Сравнительные характеристики поколений эвм.

Которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.

Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно - на подходе. Что именно под термином "поколение ЭВМ" понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?

Предыстория появления ЭВМ

История развития ЭВМ 5 поколений интересна и увлекательна. Но прежде чем изучить ее, полезно будет узнать факты, касающиеся того, какие технологические решения предшествовали разработке ЭВМ.

Люди всегда стремились к совершенствованию процедур, связанных с подсчетами, вычислениями. Историками установлено, что инструменты для работы с цифрами, имеющие механическую природу, были изобретены еще в Древнем Египте и других государствах античности. В средние века европейские изобретатели могли конструировать механизмы, с помощью которых, в частности, могла вычисляться периодичность лунных приливов.

Прообразом современных ЭВМ некоторые эксперты считают изобретенную в начале 19 века обладавшую функциями программирования вычислений. В конце 19-начале 20 века появились устройства, в которых стала использоваться электроника. В основном они задействовались в индустрии телефонной и радиосвязи.

В 1915 году переехавший в США немецкий эмигрант основал компанию IBM, впоследствии ставшую одним из самых узнаваемых брендов IT-индустрии. В числе самых сенсационных изобретений Германа Холлерита стали перфокарты, в течение десятилетий выполнявшие функцию основного при пользовании вычислительной техникой. К концу 30-х годов появились технологии, позволившие говорить о начале компьютерной эпохи в развитии человеческой цивилизации. Появились первые ЭВМ, который впоследствии стали классифицироваться как принадлежащие к "первому поколению".

Признаки ЭВМ

Ключевым принципиальным критерием отнесения вычислительного устройства к категории ЭВМ, или компьютера, эксперты называют программируемость. Этим соответствующего типа машины, в частности, отличаются от калькуляторов, какими бы мощными последние ни являлись. Даже если речь идет о программировании на очень низком уровне, когда используются "нули и единицы" - критерий в силе. Соответственно, как только были изобретены машины, быть может, по внешним признакам сильно схожие с калькуляторами, но которые можно было программировать - их стали именовать компьютерами.

Под термином "поколение ЭВМ" понимают, как правило, принадлежность компьютера к конкретной технологической формации. То есть, той базе аппаратных решений, на основе которой ЭВМ работает. При этом, исходя из критериев, предлагаемых IT-экспертами, деление компьютеров на поколения далеко не условное (хотя, конечно, есть и переходные формы компьютеров, которые сложно однозначно отнести к какой-либо конкретной категории).

Завершив теоретический экскурс, мы можем начать изучать поколения ЭВМ. Таблица, что ниже, поможет нам ориентироваться в периодизации каждого.

Поколение

Вторая половина 70 - начало 90-х

90-е - наше время

В разработке

Далее мы рассмотрим технологические особенности компьютеров для каждой категории. Нами будет определена характеристика поколений ЭВМ. Таблица, что мы сейчас составили, будет дополнена другими, в которых будут соотнесены соответствующие категории и технологические параметры.

Отметим важный нюанс - нижеследующие рассуждения касаются, главным образом, эволюции компьютеров, которые сегодня принято относить к персональным. Есть совершенно иные классы ЭВМ - военные, промышленные. Есть так называемые "суперкомпьютеры". Их появление и развитие - отдельная тема.

Первые ЭВМ

В 1938 году германский инженер Конрад Цузе конструирует устройство, названное Z1, а в 42-м выпускает его усовершенствованную версию - Z2. В 1943 году свою изобретают англичане и называют ее "Колосс". Некоторые эксперты склонны считать английскую и немецкие машины первыми ЭВМ. В 1944-м на базе разведданных из Германии вычислительную машину создают также и американцы. Разработанная в США ЭВМ получила название "Марк I".

В 1946 году американские инженеры делают небольшую революцию в области конструирования вычислительной техники, создав ламповый компьютер ЭНИАК, в 1000 раз более производительный, чем "Марк I". Следующей известной американской разработкой стала созданная в 1951 году ЭВМ, названная УНИАК. Ее основная особенность в том, что она первой из ЭВМ стала использоваться как коммерческий продукт.

К тому моменту, к слову, свой компьютер уже успели изобрести советские инженеры, работающие в Академии наук Украины. Наша разработка получила название МЭСМ. Ее производительность, по оценке экспертов, была самой высокой среди ЭВМ, собранных в Европе.

Технологические особенности первого поколения ЭВМ

Собственно, исходя из каких критерий определяется первое поколение развития ЭВМ? Таковым IT-специалисты считают, прежде всего, компонентную базу в виде вакуумных ламп. Машины первого поколения к тому же обладали рядом характерных внешних признаков - огромный размер, очень большое энергопотребление.

Вычислительная их мощность также была относительно скромна, она составляла несколько тысяч герц. Вместе с тем ЭВМ первого поколения содержали многое, что есть в современных компьютерах. В частности, это машинный код, позволяющий программировать команды, а также запись данных в память (с помощью перфокарт и электростатических трубок).

ЭВМ первого поколения требовали высочайшей квалификации человека, их использующего. Требовалось не только владение профильными навыками (выражающимися в работе с перфокартами, знании машинного кода и т.д.), но, как правило, также и инженерные знания в области электроники.

В ЭВМ первого поколения, как мы уже сказали, уже была Правда, ее объем был исключительно скромным, он выражался в сотнях, в лучшем случае - в тысячах байт. Первые модули ОЗУ для ЭВМ с трудом можно было классифицировать как электронный компонент. Они представляли собой наполненные ртутью емкости в виде трубок. Кристаллы памяти фиксировались на определенных их участках, и тем самым данные сохранялись. Однако достаточно скоро после изобретения первых ЭВМ появилась более совершенная память на базе ферритовых сердечников.

Второе поколение ЭВМ

Какова дальнейшая история развития ЭВМ? Поколения ЭВМ стали развиваться далее. В 60-х годах получают распространение компьютеры, использующие уже не только вакуумные лампы, но также и полупроводники. Значительно повысилась тактовая частота микросхем - обычным делом считался показатель в 100 тыс. герц и выше. Появились первые магнитные диски как альтернатива перфокартам. В 1964 году компания IBM выпустила уникальный продукт - отдельный компьютерный монитор с достаточно приличными характеристиками - 12-дюймовой диагональю, разрешением 1024 на 1024 точек, а также частотой развертки в 40 Гц.

Поколение номер три

Чем примечательно третье поколение ЭВМ? Прежде всего, переводом компьютеров с ламп и полупроводников на интегральные схемы, которые, не считая ЭВМ, стали использоваться во множестве других электронных устройств.

Впервые возможности интегральных схем были показаны миру стараниями инженера Джека Килби и компании Texas Instruments в 1959 году. Джек создал небольшую конструкцию, выполненную на пластинке из металла германия, которая, как предполагалось, заменит собой сложные полупроводниковые конструкции. В свою очередь, компания Texas Instruments создала компьютер, собранный на базе подобных пластинок. Самое примечательное, что он был в 150 раз меньше, чем аналогичной производительности полупроводниковая ЭВМ. Технология интегральных схем получила дальнейшее развитие. Большую роль в этом сыграли исследования Роберта Нойса.

Эти аппаратные компоненты позволили, прежде всего, значительно уменьшить габариты ЭВМ. В результате произошло существенное повышение производительности компьютеров. Третье поколение ЭВМ характеризовалось выпуском ЭВМ с тактовой частотой, выражаемой уже в мегагерцах. Уменьшилось также и энергопотребление компьютеров.

Стали более совершенными технологии записи данных и обработки их в модулях ОЗУ. Что касается оперативной памяти, ферритовые элементы стали более емкими, технологически совершенными. Появились сначала прототипы, а затем и первые версии дискет, используемые как внешний носитель данных. В архитектуре ПК появилась кэш-память.Стандартной средой взаимодействия пользователя и компьютера стало окно дисплея.

Происходило дальнейшее совершенствование программных компонентов. Появились полноценные операционные системы, стало разрабатываться самое разнообразное были внедрены концепции многозадачности в работу ЭВМ. В рамках ЭВМ третьего поколения появляются такие программы, как а также ПО для автоматизации проектных работ. Появляется все больше языков программирования и сред, в рамках которых осуществляется создание ПО.

Особенности четвертого поколения

Четвертое поколение ЭВМ характеризуется появлением относящихся к классу больших, а также так называемых сверхбольших. В архитектуре ПК появилась ведущая микросхема - процессор. ЭВМ по своей конфигурации стали ближе к рядовым гражданам. Пользование ими стало возможным при минимальной квалификационной подготовке, в то время как работа с ЭВМ предыдущих поколений требовала профессиональных навыков. Модули ОЗУ стали выпускаться не на основе ферритовых элементов, а на базе CMOS-микросхем. К четвертому поколению ЭВМ принято относить и Apple, собранный в 1976 году Стивом Джобсом и Стефаном Возняком. Многие IT-эксперты считают, что Apple - первый в мире персональный компьютер.

Четвертое поколение ЭВМ также совпало с началом популяризации Интернета. В этот же период появился самый известный сегодня бренд софт-индустрии - Microsoft. Возникли первые версии операционных систем, которые мы знаем сегодня - Windows, MacOS. Компьютеры стали активно распространяться по всему миру.

Пятое поколение

Период расцвета четвертого поколения компьютеров - середина-конец 80-х годов. Но уже в начале 90-х на рынке IT-технологий начали происходить процессы, позволившие начать отсчет новому поколению ЭВМ. Речь идет о значительных шагах вперед, прежде всего, в инженерно-технических наработках, связанных с процессорами. Появились микросхемы с архитектурой, относимой к типу параллельно-векторной.

Пятое поколение ЭВМ - это невероятные темпы роста производительности машин из года в год. Если в начале 90-х тактовая частота микропроцессоров в несколько десятков мегагерц считалась хорошим показателем, то к началу 2000-х никто не удивлялся гигагерцам. Компьютеры, которыми мы пользуемся сейчас, как полагают IT-эксперты, - это также пятое поколение ЭВМ. То есть, технологический задел начала 90-х актуален до сих пор.

ПК, относящиеся к пятому поколению, стали не просто вычислительными машинами, а полноценными мультимедийными инструментами. На них стало возможно монтировать фильмы, работать с изображениями, записывать и обрабатывать звук, создавать инженерные проекты, запускать реалистичные 3D-игры.

Характеристики шестого поколения

В обозримом будущем, считают аналитики, мы вправе ожидать, что появится 6 поколение ЭВМ. Оно будет характеризоваться использованием нейронных элементов в архитектуре микросхем, использованием процессоров в рамках распределенной сети.

Производительность компьютеров в следующем поколении будет измеряться, вероятно, уже не в гигагерцах, а в принципиально иного типа единицах исчисления.

Сравнение характеристик

Мы изучили поколения ЭВМ. Таблица ниже позволит нам ориентироваться в соотнесении компьютеров, принадлежащих к той или иной категории, и технологической базы, на которой основано их функционирование. Зависимости следующие:

Поколение

Технологическая база

Вакуумные лампы

Полупроводники

Интегральные схемы

Большие и сверхбольшие схемы

Параллельно-векторные технологии

Нейронные принципы

Полезной может оказаться также визуализация соотнесения производительности и конкретного поколения ЭВМ. Таблица, которую мы сейчас составим, отразит и эту закономерность. Берем за основу такой параметр как тактовая частота.

Поколение

Тактовая частота выполнения операций

Несколько килогерц

Сотни КГц

Мегагерцы

Десятки МГц

Сотни МГц, Гигагерцы

Критерии измерения прорабатываются

Таким образом, мы визуализировали ключевые технологические особенности для каждого поколения ЭВМ. Таблица, любая из представленных нами, поможет нам соотносить соответствующие параметры и конкретную категорию компьютеров применительно к тому или иному этапу развития вычислительной техники.

Параметры сравнения

Поколения ЭВМ

четвертое

Период времени

Элементная база (для УУ, АЛУ)

Электронные (или электрические) лампы

Полупроводники (транзисторы)

Интегральные схемы

Большие интегральные схемы (БИС)

Основной тип ЭВМ

Малые (мини)

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, сканер, клавиатура

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Перфоленты, магнитный диск

Магнитные и оптические диски

Ключевые решения в ПО

Универсальные языки программирования, трансляторы

Пакетные операционные системы, оптимизирующие трансляторы

Интерактивные операционные системы, структурированные языки программирования

Дружественность ПО, сетевые операционные системы

Режим работы ЭВМ

Однопрограммный

Пакетный

Разделения времени

Персональная работа и сетевая обработка данных

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Таблица - Основные характеристики ЭВМ различных поколений

Поколение

Период, гг

1980-наст. вр.

Элементная база

Вакуумные электронные лампы

Полупроводниковые диоды и транзисторы

Интегральные схемы

Сверхбольшие интегральные схемы

Архитектура

Архитектура фон Неймана

Мультипрограммный режим

Локальные сети ЭВМ, вычислительные системы коллективного пользования

Многопроцессорные системы, персональные компьютеры, глобальные сети

Быстродействие

10 – 20 тыс. оп/с

100-500 тыс. оп/с

Порядка 1 млн. оп/с

Десятки и сотни млн. оп/с

Программное обеспечение

Машинные языки

Операционные системы, алгоритмические языки

Операционные системы, диалоговые системы, системы машинной графики

Пакеты прикладных программ, базы данных и знаний, браузеры

Внешние устройства

Устройства ввода с перфолент и перфокарт,

АЦПУ, телетайпы, НМЛ, НМБ

Видеотерминалы, НЖМД

НГМД, модемы, сканеры, лазерные принтеры

Применение

Расчетные задачи

Инженерные, научные, экономические задачи

АСУ, САПР, научно – технические задачи

Задачи управления, коммуникации, создание АРМ, обработка текстов, мультимедиа

Примеры

ENIAC , UNIVAC (США);
БЭСМ - 1,2, М-1, М-20 (СССР)

IBM 701/709 (США)
БЭСМ-4, М-220, Минск, БЭСМ-6 (СССР)

IBM 360/370, PDP -11/20, Cray -1 (США);
ЕС 1050, 1066,
Эльбрус 1,2 (СССР)

Cray T3 E, SGI (США),
ПК, серверы, рабочие станции различных производителей

На протяжении 50 лет появилось, сменяя друг друга, несколько поколений ЭВМ. Бурное развитие ВТ во всем мире определяется только за счет передовых элементной базы и архитектурных решений.
Так как ЭВМ представляет собой систему, состоящую из технических и программных средств, то под поколением естественно понимать модели ЭВМ, характеризуемые одинаковыми технологическими и программными решениями (элементная база, логическая архитектура, программное обеспечение). Между тем, в ряде случаев оказывается весьма сложным провести классификацию ВТ по поколениям, ибо грань между ними от поколения к поколению становиться все более размытой.
Первое поколение.
Элементная база- электронные лампы и реле; оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках. Надежность - невысокая, требовалась система охлаждения; ЭВМ имели значительные габариты. Быстродействие- 5 - 30 тыс. арифметических оп/с; Программирование - в кодах ЭВМ (машинный код), позднее появились автокоды и ассемблеры. Программированием занимался узкий круг математиков, физиков, инженеров - электронщиков. ЭВМ первого поколения использовались в основном для научно-технических расчетов.

Второе поколение.
Полупроводниковая элементная база. Значительно повышается надежность и производительность, снижаются габариты и потребляемая мощность. Развитие средств ввода/вывода, внешней памяти. Ряд прогрессивных архитектурных решений и дальнейшее развитие технологии программирования- режим разделения времени и режим мультипрограммирования (совмещение работы центрального процессора по обработке данных и каналов ввода/вывода, а также распараллеливания операций выборки команд и данных из памяти)
В рамках второго поколения четко стала проявляться дифференциация ЭВМ на малые, средние и большие. Существенно расширилась сфера применения ЭВМ на решение задач - планово - экономических, управления производственными процессами и др.
Создаются автоматизированные системы управления (АСУ) предприятиями, целыми отраслями и технологическими процессами (АСУТП). Конец 50-х годов характеризуется появлением целого ряда проблемно-ориентированных языков программирования высокого уровня (ЯВУ): FORTRAN, ALGOL-60 и др. Развитие ПО получило в создании библиотек стандартных программ на различных языках программирования и различного назначения, мониторов и диспетчеров для управления режимами работы ЭВМ, планированием ее ресурсов, заложивших концепции операционных систем следующего поколения.

Третье поколение.
Элементная база на интегральных схемах (ИС). Появляются серии моделей ЭВМ программно совместимых снизу вверх и обладающих возрастающими от модели к модели возможностями. Усложнилась логическая архитектура ЭВМ и их периферийное оборудование, что существенно расширило функциональные и вычислительные возможности. Частью ЭВМ становятся операционные системы (ОС). Многие задачи управления памятью, устройствами ввода/вывода и другими ресурсами стали брать на себя ОС или же непосредственно аппаратная часть ЭВМ. Мощным становиться программное обеспечение: появляются системы управления базами данных (СУБД), системы автоматизирования проектных работ (САПРы) различного назначения, совершенствуются АСУ, АСУТП. Большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения.
Развиваются языки и системы программирования Примеры: -серия моделей IBM/360, США, серийный выпуск -с 1964г; -ЕС ЭВМ, СССР и страны СЭВ с 1972г.
Четвертое поколение.
Элементной базой становятся большие (БИС) и сверхбольшие (СБИС) интегральные схемы. ЭВМ проектировались уже на эффективное использование программного обеспечения (например, UNIX-подобные ЭВМ, наилучшим образом погружаемые в программную UNIX-среду; Prolog-машины, ориентированные на задачи искусственного интеллекта); современных ЯВУ. Получает мощное развитие телекоммуникационная обработка информации за счет повышения качества каналов связи, использующих спутниковую связь. Создаются национальные и транснациональные информационно-вычислительные сети, которые позволяют говорить о начале компьютеризации человеческого общества в целом.
Дальнейшая интеллектуализация ВТ определяется созданием более развитых интерфейсов "человек-ЭВМ", баз знаний, экспертных систем, систем параллельного программирования и др.
Элементная база позволила достичь больших успехов в минитюаризации, повышении надежности и производительности ЭВМ. Появились микро- и мини-ЭВМ, превосходящие по возможностям средние и большие ЭВМ предыдущего поколения при значительно меньшей стоимости. Технология производства процессоров на базе СБИС ускорила темпы выпуска ЭВМ и позволила внедрить компьютеры в широкие массы общества. С появление универсального процессора на одном кристалле (микропроцессор Intel-4004,1971г) началась эра ПК.
Первым ПК можно считать Altair-8800, созданным на базе Intel-8080, в 1974г. Э.Робертсом. П.Аллен и У.Гейтс создали транслятор с популярного языка Basic, существенно увеличив интеллектуальность первого ПК (впоследствии основали знаменитую компанию Microsoft Inc). Лицо 4-го поколения в значительной мере определяется и созданием супер-ЭВМ, характеризующихся высокой производительностью (среднее быстродействие 50 - 130 мегафлопсов. 1 мегафлопс= 1млн. операций в секунду с плавающей точкой) и нетрадиционной архитектурой (принцип распараллеливания на основе конвейерной обработки команд). Супер-ЭВМ используются при решении задач математической физики, космологии и астрономии, моделировании сложных систем и др. Так как важную коммутирующую роль в сетях играют и будут играть мощные ЭВМ, то сетевая проблематика часто обсуждается совместно с вопросами по супер-ЭВМ Среди отечественных разработок супер-ЭВМ можно назвать машины серии Эльбрус, вычислительные системы пс-2000 и ПС-3000, содержащие до 64 процессоров, управляемых общим потоком команд, быстродействие на ряде задач достигалось порядка 200 мегафлопсов. Вместе с тем, учитывая сложность разработки и реализации проектов современных супер-ЭВМ, требующих интенсивных фундаментальных исследований в области вычислительных наук, электронных технологий, высокой культуры производства, серьезных финансовых затрат, представляется весьма маловероятным создание в обозримом будущем отечественных супер-ЭВМ, по основным характеристикам не уступающим лучшим зарубежным моделям.
Следует заметить, при переходе на ИС-технологию производства ЭВМ определяющий акцент поколений все более смещается с элементной базы на другие показатели: логическая архитектура, программное обеспечение, интерфейс с пользователем, сферы приложения и т.д.
Пятое поколение.
Зарождается в недрах четвертого поколения и в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости, вполне обеспечиваемые СБИС и др. новейшими технологиями, должны удовлетворять следующим качественно новым функциональным требованиям:

· обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом; диалоговой обработки информации с использованием естественных языков; возможности обучаемости, ассоциативных построений и логических выводов;

· упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках

· улучшить основные характеристики и эксплуатационные качества ВТ для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ; обеспечить их разнообразие, высокую адаптируемость к приложениям и надежность в эксплуатации.

Учитывая сложность реализации поставленных перед пятым поколением задач, вполне возможно разбиение его на более обозримые и лучше ощущаемые этапы, первый из которых во многом реализован в рамках настоящего четвертого поколения.

Этот принцип реализован наличием ОЗУ. Это принципиально важное решение, т.к. первоначально автоматические вычислительные устройства разрабатывались так, что команды либо поступали из устройства ввода, либо зашивались прямо в электрические схемы, и для решения новой задачи надо было перепаивать схемы. Еще Чарльз Бэббидж предполагал, что на “складе” (памяти) должны храниться только числа, а команды должны вводиться при помощи перфокарт. Решение, что команды и данные хранятся в памяти на равноправных началах, было реализовано в первых электронно-вычислительных машинах.

Принцип программного управления

Этот принцип реализован наличием УУ. Принцип программного управления заключается в том, что компьютер работает по программе, хранящейся в памяти. Программа состоит из команд (ссылка на рисунок).

Последовательное выполнение операций

Последовательное выполнение операций заключается в том, что команды исполняются одна за другой, выполнение новой команды начинается после завершения выполнения предыдущей. В современных компьютерах наряду с последовательной обработкой существует возможность параллельной обработки нескольких процессов, что значительно убыстряет работу и расширяет возможности компьютера. Но в первых разработках этого не было.

Двоичное кодирование

Информация в компьютере хранится и обрабатывается в закодированном виде. Для кодирования используется двоичная система счисления. Это объясняется удобством технической реализации двоичных знаков 0 и 1, которые интерпретируются электрическими сигналами высокого и низкого напряжения, и простотой действий с двоичными числами. Надо заметить, что этот принцип был первоначально реализован не во всех ЭВМ. Первенец американской вычислительной техники - компьютер “Марк-1” производил вычисления в десятичной системе, но техническая реализация десятичной кодировки была очень сложна, и от нее в дальнейшем отказались.

Использование электронных элементов и электрических схем

Использование электронных элементов и электрических схем обеспечивает наибольшую надежность работы компьютера по сравнению с электромеханическими реле, которые использовались в первых конструкциях вычислительных устройств.

Поколения эвм и перспективы развития вычислительной техники

В истории развития вычислительных средств можно выделить три исторических этапа, временные рамки которых представлены в Таблица 1.

Таблица 1 Этапы развития вычислительных средств

Сравнивая эти временные периоды, можно сказать, что время, за которое человечество сделало колоссальнейший скачок от первых ЭВМ до современных супер-ЭВМ, является мигом “между прошлым и будущим”.

Период с 1945 года до сер. 90-х г.г. развития средств вычислительной техники принято разделять четыре этапа, которые характеризуются качественными изменениями в аппаратных и программных средствах. Эти этапы называют поколениями. Основные характеристики каждого поколения представлены в таблице 2. Однако, надо заметить, что границы между поколениями четко не очерчены. В процессе развития вычислительной техники разрабатывались модели ЭВМ, имеющие признаки нового поколения.

Таблица 2 Поколения ЭВМ

Поколение ЭВМ

Хронологические границы периода

сер. 40-х - сер. 50-х гг.

сер. 50-х -сер. 60-х гг.

сер. 60-х - 70-е годы

Элементная база

Электронно-вакуумные лампы (в одной машине до 20 тыс. ламп)

Полупроводниковые транзисторы. Схемы монтируются на отдельных платах.

Микросхемы - электронная схема из нескольких тысяч элементов, реализующая определенную функцию (размер до 0.3 - 0.5 см2).

Микропроцессоры - интегральная схема высокой степени интеграции выполняющая функции УУ и АЛУ.

Надежность

Частые перегревы, трудный поиск неисправности, замена » 2000 ламп в месяц

Перегревы устранены. При неисправности заменяется целиком плата. Большая надежность, долговечность

Большая надежность, долговечность по сравнению

Быстродействие (количество операций в секунду)

(10-20 тыс. оп/сек)

(до миллиона оп/сек)

(неск-ко миллионов оп/сек)

(десятки миллионов оп/сек)

Емкость ОЗУ

Производство

Единичные экз.

Серийное

Системы совместимых машин

Массовое производство

Габариты

Громоздкие шкафы занимают большой машинный зал

Однотипные стойки крупных размеров выше человеческого роста занимают машинный зал

Машина выполнена в виде двух стоек; не требует специального помещения

Основное достижение - появление персональных компьютеров, размещающихся на рабочем столе

Программирование

Машинные коды. Требуется высокий профессионализм и знания структуры ЭВМ

Алгоритмические языки

Дальнейшее развитие и разнообразие языков программирования

Языки для решения специализированных задач управления, баз данных, текстовые редакторы

ЭНИАК ЭДСАК (США)МЭСМ (Россия)

БЭСМ-*; “Минск **” (Россия)

ЕС (единая система): ЕС-1060; СМ (серия малых ЭВМ: СМ-22…

IBM-8080,088, *286 (США); “Искра 1030”, “Нейрон” (Россия)

Электронно-вычислительная машина (ЭВМ) представляет собой устройство для обработки информации. Под обработкой информации понимается процесс преобразования исходных данных в результатные.

Принципиальным признаком современных ЭВМ, отличающим их от всех ранее применяемых средств вычислительной техники, является их способность работать автоматически по заданной программе без непосредственного участия человека в вычислительном процессе.

ЭВМ – наиболее эффективное средство для решения экономических задач. Применение ЭВМ позволяет: повысить уровень автоматизации управленческого труда; уменьшить время на получение необходимых решений; резко уменьшить количество ошибок при расчетах; увеличить надежность работы управленческого персонала; дает возможность увеличить объем перерабатываемой информации; заниматься поиском оптимальных решений; выполнять функции контроля результатов; передавать данные на расстояние; создавать автоматизированные банки данных; производить анализ данных в процессе обработки информации и т.д.

Можно выделить 4 основные поколения ЭВМ . Но деление компьютерной техники на поколения - весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером. Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования.

К ПЕРВОМУ ПОКОЛЕНИЮ (1945-1955) относят машины, построенные на электронных лампах накаливания . Эти машины стоили очень дорого, занимали огромные площади, были не совсем надежны в работе, имели маленькую скорость обработки информации и могли хранить очень мало данных. Каждая машина имеет свой язык, нет ОС. Использовались перфокарты, перфоленты, магнитные ленты.Создавались они в единичных экземплярах и использовались в основном для военных и научных целей. В качестве типичных примеров машин первого поколения можно указать американские компьютеры UNIVAC, IBM-701, IBM-704, а также советские машины БЭСМ и М-20. Типичная скорость обработки данных для машин первого поколения составляла 10-20 тысяч операций в секунду.

Ко ВТОРОМУ ПОКОЛЕНИЮ (1955-1965) относят машины, построенные на транзисторных элементах. У этих машин значительно уменьшились стоимость и габариты, выросли надежность, скорость работы и объем хранимой информации. Скорость обработки данных у машин второго поколения возросла до 1 миллиона операций в секунду. Появились первые ОС, первые языки программирования: Фортон (1957), Алгон (1959). Средства хранения информации: магнитные барабаны, магнитные диски. Представители: IBM 604, 608, 702.

Машины ТРЕТЬЕГО ПОКОЛЕНИЯ (1965-1980) выполнены на интегральных схемах. Площадь такой схемы порядка одного квадратного миллиметра, но по своим функциональным возможностям интегральная схема эквивалентна сотням и тысячам транзисторных элементов. Из-за очень маленьких размеров и толщины интегральную схему иногда называют микросхемой , а также чипом (chip - тонкий кусочек). Благодаря переходу от транзисторов к интегральным схемам изменились стоимость, размер, надежность, скорость и емкость машин. Это машины семейства IBM/360. Популярность этих машин оказалась настолько велика, что во всем мире их стали копировать или выпускать похожие по функциональным возможностям и совпадающие по способам кодирования и обработки информации. Причем программы, подготовленные для выполнения на машинах IBM, с успехом выполнялись на их аналогах, так же как и программы, написанные для выполнения на аналогах, могли быть выполнены на машинах IBM. Такие модели машин принято называть программно-совместимыми. В нашей стране такой программно-совместимой с семейством IBM/360 была серия машин ЕС ЭВМ, в которую входило около двух десятков различных по мощности моделей. Начиная с третьего поколения вычислительные машины становятся повсеместно доступными и широко используются для решения самых различных задач. Характерным для этого времени является коллективное использование машин, так как они все еще достаточно дороги, занимают большие площади и требуют сложного и дорогостоящего обслуживания. Носителями исходной информации все еще являются перфокарты и перфоленты, хотя уже значительный объем информации сосредотачивается на магнитных носителях - дисках и лентах. Скорость обработки информации у машин третьего поколения достигала нескольких миллионов операций в секунду. Появились оперативные памяти – сотни Кб. Языки программирования: Бейсик (1965), Паскаль (1970), Си (1972). Появилась совместимость программ.

ЧЕТВЕРТОЕ ПОКОЛЕНИЕ (1980- настоящее время). Происходит переход от обычных интегральных схем к большим интегральным схемам и сверхбольшим (БИС и СБИС). Если обычные интегральные схемы эквивалентны тысячам транзисторных элементов, то большие интегральные схемы заменяют уже десятки и сотни тысяч таких элементов. Среди них следует упомянуть семейство машин IBM/370, а также модель IBM 196, скорость которой достигла 15 миллионов операций в секунду. Отечественными представителями машин четвертого поколения являются машины семейства «Эльбрус». Отличительная черта четвертого поколения - наличие в одной машине нескольких (обычно 2-6, иногда до нескольких сотен и даже тысяч) центральных, главных устройств обработки информации - процессоров, которые могут дублировать друг друга или независимым образом выполнять вычисления. Такая структура позволяет резко повысить надежность машин и скорость вычислений. Другая важная особенность - появление мощных средств, обеспечивающих работу компьютерных сетей. Это позволило впоследствии создавать и развивать на их основе глобальные, всемирные компьютерные сети. Появились суперкомпьютеры (космические аппараты), персональные компьютеры. Появились пользователи-непрофессионалы. Оперативная память до нескольких Гб. Многопроцессорные системы, компьютерные сети, мультимедиа (графика, анимация, звук).

В компьютерах ПЯТОГО ПОКОЛЕНИЯ произойдет качественный переход от обработки данных к обработке знаний. Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них – это традиционный компьютер. Но теперь он лишен связи с пользователем. Эту связь осуществляет блок, называемый термином «интеллектуальный интерфейс». Его задача – понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

Можно выделить \(5\) основных поколений ЭВМ . Но деление компьютерной техники на поколения - весьма условная.

I поколение ЭВМ: ЭВМ, сконструированные в \(1946\)-\(1955\) гг.

1. Элементная база: электронно-вакуумные лампы.
2. Соединение элементов: навесной монтаж проводами.
3. Габариты: ЭВМ выполнена в виде громадных шкафов.

Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести крупные корпорации и правительства.

Лампы потребляли большое количество электроэнергии и выделяли много тепла.
4. Быстродействие: \(10-20\) тыс. операций в секунду.
5. Эксплуатация: сложная из-за частого выхода из строя электронно-вакуумных ламп.
6. Программирование: машинные коды. При этом надо знать все команды машины, двоичное представление, архитектуру ЭВМ. В основном были заняты математики-программисты. Обслуживание ЭВМ требовало от персонала высокого профессионализма.
7. Оперативная память: до \(2\) Кбайт.
8. Данные вводились и выводились с помощью перфокарт, перфолент.

II поколение ЭВМ: ЭВМ, сконструированные в \(1955\)-\(1965\) гг.

В \(1948\) году Джон Бардин, Уильям Шокли, Уолтер Браттейн изобрели транзистор, за изобретение транзистора они получили Нобелевскую премию в \(1956\) г.

\(1\) транзистор заменял \(40\) электронных ламп, был намного дешевле и надёжнее.

В \(1958\) году создана машина М-20 , выполнявшая \(20\) тыс. операций в секунду - самая мощная ЭВМ \(50-х\) годов в Европе.

В \(1963\) году сотрудник Стэндфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши.

1. Элементная база: полупроводниковые элементы (транзисторы, диоды).
2. Соединение элементов: печатные платы и навесной монтаж.

3. Габариты: ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста, но для размещения требовался специальный машинный зал.
4. Быстродействие: \(100-500\) тыс. операций в секунду.
5. Эксплуатация: вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность - оператор ЭВМ .
6. Программирование: на алгоритмических языках, появление первых операционных систем .
7. Оперативная память: \(2-32\) Кбайт.
8. Введён принцип разделения времени - совмещение во времени работы разных устройств.

9. Недостаток: несовместимость программного обеспечения.

Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей.

Так, небольшие отечественные машины второго поколения («Наири », «Раздан », «Мир » и др.) были в конце \(60\)-х годов вполне доступны каждому вузу, в то время как упомянутая выше БЭСМ-6 имела профессиональные показатели (и стоимость) на \(2-3\) порядка выше.

III поколение ЭВМ: ЭВМ, сконструированные в \(1965\)-\(1975\) гг.

В \(1958\) году Джек Килби и Роберт Нойс , независимо друг от друга, изобретают интегральную схему (ИС).

В \(1961\) году в продажу поступила первая, выполненная на пластине кремния, интегральная схема.

В \(1965\) году начат выпуск семейства машин третьего поколения IBM-360 (США). Модели имели единую систему команд и отличались друг от друга объёмом оперативной памяти и производительностью.

В \(1967\) году начат выпуск БЭСМ - 6 (\(1\) млн. операций в \(1\) с) и «Эльбрус » (\(10\) млн. операций в \(1\) с).

В \(1969\) году фирма IBM разделила понятия аппаратных средств (hardware) и программные средства (software). Фирма начала продавать программное обеспечение отдельно от железа, положив начало индустрии программного обеспечения.

\(29\) октября \(1969\) года проходит проверка работы самой первой глобальной военной компьютерной сети ARPANet , связывающей исследовательские лаборатории на территории США.

Обрати внимание!

В \(1971\) году создан первый микропроцессор фирмой Intel . На \(1\) кристалле сформировали \(2250\) транзисторов.

1. Элементная база: интегральные схемы.

3. Габариты: ЭВМ выполнена в виде однотипных стоек.
4. Быстродействие: \(1-10\) млн. операций в секунду.
5. Эксплуатация: вычислительные центры, дисплейные классы, новая специальность - системный программист .
6. Программирование: алгоритмические языки, операционные системы.
7. Оперативная память: \(64\) Кбайт.

При продвижении от первого к третьему поколению радикально изменились возможности программирования. Написание программ в машинном коде для машин первого поколения (и чуть более простое на Ассемблере) для большей части машин второго поколения является занятием, с которым подавляющее большинство современных программистов знакомятся при обучении в вузе.

Появление процедурных языков высокого уровня и трансляторов с них было первым шагом на пути радикального расширения круга программистов. Научные работники и инженеры сами стали писать программы для решения своих задач.

Уже в третьем поколении появились крупные унифицированные серии ЭВМ. Для больших и средних машин в США это прежде всего семейство IBM 360/370 . В СССР \(70\)-е и \(80\)-е годы были временем создания унифицированных серии: ЕС (единая система) ЭВМ (крупные и средние машины), СМ (система малых) ЭВМ и «Электроника » (серия микро-ЭВМ).

В их основу были положены американские прототипы фирм IBM и DEC (Digital Equipment Corporation). Были созданы и выпущены десятки моделей ЭВМ, различающиеся назначением и производительностью. Их выпуск был практически прекращен в начале \(90\)-х годов.

IV поколение ЭВМ: ЭВМ, сконструированные начиная с \(1975\) г. по начало \(90\)-х годов

В \(1975\) году IBM первой начинает промышленное производство лазерных принтеров.

В \(1976\) году фирма IBM создает первый струйный принтер.

В \(1976\) году создана первая ПЭВМ.

Стив Джобс и Стив Возняк организовали предприятие по изготовлению персональных компьютеров «Apple », предназначенных для большого круга непрофессиональных пользователей. Продавался \(Apple 1\) по весьма интересной цене - \(666,66\) доллара. За десять месяцев удалось реализовать около двухсот комплектов.

В \(1976\) году появилась первая дискета диаметром \(5,25\) дюйма.

В \(1982\) году фирма IBM приступила к выпуску компьютеров IBM РС с процессором Intel 8088 , в котором были заложены принципы открытой архитектуры, благодаря которому каждый компьютер может собираться как из кубиков, с учётом имеющихся средств и с возможностью последующих замен блоков и добавления новых.

В \(1988\) году был создан первый вирус-«червь», поражающий электронную почту.

В \(1993\) году начался выпуск компьютеров IBM РС с процессором Pentium .

1. Элементная база: большие интегральные схемы (БИС).
2. Соединение элементов: печатные платы.
3. Габариты: компактные ЭВМ, ноутбуки.
4. Быстродействие: \(10-100\) млн. операций в секунду.
5. Эксплуатация: многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ.
6. Программирование: базы и банки данных.
7. Оперативная память: \(2-5\) Мбайт.
8. Телекоммуникационная обработка данных, объединение в компьютерные сети.

V поколение ЭВМ: разработки с \(90\)-х годов ХХ века

Элементной базой являются сверхбольшие интегральные схемы (СБИС) с использованием оптоэлектронных принципов (лазеры, голография).

Статьи по теме: