пельтелье менее эффективны, чем фреоновое охлаждение, но при этом тише и не создают вибраций, как холодильники (фреон).

Если вы никогда не замечали, то внутри вашего системного блока постоянно кипит бурнейшая деятельность: ток бегает туда-сюда, процессор считает, память запоминает, программы работают, жесткий диск вертится. Компьютер работает, одним словом. Из школьного курса физики мы знаем, что проходящий ток нагревает устройство, а если устройство греется, то это – нехорошо. В худшем случае оно просто перегорит, а в лучшем будет просто туго работать. (Это действительно частая причина не слабо тормозящей системы). Именно во избежание таких вот неприятностей внутри вашего системного блока предусмотрено несколько видов разнообразных систем охлаждения. По крайней мере, для самых важных компонентов.

Охлаждение системного блока

Как производится охлаждение? В основном – воздухом. Когда вы включаете компьютер, он начинает гудеть – включается вентилятор (очень часто их несколько), потом он затихает. Через несколько минут работы, когда ваша система достигла определенного порогового температурного значения, вентилятор включается вновь. И так все время работы. Самый большой и самый заметный вентилятор внутри системного блока просто выдувает из коробки нагревшийся воздух, чем и охлаждает все вместе взятое, включая компоненты, на которые трудно установить собственную систему охлаждения, например, жесткий диск. По законам той самой физики, на место нагретого воздуха через специальные вентиляционные отверстия в передней части системного блока, поступает охлажденный воздух. Точнее тот, который еще просто не успел нагреться. Охлаждая собой внутренние части компьютера, он нагревается сам и выходит через отверстия в боковой и/ или задней панели системного блока.

Охлаждение процессора

У процессора, как у очень важного и постоянно загруженного компонента вашего железного друга есть личная система охлаждения. Она состоит аж из двух компонентов – радиатора и вентилятора, конечно же меньших размеров, чем тот о котором мы только что говорили. Радиатор иногда называют теплосъемником, в соответствии с его основной функциональной деятельностью – он рассеивает тепло от процессора (пассивное охлаждение), а маленький вертилятор сверху сдувает тепло с радиатора (активное охлаждение). Кроме этого, процессор смазывается специальной термопастой, способствующей максимальной передаче тепла от процессора к радиатору. Дело в том, что поверхности и процессора, и радиатора даже после полировки имеют зазубрины около 5 мкм. В результате таких зазубрин между ними остается тончайший воздушный слой с очень низкой теплопроводимостью. Именно эти промежутки и замазываются пастой из вещества с высоким коэффициентом теплопроводности. У пасты ограниченный срок действия, соответственно, ее нужно менять. Это удобно делать одновременно с чисткой системного блока, о которой мы поговорим чуть ниже, тем более, что старая паста вообще может давать обратный эффект.

Охлаждение видеокарты

Современная видеокарта – это компьютер внутри компьютера. Система охлаждения крайне необходима и ей. У простеньких и дешевых видеокарт системы охлаждения может и не быть, а вот современные видеоадаптеры для игровых монстров в обязательном порядке нуждаются в освежающей прохладе, пожалуй, даже больше чем вы в сорокаградусную жару.

Загрязнение пылью

Вместе с воздухом из комнаты внутрь вашего системного блока поступает пыль. Причем, даже в регулярно убираемом и проветриваемом помещении, пыли, на диво, достаточно, чтобы за несколько месяцев ежедневной работы опутать вашу новенькую крутилку неизвестно откуда взявшимися длинными, малоприятными для глаз шерстяными лохмами. Это дает обратный эффект – забиваются вентиляционные отверстия, а “лохмы” (кроме того, что они физически не позволяют крутиться вентилятору) не хуже норковой шубы согреют ваш компьютер до самого процессора, причем не только в тропический зной, но и в полярную вьюгу. Человек, насколько я знаю, болеет от переохлаждения, компьютер же вполне может заболеть от перегрева. Лечим бедолагу приблизительно раз в пол года не антибиотиками и горячим чаем с малиной, а пылесосом. Желательно приобретенном в специальном магазине компьютерной техники. Привычный, в очень крайнем случае, сойдет, но следует быть предельно осторожным со статическим электричеством. Его очень не любят внутренние компоненты.

Чистка системы охлаждения

Первый признак плохо работающей или не работающей совсем системы – “не гудит” вентилятор и греется системный блок. Кстати, это частая причина самовыключения компьютера или слишком медленной работы системы, а диагноз настолько прост, что может банально не прийти в голову. И начинается: обновление драйверов, сканирование антивирусом, аппаратное обновление системы, покупка дополнительных модулей оперативной памяти и прочие невеселые телодвижения. Смешно? Скорее печально. Срочно вскрываем пациента и смотрим, что у него внутри. Желательно перед этим поискать точный алгоритм проведения процедуры в технической документации у производителей материнки.

В принципе, в чистке системного блока нет ничего сложного. Нужно выключить компьютер, не забыв вытянуть шнур из розетки, разобрать системный блок и аккуратно очистить все внутренности от пыли. В магазинах продаются специальные пылесосы, которыми это делать лучше всего. Больше всего пыли скапливается на радиаторе с вентилятором и возле вентиляционных отверстий на системном блоке. Аккуратно удаляем с них пылевые накопления и смазываем при необходимости (у вентилятора нужно снять наклейку и капнуть несколько капель на ось вентилятора). Неплохо подойдет масло для швейных машинок. Кроме этого, необходимо очистить процессор от старой термопасты и намазать на него новую. Аналогичные действия повторяем с видеокартой и вентилятором системного блока. Осталось собрать компьютер и пользоваться им еще несколько месяцев перед проведением повторной чистки системного блока. Ноутбуки чистить тоже нужно, причем судя по моему опыту – несколько чаще, чем стационарные (малые расстояния между компонентами внутри ноута и потребление печенюшек и бутербродов рядом с ним любимым делают свое черное дело). Многие пользователи легко справляются с этой процедурой без помощи компьютерных специалистов, но лучше не спешить, особенно с ноутбуками, если вы не чувствуете себя достаточно уверенно. Риски: статическое электричество может вывести из строя материнку, процессор или что-нибудь еще, а также вы сами, в силу неопытности, запросто можете повредить что-нибудь важное. Шутки-шутками, но делать это действительно нужно, иначе проблем может появиться просто немерянное количество.

Если же вы почистили компьютер, но заметного облегчения это не принесло, возможно вам придется установить более сильную систему охлаждения. В самом легком случае может помочь дополнительный вентилятор. Чтобы узнать степень нагрева системных компонентов, можно заглянуть на сайт производителя материнской платы. Вполне возможно, что там вы найдете специальное программное обеспечение, которое поможет это определить. Усредненные показатели для процессора это 30-50 градусов, а в режиме нагрузки до 70-ти. Винчестер не должен греться более чем на 40 градусов. Более точные показатели следует проверить в технической документации.

В завершение описанного, хочу сказать, что в 90 (если не больше) процентах случаев вполне подойдет стандартная штатная система охлаждения. Метаться между качеством и ценой, а также внедрять систему охлаждения в свой компьютер (иногда это довольно рискованно и совсем не просто) действительно нужно владельцам серверов, мощных игровых компьютеров и любителям экспериментов с разгоном. Если же вы покупаете компьютер для дома или офиса, вам нужно просто поинтересоваться, что у него внутри, дабы возможная экономия производителя не вылезла для вас боком.

После покупки компьютера мало кто обращает своё внимание на то, что в корпусе установлен только один малопродуктивный вентилятор, а то и вовсе корпус не комплектуется вентиляторами.

Также, мало кто знает, что винчестеры (HDD объёмом свыше 250 Gb), нуждаются в принудительном охлаждении.

Почти никто не обращает внимание на "слабенькую" систему охлаждения северного и южного мостов материнской платы, которым крайне необходим дополнительный обдув воздухом в корпусе.
Потом недоумевают, отчего радиаторы чипсета так сильно греются.

Не каждый пользователь может себе позволить приобрести дорогой корпус, с установленной дополнительной системой продувки корпуса.

Но каждый пользователь должен позаботится о достаточном охлаждении своих комплектующих, для без проблемной эксплуатации компьютера.

Итак!
Начнём с того, что когда вы приобрели корпус и в нём не оказалось ни одного корпусного вентилятора, то вам придётся их докупить отдельно.
Лучше, если это будут вентиляторы размера 120-мм и 1000-1300 об/мин. Главное чтобы в корпусе были оборудованы для них посадочные места:

Почему 120-мм? Просто 120-ки имеют самый низкий уровень шума при самой высокой производительности.

Затем устанавливаем их в специально отведённые места для корпусных вентиляторов:

Причем, спереди на вдув ("вдох"), чтоб он обдувал, установленные в своих посадочных местах, винчестеры (HDD).

Примечание: вентилятор всегда дует в направлении от крыльчатки к своему корпусу, проще говоря от наклейки.

А сзади устанавливаем на выдув ("выдох"), чтобы обеспечить проточную циркуляцию воздуха.

Также участвует в циркуляции воздуха и вентилятор блока питания. Вместе с задним корпусным вентилятором, они обеспечивают выброс тёплого воздуха за пределы корпуса ПК.
Организуя, таким образом, проточную циркуляцию воздуха в корпусе по ниже указанной схеме:

Данная схема обеспечивает максимальную эффективность вентиляции бюджетного корпуса .

Единое, что можно посоветовать - это заведомо выбирать бюджетный корпус, в которых присутствуют посадочные места под вентиляторы 120-мм.
Если, вы уже стали обладателем корпуса в котором нет таких посадочных мест, то вам остаётся только установить максимально допустимый размер вентилятора, например 80-мм или 92-мм.

Ещё одним моментом требующего внимания, является телескопический заборник воздуха. Который крепиться на боковой стенке корпуса:

Почему-то производители корпусов решили, что этот заборник улучшит охлаждение процессора. Но на самом деле это не так.
Причиной этому служит несовпадение месторасположения процессорного кулера и телескопического воздухозаборника.

Мы же в свою очередь, провели тесты работы процессора в разных корпусах(от разных производителей) и с разными положениями заборника, а также вообще без него.

Результаты показали что: процессор имел самую низкую температуру, в процессе прогона его стресс-тестом OCCT 3.1.0, при полностью снятом телескопическом воздухозаборнике.
Выходит, он только мешает свободному протоку воздуха.
Поэтому мы рекомендуем снимать его с боковой стенки корпуса:


Итак. При правильной организации протока воздуха внутри системного блока, Вам обеспечивается заметное снижение температуры всех компонентов системы.
Что в следствии обеспечит стабильную работу всей вашей системы.
А иногда, эти пару градусов спасут вашу систему от перегрева и выхода из стоя дорогих комплектующих. Например в жаркое лето.

Представляет собой набор средств, предназначенных для снижения температуры некоторых элементов компьютера. Проблема охлаждения компьютера становится всё более актуальной с ростом его производительности, ведь большая производительность означает потребление большой мощности, что естественно приводит к увеличению температуры его компонентов. Основные потребители энергии, а значит и источники тепла в компьютере это центральный процессор, графический процессор и блок питания. Именно они и требуют собственных систем охлаждения.

В системах охлаждения домашних компьютеров , как правило, используются радиаторы (пассивное охлаждение) и вентиляторы (кулеры, активное охлаждение). В старых либо маломощных компьютерах использовались только радиаторы, чего в принципе им было и достаточно. Но в современных компьютерах просто радиаторы практически не применяются, они установлены в связке с кулером. И вот с чем это связано. Дело в том, что системы охлаждения работают по принципу переноса тепла от более горячего тела (в нашем случае процессора) к более холодному (радиатору). При постоянном интенсивном нагреве, в конечном счете, нагреется также и система охлаждения (радиатор) и когда её температура достигнет температуры охлаждаемого тела (процессора), прекратится перенос тепла, что вызовет перегрев охлаждаемого тела (процессора). Поэтому для охлаждения радиаторов используют кулеры, которые обдувают радиаторы холодным воздухом, и тем самым охлаждают его.

В качестве материала для изготовления радиатора используется серебро, медь либо алюминий. Наиболее часто применяется алюминий из-за дороговизны первых двух. Иногда в алюминиевом радиаторе (зачастую большом) используются медные трубки, для равномерного распределения нагрева.

Всем известный факт: чем больше общая площадь радиатора, тем эффективней он способен отводить тепло . Существует два способа увеличить площадь радиатора:

    1. Увеличить количество рёбер при сохранении размера радиатора

    2. Увеличить размер радиатора.

Первый способ позволяет улучшить теплообмен и сохранить компактность, но также из-за малого расстояния между рёбрами увеличивается гидравлическое сопротивление, что препятствует эффективному прогону воздуха через такой радиатор.

При использовании второго способа улучшается теплообмен, снижается гидравлическое сопротивление, увеличивается объём воздуха, который участвует в теплообмене, поэтому второй способ более эффективен, и он наиболее часто используется.

Кулеры состоят из корпуса, электродвигателя, крыльчатки (лопасти) и подшипников. От подшипников зависит долговечность кулера, но это не сильно важно, так как они редко выходят из строя.

Кулеры различаются между собой размером, частотой вращения и формой лопастей. И совсем не значит то, что чем быстрее скорость вращения кулера, тем эффективнее он отводит тепло. Зачастую, кулеры с меньшей частотой вращения, но с другой формой лопасти, переносят бо́льшие объёмы воздуха и при этом создают меньше шума.

В любом месте корпуса можно устанавливать дополнительные кулеры, но очень важно организовать в своём системном блоке правильные воздушные потоки. Холодный воздух должен входить через переднюю и левую стенки, а горячий – выходить через заднюю и верхнюю . Поэтому важно правильное расположение системного блока. Его надо поставить так чтобы горячий воздух из задней стенки не попадал в район левой, откуда воздух поступает в системный блок.

Итак, если вы собираетесь модернизировать систему охлаждения компьютера, вам следует усвоить несколько правил:

    1. Выбирайте радиаторы больших размеров, они эффективней отводят тепло.

    2. Для эффективного отвода тепла учитывайте правило воздушных потоков.

    3. Если будете оснащать свой системный блок дополнительными кулерами, не переусердствуйте. Слишком много кулеров будут создавать много шума.

    4. Если вы хотите сделать свой компьютер наиболее бесшумным, приобретайте блок питания с двумя кулерами, так как это позволяет использовать меньшую скорость вращения, а следовательно они будут создавать мало шума.

    5. Для уменьшения шума следует использовать более медленные кулеры.

    6. Для того чтобы добиться бесшумной работы компьютера, необходимо также обращать внимание на корпус системного блока.

Существуют также более экзотические системы охлаждения, когда в качестве хладогена используется не воздух, а специальная жидкость (дистиллированная вода с примесями или фреон). Есть даже такие системы, в которых в качестве хладогена применяется сухой лёд, гелий, азот. Но для обычных пользователей ПК в таких системах охлаждения нет необходимости. Обычно они применяются теми, кто занимается разгоном железа (оверклогингом), либо владельцами особо мощных компьютеров.

Кулеры на процессоры, кулеры на винчестеры, кулеры на видеокарты и системные чипсеты. Прибавьте к этому кардкулеры, системные бловеры и кулеры для ноутбуков. В таком количестве устройств для охлаждения легко можно запутаться, и помаленьку начинаешь верить, что кулеры - основная составляющая сегодняшнего компьютера. К счастью, или к сожалению, но пока что это не так, и на сегодняшний день ещё нет необходимости обвешивать Ваш любимый ПК шумными вентиляторами до тех пор, пока он не взлетит. В этой статье мы постараемся разобраться, что же в компьютере является источниками тепла, какие существуют способы охлаждения этих компонентов, и надо ли вообще бороться с повышенной температурой компьютера.

Теоретические основы охлаждения

Итак, немного теории. Из курса физики известно, что любой проводник, по которому протекает электрический ток, выделяет тепло. Это означает, что абсолютно все составляющие компьютера, начиная от центрального процессора и заканчивая проводами питания, подогревают окружающий воздух. Количество теплоты, выделяемое тем или иным компонентом компьютера напрямую зависит от его энергопотребления, которое, в свою очередь, определяется множеством других факторов: если мы говорим о жёстком диске, то мощностью электромоторчика и электроникой контроллера, а если о процессоре или другом чипе, то числом интегрированных в него элементов и технологическим процессом его производства. Такова физика нашего мира, и от этого никуда не деться. Но ведь никому до сих пор не пришла в голову идея клеить радиаторы на электрические провода и обдувать, скажем, внутренние модемы! Это потому, что различные компоненты компьютера влияют на температуру в корпусе по-разному, и если такое "холодное" устройство, как модем не требует никакого дополнительного охлаждения, то той же самой видеокарте мы уделяем слишком много внимания, поэтому на современные платы и ставят огромные кулеры, иногда даже с двумя вентиляторами.
Но прежде всего, давайте повторим, что же такое кулер. Кулер (от англ. Cool - холод) представляет собой устройство для охлаждения чего-либо. Основной задачей любого кулера является снижение и поддержание температуры охлаждаемого тела на заданном уровне. И в зависимости от типа охлаждаемого устройства, будь то транзистор, чип, процессор или даже винчестер, применяются различные типы кулеров. В нашем понятии кулер укрепился, как "большая железяка с пропеллером", и чем она больше, тем она лучше. Однако, кулеры могут представлять из себя и более сложные устройства, стоимостью сотни долларов. Обычно, кулеры, применяющиеся в компьютерах, состоят из вентилятора, радиатора и крепления.

Радиаторы

Радиатор (от англ. Radiate - излучать) служит для отвода тепла от охлаждаемого объекта. Он находится в непосредственном контакте с охлаждаемым объектом, и его основная функция - принять на себя часть выделяемого телом тепла и рассеять её в окружающий воздух. Как известно, опять же из курса физики, объект отдаёт тепло только со своей поверхности, а это означает, что для достижения наилучшего отвода тепла, охлаждаемый объект должен иметь как можно большую площадь поверхности. В сегодняшних радиаторах площадь поверхности увеличивается за счёт установки большего количества рёбер. Тепло от охлаждаемого объекта переходит к основанию радиатора, а потом равномерно распределяется по его рёбрам, после чего оно уходит в окружающий воздух, и этот процесс называется излучением. Воздух вокруг радиатора постепенно нагревается, и процесс теплообмена становится менее эффективным, поэтому эффективность теплообмена можно будет поднять, если постоянно подавать холодный воздух к рёбрам радиатора. Для этого сегодня используются вентиляторы. Но о них мы поговорим чуть позже.
Радиатор должен иметь хорошую теплопроводность и теплоёмкость. Теплопроводность определяет скорость распространения тепла по телу. Для радиатора теплопроводность должна быть как можно более высокой, потому что зачастую площадь охлаждаемого объекта в разы меньше, чем площадь основания радиатора, и при низкой теплопроводности тепло от охлаждаемого объекта не сможет равномерно распределиться по всему объёму, по всем рёбрам радиатора. Если радиатор выполнен из материала с высокой теплопроводностью, то в каждой его точке температура будет одинакова, и со всей площади его поверхности тепло будет выделяться с одинаковой эффективностью, то есть не возникнет ситуации, когда одна часть радиатора будет раскалённой, а другая - останется холодной и не будет отдавать тепло в окружающий воздух. Теплоёмкость определяет количество теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 градус. Для радиаторов теплоёмкость должна быть как можно более высокой, потому что при остывании на один градус тело отдаёт то же самое количество теплоты. Теплоёмкость и теплопроводность радиатора зависят от материала, используемого для его изготовления.

Таблица термических свойств материалов

Как видно, для изготовления радиаторов выгоднее всего использовать два материала: алюминий и медь. Первый из-за низкой стоимости и высокой теплоёмкости, а второй - из-за большой теплопроводности. Серебро слишком дорого стоит, чтобы его можно было использовать для создания радиаторов, но даже если не брать в расчёт его высокую цену, благодаря хорошей теплопроводности, этот металл лучше всего применять для изготовления только лишь оснований радиаторов.
Конструкция радиатора также имеет большое значение. К примеру, рёбра могут быть установлены под разным углом к воздушному потоку. Они могут быть прямыми по всей длине радиатора, или рассечены поперёк, они бывают толстые и с заусенцами, если радиатор произведён по технологии выдавливания, или тонкими и гладкими, если он был отлит из расплавленного металла. Рёбра могут быть плоскими, согнутыми из пластин и впрессованными в основание. Радиатор вообще может быть игольчатым, то есть вместо рёбер иметь цилиндрические или квадратные иглы. Сегодня известно, что по конструкции рёбер лучше всего показывают себя игольчатые радиаторы.

Тепловой интерфейс

Радиаторы прилегают своим основанием к охлаждаемому объекту, и тепло от него к радиатору переходит лишь через поверхность их соприкосновения, поэтому надо стремиться, чтобы она была как можно больше. Но даже имеющуюся обычно площадь соприкосновения (к примеру, поверхность ядра процессора) надо использовать на все сто процентов. Дело в том, что при соприкосновении двух поверхностей, между ними остаются мельчайшие полости, заполненные воздухом. Этого невозможно избежать, и какой бы ровной и гладкой не казалась Вам поверхность радиатора, она всё равно имеет трещинки и впадины, где собирается воздух. Воздух очень плохо проводит тепло, а потому эффективность охлаждения будет существенно ниже возможностей радиатора.
Чтобы избавиться от воздушных подушек и увеличить эффективность охлаждения, применяют различные тепловые интерфейсы. Они имеют высокую теплопроводность и за счёт текучести заполняют собой все неровности основания радиатора. В результате, те места, где раньше был мешающий нам воздух, теперь заполнены хорошо проводящим тепло материалом, и радиатор уже работает с максимальной отдачей. Тепловые интерфейсы бывают различных типов: термопасты или проводящие прокладки. Прокладки представляют собой резиноподобные полимерные пластинки, нанесённые на основание радиаторов. При нагреве они изменяют своё агрегатное состояние и размягчаясь заливают собой все неровности. Сейчас термопасты поставляются в комплекте с подавляющим большинством фирменных кулеров. Чаще термопаста просто вкладывается в коробочку с кулером в шприце или маленьком целофановом пакетике. Но бывает, что она уже нанесена на основание радиатора. В этом случае её хватит лишь на одну-две установки, так как собрать её с охлаждаемого чипа или процессора будет сложнее, чем купить ещё один пакетик с пастой. При выборе термоинтерфейса я бы рекомендовал использовать термопасты, а не термопрокладки. Большая текучесть термопаст позволяет им лучше заполнять собой все неровности радиатора, а за счёт использования в своём составе таких материалов, как серебро или алюминий, они обладают более высокой теплопроводностью. Сегодня в продаже можно встретить термопасты с 90%-ным содержанием серебра. И хотя серебро является отличным электрическим проводником, изготовители гарантируют, что термопаста не замкнёт контакты элементов платы или устройства, на которое она нанесена, но всё же рекомендуют не проверять изолирующие свойства их продукта и по возможности избегать попадания термопаст на электрические элементы компьютера.

Вентиляторы

Вентиляторы обеспечивают непрерывный поток воздуха, обдувающий радиатор, превращая менее эффективный процесс излучения в более эффективный - конвекцию. Конвекция - это процесс обмена тепла, отличающийся от излучения тем, что охлаждающий воздух постоянно находится в движении. В активных кулерах он принудительно поступает в радиатор и нагреваясь, рассеивается в окружающей среде. С использованием вентилятора кулер становится намного производительнее, и температура охлаждаемого объекта может падать в два раза, а то и больше, в зависимости от производительности вентилятора. Производительность вентилятора - это основная его характеристика, измеряющаяся в количестве кубических футов воздуха, перегоняемых им в минуту, сокращённо - CFM (Cubic Feet per Minute). Она главным образом зависит от площади вентилятора, его высоты, профиля лопастей и частоты их вращения. Чем эти величины больше, тем большее количество воздуха сможет перегонять вентилятор, и соответственно тем более эффективным будет охлаждение. Сегодня в вентиляторах для компьютерных кулеров нет возможности бесконечно увеличивать ни размеры, ни скорость вращения крыльчатки. Понятно, что вентилятор размером больше 80 мм уже трудно разместить в корпусе, а частота вращения пропеллера напрямую влияет на уровень его шума. Кроме того, больший по размерам вентилятор должен будет иметь более мощный и более дорогой электрический моторчик, что скажется на его стоимости.
Все вентиляторы, используемые сегодня в компьютерах, питаются от постоянного тока, чаще всего напряжением 12В. Для подключения к питанию они используют трёхконтактные Molex-коннекторы (для Smart-вентиляторов) или четырёхконтактные PC-Plug коннекторы.

Разъём Molex имеет три провода: чёрный (земля), красный (плюс) и жёлтый (сигнальный). PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12 Вольт) и красный (+5 Вольт). Разъёмы Molex устанавливаются на материнских платах, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В), и изменять её в случае необходимости. По жёлтому сигнальному проводу материнская плата получает от вентилятора информацию о частоте вращения его лопастей. Сегодня это стало очень актуальным, поскольку остановившийся на кулере процессора вентилятор может привести к повреждению процессора. Поэтому современные материнские платы следят, чтобы вентилятор всегда вращался, и если он останавливается, то выключают компьютер. Подключение через Molex имеет один недостаток: к материнским платам опасно цеплять вентиляторы с потребляемой мощностью более 6 Вт. Разъём же PC-Plug выдержит десятки Ватт, но при подключении к нему Вы не сможете узнать, работает ли Ваш вентилятор или нет. Сегодня всё чаще вентиляторы имеют в комплекте переходники PC-Plug - Molex, чтобы подключать их к блоку питания, или даже сразу оба разъёма: PC-Plug и Molex, чтобы получать питание от БП компьютера, а по сигнальному проводу Molex-а сообщать материнской плате о скорости работы моторчика.
Также вентиляторы могут иметь различный тип подвески ротора. Для этого используются подшипники скольжения (Sleeve bearing) или качения (Ball bearing). В вентиляторе может быть один или два подшипника, причём иногда в них совмещаются разные типы - Sleeve и Ball. Наиболее надёжными считаются вентиляторы с подшипниками качения (обычные шариковые подшипники). Компании-производители обещают им непрерывную работу в течение 50 000 часов, что составляет более пяти лет, а те же, которые используют подшипники скольжения, обещают жить не более 30 000 часов, около трёх с половиной лет. Сегодня уже существуют вентиляторы с керамическими подшипниками, которым обещают почти что бессмертие - 300 000 часов беспрерывной работы, а ведь это тридцать шесть лет! Однако, с одной стороны, заявленные времена жизни вентиляторов очень редко соответствуют действительности, и зачастую их надо делить на два, а то и на три, а с другой стороны, поверьте мне - тридцать шесть лет компьютер не проживёт. Стоит рассчитывать, что обычный вентилятор может жить год-два. Потом он начинает гудеть, и его надо смазывать, но даже смазка решит проблему лишь на время, и в скором времени вентилятор придётся заменить на новый.
Некоторые современные вентиляторы имеют автоматическую регулировку скорости, в зависимости от температуры окружающего воздуха или температуры радиатора. Мы расскажем Вам об одном таком в конце статьи. Практически у всех них датчик температуры стоит непосредственно на самом вентиляторе и может не отражать реальную температуру охлаждаемого объекта. То есть, при повышении температуры процессора, кулер, на котором установлен такой автоматический вентилятор, может только через пару минут повысить свои обороты. Другое дело, это вентиляторы с установленными на них сигнализациями остановки. При снижении частоты вращения ротора ниже определённого предела, специальный электронный блок на проводе вентилятора подаёт громкий писк, и Вы точно знаете, что пришло время выключить компьютер и заменить кулер.

Пассивные кулеры

Пассивные кулеры - это обычные радиаторы, установленные на охлаждаемый объект. Они отводят тепло только излучением, в случае, если не обдуваются какими-нибудь вентиляторами компьютера, и применяются для охлаждения маломощных и малых по размерам элементов, например, чипов памяти или транзисторов. Радиаторы устанавливаются сегодня на видеокарты, некоторые материнские платы, где ещё нет полноценных кулеров, модули памяти, да и вообще практически на всё, что приходится охлаждать, и даже на центральные процессоры, если они имеют малую мощность.

Частный случай пассивного кулера - распределитель тепла. Выглядит он как "лысый" радиатор, полученный из пластины, без рёбер и с небольшой площадью поверхности. Распределители тепла применяют сегодня для охлаждения системной памяти. В частности, компания Thermaltake выпускает специальные наборы для DDR SDRAM DIMM модулей. Недостатком распределителей тепла, как и пассивных кулеров, является их малая эффективность.

Активные кулеры

Активными называются кулеры, работающие за счёт конвекции. Проще говоря, это радиатор с установленным на него вентилятором. Чаще всего они используются для охлаждения процессоров. И сегодня, говоря слово "кулер", мы и подразумеваем, в первую очередь, именно их. Активные кулеры используются практически везде, где требуется охлаждение, заменяя собой обычные радиаторы. Преимуществами такого охлаждения можно назвать значительно большую эффективность в сравнении с обычными радиаторами. Активные кулеры в состоянии охлаждать раскалённые процессоры, имея при этом небольшие размеры. Но вентиляторы всегда являются источниками шума в компьютерах, а иногда и вибрации. Поэтому охлаждать ими надо лишь сильно греющиеся элементы, иначе работать за шумной машиной станет невыносимо. Ещё один недостаток активных кулеров в том, что они недолговечны. Лопасти вентилятора вращаются, и рано или поздно подшипники на роторе выйдут из строя, и он остановится. Естественно, в этом случае охлаждаемый элемент перегреется и, возможно, выйдет из строя. Но чаще всего вентиляторы перед остановкой начинают громко гудеть, так что Вы будете предупреждены заранее.

Теперь, когда мы разобрались в основах охлаждения компьютера, мы можем перейти к рассмотрению источников тепла в компьютере и способов их охлаждения.

Что в компьютере греется, и как оно охлаждается

Ну что же, имея представление о кулерах, давайте теперь составим картину, что же греется в компьютерах, и как это нужно (если нужно) охлаждать. Начнём мы с самого основного элемента любого ПК - центрального процессора. Сегодня охлаждению процессоров уделяется особое внимание, и поэтому каждый производитель кулеров для PC обязательно имеет в своём ассортименте и охладители для CPU.

Процессоры

Если не рассматривать серверные и переносные компьютеры (в том числе и ноутбуки), то сегодня в персональных компьютерах используются процессоры двух компаний-производителей: Intel и AMD. Они используют три основные платформы: Socket 370, Socket 478 и Socket 462 (Socket A). Цифры в обозначении платформы показывают число контактов каждого процессора. Естественно, между собой все эти стандарты не совместимы, и Pentium III под Socket 370 не установишь в материнскую плату с каким-нибудь другим гнездом. До недавнего времени был распространён ещё и стандарт Socket 423 под первые Pentium 4, но с приходом более современного Socket 478, он почти исчез и сейчас успешно забывается. Для каждого типа процессоров существуют свои стандарты кулеров.

В Socket 370 используют процессоры Intel Pentium III, Intel Celeron (кроме новых под Socket 478) и VIA C3. Процессоры же производства AMD (Duron, Athlon на ядре Thunderbird, Palomino и Thoroughbred) используют разъём Socket A. Кулеры для Socket 370 и Socket A почти совместимы друг с другом. Точнее, можно сказать, что они и полностью совместимы, но это не означает, что Вы сможете установить кулер под Athlon на Pentium III. Дело в том, что хотя гнезда Socket 370 и Socket A имеют одинаковые размеры, всё же стандарты, по которым AMD рекомендует строить материнские платы, отличаются от Intel-овских. Прежде всего, посмотрите на фотографию. Гнездо Socket A имеет по три зубчика спереди и сзади для крепления кулера. Изначально подразумевалось, что на процессоры Athlon будут ставиться более мощные охладители, которые потребуют более жёсткое крепление, и один зубчик может сломаться под пружиной кулера. Кроме того, AMD рекомендовала производителям материнских плат оставлять так называемую свободную зону слева и справа от гнезда. В этой зоне не должно быть никаких элементов, которые бы могли помешать установке прямоугольных кулеров длиной более 55 мм (ширина гнезда). Таким образом, на процессоры Athlon и Duron можно устанавливать кулеры размером 60x80мм и высотой насколько позволяет Ваш корпус. На Pentium III, конечно же, такие большие охладители вряд ли станут, но это опять же зависит от материнской платы.

Кроме того, многие материнские платы под Athlon/Duron имеют вокруг гнезда четыре отверстия. Это ещё один способ крепления кулера - не к гнезду, а к материнской плате. С одной стороны, он более удобный, поскольку кулер уже не отвалится, отломав зубчик, а с другой стороны - для его замены или апгрейда процессора придётся снимать материнскую плату. Хорошо это или плохо, но недавно AMD перестала требовать наличия четырёх отверстий в свободной зоне возле гнезда процессора, и все будущие кулеры будут крепиться только к нему, а не к материнской плате.
Процессоры Athlon выделяют до 73 Вт тепла в неразогнанном состоянии. Для мощных серверов такое тепловыделение процессора - обычное дело, а вот для настольных компьютеров это очень много, а к тому же площадь ядра процессора постоянно уменьшается, поэтому охладители для современных процессоров активно используют медь в своих радиаторах. И в продаже Вы сможете увидеть кулеры не только с алюминиевыми радиаторами, но и с медным основанием, или полностью медные. Некоторые производители, пытаясь увеличить эффективность кулеров, покрывают сверху медь ещё и никелем, серебром или другими материалами с высокой теплопроводностью. Вентиляторы на таких кулерах чаще всего имеют размер 60x60x25 мм, хотя сейчас большое распространение получают 70мм и 80мм модели. Они имеют меньшую скорость вращения и работают намного тише.

Процессор Тепловыделение, Вт
AMD Duron 1100 51
AMD Duron 1200 55
AMD Duron 1300 57
AMD Athlon Thunderbird 1400 73
AMD AthlonXP (Palomino) 2100+ 72
AMD AthlonXP (Thoroughbred) 2600+ 68.3

В случае с охладителями для Socket 370 всё намного проще: все они цепляются за два зубчика гнезда и имеют размеры, не превышающие размеров гнезда. Обычно от 50x50 до 60x60 мм. Тепловыделение процессоров Pentium III примерно в два раза меньше, чем у Athlon, поэтому охлаждать их проще, и на Pentium III чаще всего используются кулеры с полностью алюминиевыми радиаторами или с медным основанием. Они стоят дешевле полностью медных, в которых к тому же и нет необходимости.

Если продолжать разговор про Socket 370 и вспомнить про процессоры VIA C3, то можно и вовсе забыть про кулеры. Дело в том, что VIA C3 имеют репутацию "холодных" процессоров, потому что они выделяют слишком мало тепла и могут работать и с пассивными охладителями - обычными радиаторами, или совсем простенькими кулерами. Для них тепловыделение не проблема, и поэтому компьютеры на их базе работают очень тихо.
Сегодня выгоднее выпускать кулеры для процессоров Intel Pentium 4 и Celeron под Socket478. Дело в том, что рынок охладителей под Athlon уже достаточно насыщен, а к тому же цена на компьютеры с процессорами AMD невысоки, и не каждый пользователь готов дорого заплатить за хороший кулер. С Pentium 4 ситуация совсем другая, так как они стоят намного дороже конкурентов от AMD, и на рынок высокопроизводительных процессоров можно продавать кулеры стоимостью несколько десятков долларов.

В компьютерах с процессорами Pentium 4 и Celeron под Socket 478 кулер крепится к специальной стойке на материнской плате. Есть мнение, что процессоры Pentium 4 вообще не перегреваются. Оно в корне неверно, и первые Pentium 4 действительно грелись слабее своих товарищей Athlon, но сейчас энергопотребление Pentium 4 с частотой 2.8 ГГц находится в районе 64 Вт, а Pentium 4 3.0 ГГц обещает требовать до 80 Вт. Конечно, современные технологические процессы и конструкция Pentium 4 со встроенным распределителем тепла помогают ему лучше бороться с выделяемым теплом, но он также, как и Athlon требует большой кулер. Правда, коробочные варианты процессоров уже поставляются с кулерами, но при необходимости в магазинах можно найти широкий ассортимент охладителей для Pentium 4.

Кулеры под Socket 478 имеют, в основном, один вид крепления: двумя стальными скобами они цепляются за пластиковые упоры материнской платы и крепко прижимаются к поверхности процессора. Иногда от слишком сильных пружин кулера материнская плата слегка изгибается, но по большому счёту это не страшно. Для компьютеров, использующих Pentium 4 в низких или серверных корпусах, существуют кулеры, крепящиеся к материнской плате без использования стоек вокруг процессора.

Так же, как и в случае с некоторыми охладителями под Athlon, в них крепление проходит сквозь отверстия в материнской плате (для этого с неё придётся снять стандартные держатели для кулера) и фиксируется сверху на процессоре. В этом случае на плату подаётся куда меньшая физическая нагрузка. К сожалению, такие кулеры мало распространены.
Под Pentium 4 выпускаются кулеры с различными радиаторами. Здесь есть как чисто алюминиевые, так и с медными основаниями, или полностью медные. Вентиляторы для таких кулеров обычно ставятся тихие, потому что их низкая производительность компенсируется большими размерами радиаторов. Хотя, громкие модели тоже нередкое явление среди охладителей для Socket 478.


Статьи по теме: