Что такое vlan и как его настроить. Примеры vlan

VLANs - это виртуальные сети, которые существуют на втором уровне модели OSI . То есть, VLAN можно настроить на второго уровня. Если смотреть на VLAN, абстрагируясь от понятия «виртуальные сети», то можно сказать, что VLAN - это просто метка в кадре, который передается по сети. Метка содержит номер VLAN (его называют VLAN ID или VID), - на который отводится 12 бит, то есть, вилан может нумероваться от 0 до 4095. Первый и последний номера зарезервированы, их использовать нельзя. Обычно, рабочие станции о VLAN ничего не знают (если не конфигурировать VLAN на карточках специально). О них думают коммутаторы. На портах коммутаторов указывается в каком VLAN они находятся. В зависимости от этого весь трафик, который выходит через порт помечается меткой, то есть VLAN. Таким образом каждый порт имеет PVID (port vlan identifier ).Этот трафик может в дальнейшем проходить через другие порты коммутатора(ов), которые находятся в этом VLAN и не пройдут через все остальные порты. В итоге, создается изолированная среда (подсеть), которая без дополнительного устройства (маршрутизатора) не может взаимодействовать с другими подсетями.

Зачем нужны виланы?

  • Возможность построения сети, логическая структура которой не зависит от физической. То есть, топология сети на канальном уровне строится независимо от географического расположения составляющих компонентов сети.
  • Возможность разбиения одного широковещательного домена на несколько широковещательных доменов. То есть, широковещательный трафик одного домена не проходит в другой домен и наоборот. При этом уменьшается нагрузка на сетевые устройства.
  • Возможность обезопасить сеть от несанкционированного доступа. То есть, на канальном уровне кадры с других виланов будут отсекаться портом коммутатора независимо от того, с каким исходным IP-адресом инкапсулирован пакет в данный кадр.
  • Возможность применять политики на группу устройств, которые находятся в одном вилане.
  • Возможность использовать виртуальные интерфейсы для маршрутизации.

Примеры использования VLAN

  • Объединение в единую сеть компьютеров, подключенных к разным коммутаторам . Допустим, у вас есть компьютеры, которые подключены к разным свитчам, но их нужно объединить в одну сеть. Одни компьютеры мы объединим в виртуальную локальную сеть VLAN 1 , а другие — в сеть VLAN 2 . Благодаря функции VLAN компьютеры в каждой виртуальной сети будут работать, словно подключены к одному и тому же свитчу. Компьютеры из разных виртуальных сетей VLAN 1 и VLAN 2 будут невидимы друг для друга.
  • Разделение в разные подсети компьютеров, подключенных к одному коммутатору. На рисунке компьютеры физически подключены к одному свитчу, но разделены в разные виртуальные сети VLAN 1 и VLAN 2 . Компьютеры из разных виртуальных подсетей будут невидимы друг для друга.

  • Разделение гостевой Wi-Fi сети и Wi-Fi сети предприятия. На рисунке к роутеру подключена физически одна Wi-Fi точка доступа. На точке созданы две виртуальные Wi-Fi точки с названиями HotSpot и Office . К HotSpot будут подключаться по Wi-Fi гостевые ноутбуки для доступа к интернету, а к Office — ноутбуки предприятия. В целях безопасности необходимо, чтобы гостевые ноутбуки не имели доступ к сети предприятия. Для этого компьютеры предприятия и виртуальная Wi-Fi точка Office объединены в виртуальную локальную сеть VLAN 1 , а гостевые ноутбуки будут находиться в виртуальной сети VLAN 2 . Гостевые ноутбуки из сети VLAN 2 не будут иметь доступ к сети предприятия VLAN 1 .

Достоинства использования VLAN

  • Гибкое разделение устройств на группы
  • Как правило, одному VLAN соответствует одна подсеть. Компьютеры, находящиеся в разных VLAN, будут изолированы друг от друга. Также можно объединить в одну виртуальную сеть компьютеры, подключенные к разным коммутаторам.
  • Уменьшение широковещательного трафика в сети
  • Каждый VLAN представляет отдельный широковещательный домен. Широковещательный трафик не будет транслироваться между разными VLAN. Если на разных коммутаторах настроить один и тот же VLAN, то порты разных коммутаторов будут образовывать один широковещательный домен.
  • Увеличение безопасности и управляемости сети
  • В сети, разбитой на виртуальные подсети, удобно применять политики и правила безопасности для каждого VLAN. Политика будет применена к целой подсети, а не к отдельному устройству.
  • Уменьшение количества оборудования и сетевого кабеля
  • Для создания новой виртуальной локальной сети не требуется покупка коммутатора и прокладка сетевого кабеля. Однако вы должны использовать более дорогие управляемые коммутаторы с поддержкой VLAN.

Тэгированные и нетэгированные порты

Когда порт должен уметь принимать или отдавать трафик из разных VLAN, то он должен находиться в тэгированном или транковом состоянии. Понятия транкового порта и тэгированного порта одинаковые. Транковый или тэгированный порт может передавать как отдельно указанные VLAN, так и все VLAN по умолчанию, если не указано другое. Если порт нетэгирован, то он может передавать только один VLAN (родной). Если на порту не указано в каком он VLAN, то подразумевается, что он в нетэгированном состоянии в первом VLAN (VID 1).

Разное оборудование настраивается по-разному в данном случае. Для одного оборудования нужно на физическом интерфейсе указать в каком состоянии находится этот интерфейс, а на другом в определенном VLAN необходимо указать какой порт как позиционируется - с тэгом или без тэга. И если необходимо, чтобы этот порт пропускал через себя несколько VLAN, то в каждом из этих VLAN нужно прописать данный порт с тэгом. Например, в коммутаторах Enterasys Networks мы должны указать в каком VLAN находится определенный порт и добавить этот порт в egress list этого VLAN для того, чтобы трафик мог проходить через этот порт. Если мы хотим чтобы через наш порт проходил трафик еще одного VLAN, то мы добавляем этот порт в egress list еще и этого VLAN. На оборудовании HP (например, коммутаторах ProCurve ) мы в самом VLAN указываем какие порты могут пропускать трафик этого VLAN и добавляем состояние портов - тэгирован или нетегирован. Проще всего на оборудовании Cisco Systems . На таких коммутаторах мы просто указываем какие порты какими VLAN нетэгированы (находятся в режиме access ) и какие порты находятся в тэгированном состоянии (находятся в режиме trunk ).

Для настройки портов в режим trunk созданы специальные протоколы. Один из таких имеет стандарт IEEE 802.1Q. Это международный стандарт, который поддерживается всеми производителями и чаще всего используется для настройки виртуальных сетей. Кроме того, разные производители могут иметь свои протоколы передачи данных. Например, Cisco создала для свого оборудования протокол ISL (Inter Switch Lisk ).

Межвлановская маршрутизация

Что такое межвлановская маршрутизация? Это обычная маршрутизация подсетей. Разница только в том, что каждой подсети соответствует какой-то VLAN на втором уровне. Что это значит. Допустим у нас есть два VLAN: VID = 10 и VID = 20. На втором уровне эти VLAN осуществляют разбиение одной сети на две подсети. Хосты, которые находятся в этих подсетях не видят друг друга. То есть, трафик полностью изолирован. Для того, чтобы хосты могли взаимодействовать между собой, необходимо смаршрутизировать трафик этих VLAN. Для этого нам необходимо на третьем уровне каждому из VLAN присвоить интерфейс, то есть прикрепить к ним IP-адрес. Например, для VID = 10 IP address будет 10.0.10.1/24, а для VID = 20 IP address - 10.0.20.1/24. Эти адреса будет дальше выступать в роли шлюзов для выхода в другие подсети. Таким образом, мы можем трафик хостов с одного VLAN маршрутизировать в другой VLAN. Что дает нам маршрутизация VLAN по сравнению с простой маршрутизацией посетей без использования VLAN? А вот что:

  • Возможность стать членом другой подсети на стороне клиента заблокирована. То есть, если хост находится в определенном VLAN, то даже, если он поменяет себе адресацию с другой подсети, он всеравно останется в том VLAN, котором он был. Это значит, что он не получит доступа к другой подсети. А это в свою очередь обезопасит сеть от «плохих» клиентов.
  • Мы можем поместить в VLAN несколько физических интерфейсов коммутатора. То есть, у нас есть возможность на коммутаторе третьего уровня сразу настроить маршрутизацию, подключив к нему клиентов сети, без использования внешнего маршрутизатора. Либо мы можем использовать внешний маршрутизатор подключенный к коммутатору второго уровня, на котором настроены VLAN, и создать столько сабинтерфейсов на порте маршрутизатора, сколько всего VLAN он должен маршрутизировать.
  • Очень удобно между первым и третьим уровнями использовать второй уровень в виде VLAN. Удобно подсети помечать как VLAN с определенными интерфейсами. Удобно настроить один VLANн и поместить в него кучу портов коммутатора. И вообще, много чего удобно делать, когда есть VLAN.

VLAN (от англ. Virtual Local Area Network) – логическая («виртуальная») локальная компьютерная сеть, имеющая те же свойства, что и физическая локальная сеть.

Проще говоря, VLAN – это логический канал внутри физического.

Данная технология позволяет выполнять две противоположные задачи :

1) группировать устройства на канальном уровне (т.е. устройства, находящиеся в одном VLAN’е), хотя физически при этом они могут быть подключены к разным сетевым коммутаторам (расположенным, к примеру, географически отдаленно);

2) разграничивать устройства (находящиеся в разных VLAN’ах), подключенные к одному коммутатору.

Иначе говоря, VLAN ‘ы позволяют создавать отдельные широковещательные домены. Сеть любого крупного предприятия, а уж тем более провайдера, не может функционировать без применения VLAN’ов.

Применение данной технологии дает нам следующие преимущества:

  • группировка устройств (к примеру, серверов) по функционалу;
  • уменьшение количества широковещательного трафика в сети, т.к. каждый VLAN - это отдельный широковещательный домен;
  • увеличение безопасности и управляемости сети (как следствие первых двух преимуществ).

Приведу простой пример : допустим, есть хосты, включенные в коммутатор, который, в свою очередь, подсоединен к маршрутизатору (рис. 1). Предположим, у нас есть две локальные сети, соединенные одним коммутатором и выходящие в интернет через один роутер. Если не разграничить сети по VLAN’ам, то, во-первых, сетевой шторм в одной сети будет оказывать влияние на вторую сеть, во-вторых, с каждой сети можно будет «вылавливать» трафик другой сети. Теперь же, разбив сеть на VLAN’ы, мы фактически получили две отдельные сети, связанные между собой роутером, то есть L3 (сетевым уровнем). Весь трафик проходит из одной сети в другую через роутер, а доступ теперь работает только на уровне L3, что значительно облегчает работу администратора.

Тегирование

Тегирование – процесс добавления метки VLAN’a (он же тег) к фреймам трафика.

Как правило, конечные хосты не тегируют трафик (например, компьютеры пользователей). Этим занимаются коммутаторы, стоящие в сети. Более того, конечные хосты и не подозревают о том, что они находятся в таком-то VLAN’е. Строго говоря, трафик в разных VLAN’ах чем-то особенным не отличается.

Если через порт коммутатора может прийти трафик разных VLAN’ов, то коммутатор должен его как-то различать. Для этого каждый кадр должен быть помечен какой-либо меткой.

Наибольшее распространение получила технология, описанная в спецификации IEEE 802.1Q. Также существую и другие проприетарные протоколы (спецификации).

802.1q

802.1q – это открытый стандарт, описывающий процедуру тегирования трафика.

Для этого в тело фрейма помещается тег (рис.2), содержащий информацию о принадлежности к VLAN’у. Т.к. тег помещается в тело, а не в заголовок фрейма, то устройства, не поддерживающие VLAN’ы, пропускают трафик прозрачно, то есть без учета его привязки к VLAN’у.

Размер метки (тега) всего 4 байта. Состоит из 4-х полей (рис.3):

  • Tag Protocol Identifier (TPID, идентификатор протокола тегирования). Размер поля - 16 бит. Указывает на то, какой протокол используется для тегирования. Для 802.1Q используется значение 0x8100.
  • Priority (приоритет). Размер поля - 3 бита. Используется стандартом IEEE 802.1p для задания приоритета передаваемого трафика.
  • Canonical Format Indicator (CFI, индикатор канонического формата). Размер поля - 1 бит. Указывает на формат MAC-адреса. 0 - канонический, 1 - не канонический. CFI используется для совместимости между сетями Ethernet и Token Ring.
  • VLAN Identifier (VID, идентификатор VLAN). Размер поля - 12 бит. Указывает на то, какому VLAN принадлежит фрейм. Диапазон возможных значений - от 0 до 4095.

Если трафик теггируется, или наоборот — метка убирается, то контрольная сумма фрейма пересчитывается(CRC).

Native VLAN(нативный VLAN)

Стандарт 802.1q также предусматривает обозначение VLAN’ом трафика, идущего без тега, т.е. не тегированного. Этот VLAN называется нативный VLAN, по умолчанию это VLAN 1. Это позволяет считать тегированным трафик, который в реальности тегированным не является.

802.1ad

802.1ad -это открытый стандарт (аналогично 802.1q), описывающий двойной тег (рис.4). Также известен как Q-in-Q , или Stacked VLANs . Основное отличие от предыдущего стандарта - это наличие двух VLAN’ов - внешнего и внутреннего, что позволяет разбивать сеть не на 4095 VLAN’ов, а на 4095х4095.

Так же наличие двух меток позволяет организовывать более гибкие и сложные сети оператора. Так же, бывают случаи, когда оператору нужно организовать L2 соединение для двух разных клиентов в двух разных городах, но трафик клиенты посылают трафик с одним и тем же тегом(рис.5).

Клиент-1 и клиент-2 имеют филиалы в городе А и Б, где имеется сеть одного провайдера. Обоим клиентам необходимо связать свои филиалы в двух разных городах. Кроме того, для своих нужд каждый клиент тегирует трафик 1051 VLAN’ом. Соответственно, если провайдер будет пропускать трафик обоих клиентов через себя в одном единственном VLAN’е, авария у одного клиента может отразиться на втором клиенте. Более того, трафик одного клиента сможет перехватить другой клиент. Для того, чтобы изолировать трафик клиентов, оператору проще всего использовать Q-in-Q. Добавив дополнительный тег к каждому отдельному клиенту (например, 3083 к клиенту-1 и 3082 к клиенту-2), оператор изолирует клиентов друг от друга, и клиентам не придется менять тег.

Состояние портов

Порты коммутатора, в зависимости от выполняемой операции с VLAN’ами, делятся на два вида:

  • тегированный (он же транковый порт , trunk , в терминалогии cisco) - порт, который пропускает трафик только с определенным тегом;
  • нетегированный (он же аксесный , access , в терминалогии cisco) - входя в данный порт, нетегированный трафик «обертывается» в тег.

По назначению порта в определённый VLAN существует два подхода:

  • Статическое назначение - когда принадлежность порта VLAN’у задаётся администратором;
  • Динамическое назначение - когда принадлежность порта VLAN’у определяется в ходе работы коммутатора с помощью процедур, описанных в специальных стандартах, таких, например, как 802.1X.

Таблица коммутации

Таблица коммутации при использовании VLAN’ов выглядит следующим образом (ниже приведена таблица коммутации коммутатора, не поддерживающего работу во VLAN’ах):

Порт MAC-адрес
1 A
2 B
3 C

Если же коммутатор поддерживает VLAN’ы, то таблица коммутации будет выглядеть следующим образом:

Порт VLAN MAC-адрес
1 345 A
2 879 B
3 default C

где default — native vlan.

Протоколы, работаю с VLAN

GVRP (его аналог у cisco — VTP) — протокол, работающий на канальном уровне, работа которого сводиться к обмену информации об имеющихся VLAN’ах.

MSTP (PVSTP, PVSTP++ у cisco) — протокол, модификация протокола STP, позволяющее строить «дерево» с учетом различных VLAN’ов.

LLDP (CDP, у cisco) — протокол, служащий для обмена описательной информацией о сети, в целом, кроме информации о VLAN’ах также распространяет информацию и о других настройках.

На страницах нашего сайта мы неоднократно использовали термин VLAN в инструкциях по настройке различных роутеров и созданию корпоративной сети. Однако современная vlan технология требует детального изучения, поэтому следующий цикл статей посвящен характеристике и настройке «влан» на различных устройствах.

Данный материал является своего рода «вступительным словом», и здесь мы рассмотрим, что такое VLAN и как технология VLAN помогает в настройке сети.

Vlan: что это такое?

VLAN – технология, позволяющая сконфигурировать несколько виртуальных широковещательных доменов в рамках одного физического широковещательного домена.

Другими словами, имея из нескольких или одного коммутатора, можно , таким образом разграничив ПК пользователей по признаку принадлежности к определенному отделу или же в случае с серверами – по определенным ролям и специфике их работы.

В таком случае решаются одновременно несколько проблем:

  • - уменьшается количество широковещательных запросов, ;
  • - улучшается , т.к. исключается возможность прослушивания трафика сторонними сотрудниками, не входящими в данный конкретный VLAN;
  • - появляется возможность территориально разнести разные отделы и подразделения по признаку принадлежности. То есть, например, сотрудники Отдела кадров, не находясь в одном здании, смогут «видеть» друг друга в рамках своей подсети.

Сетевая архитектура использует VLAN для обеспечения сетевой сегментации сервисов, обычно осуществляемой маршрутизаторами, которые фильтруют широковещательный трафик между разными VLAN-ми, улучшают безопасность сети, выполняют агрегацию подсетей и снижают перегрузку в сети. Коммутаторы не могут передавать трафик между VLAN-ами ввиду ограничения, накладываемого широковещательным доменом.

Некоторые коммутаторы могут иметь функции 3-го сетевого уровня модели OSI, храня и используя для осуществления передачи трафика между подсетями. В таком случае на коммутаторе создается виртуальный интерфейс конкретного VLAN с определенным и . Такой интерфейс выступает в роли для устройств, находящихся в данном VLAN.

Для чего нужен vlan?

В сетях, основанных на широковещательном трафике, передающемся ко всем устройствам для нахождения пиров, с ростом количества пиров растет и количество широковещательного трафика (который потенциально может почти полностью вытеснить собой полезную нагрузку на сеть).

VLAN-ы же помогают снизить сетевой трафик формированием нескольких широковещательных доменов, разбивая большую сеть на несколько меньших независимых сегментов с небольшим количеством широковещательных запросов, посылаемых к каждому устройству всей сети в целом.

Технология VLAN также помогает создать несколько сетей 3-го уровня модели OSI в одной физической инфраструктуре. Например, если , раздающий ip-адреса, включен в коммутатор в определенном VLAN – устройства будут получать адреса только в рамках данного VLAN. Если же DHCP-сервер включен транком с набором из нескольких VLAN – устройства из всех этих VLAN смогут получить адреса.

VLAN работает на 2-м, канальном, уровне сетевой модели OSI, аналогично IP-подсетям, которые оперируют на 3-м, сетевом, уровне. Обычно каждому VLAN соответствует своя IP-подсеть, хотя бывают и исключения, когда в одном VLAN могут существовать несколько разных подсетей. Такая технология у Cisco известна как «ip secondary», а в Linux как «ip alias».

В старых сетевых технологиях пользователям присваивались подсети, основываясь на их географическом местоположении. Благодаря этому они были ограничены физической топологией и расстоянием. VLAN технология же позволяют логически сгруппировать территориально разрозненных пользователей в одни и те же группы подсетей, несмотря на их физическое местонахождение. Используя VLAN, можно легко управлять шаблонами трафика и быстро реагировать на переезд пользователей.

Технология VLAN предоставляет гибкую адаптацию к изменениям в сети и упрощает администрирование.

Примеры использования vlan

Пример разделения сети на несколько VLAN по сегментам в зависимости от ролей и используемых технологий:

  1. 1) Продуктивный VLAN
  2. 2) VoIP
  3. 3) Управление сетью
  4. 4) SAN – сеть хранилищ данных
  5. 5) Гостевая сеть
  6. 6) DMZ-зоны
  7. 7) Разделение клиентов (в случае с сервис провайдером или дата-центром)

Наиболее часто используемым стандартом для конфигурации VLAN является IEEE 802.1Q, в то время как Cisco имеет свой собственный стандарт ISL, а 3Com – VLT. И IEEE 802.1Q и ISL имеют схожий механизм работы, называемый “явным тегированием” – фрейм данных тегируется информацией о принадлежности к VLAN. Отличие между ними в том, что ISL использует внешний процесс тегирования без модификации оригинального Ethernet-фрейма, а 802.1Q – внутренний, с модификацией фрейма.

Ещё один небольшой инструмент, который может немного увеличить удобство работы: banner. Это объявление, которое циска покажет перед авторизацией на устройство.

Switch(config)#banner motd q Enter TEXT message. End with the character "q". It is just banner. q Switch(config)#
После motd вы указываете символ, который будет служить сигналом о том, что строка закончена. В это примере мы поставили “q”.

Относительно содержания баннера. Существует такая легенда: хакер вломился в сеть, что-то там поломал\украл, его поймали, а на суде оправдали и отпустили. Почему? А потому, что на пограничном роутере(между интернет и внутренней сетью), в banner было написано слово “Welcome”. “Ну раз просят, я и зашел”)). Поэтому считается хорошей практикой в баннере писать что-то вроде “Доступ запрещен!”.

Для упорядочивания знаний по пунктам разберём, что вам необходимо сделать:

1) Настроить hostname. Это поможет вам в будущем на реальной сети быстро сориентироваться, где вы находитесь.
Switch(config)#hostname HOSTNAME

2) Создать все вланы и дать им название
Switch(config)#vlan VLAN-NUMBER Switch(config-vlan)#name NAME-OF-VLAN

3) Настроить все access-порты и задать им имя
Switch(config-if)#description DESCRIPTION-OF-INTERFACE Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan VLAN-NUMBER

Удобно иногда бывает настраивать интерфейсы пачками:

Msk-arbat-asw3(config)#interface range fastEthernet 0/6 - 10 msk-arbat-asw3(config-if-range)#description FEO msk-arbat-asw3(config-if-range)#switchport mode access msk-arbat-asw3(config-if-range)#switchport access vlan 102

4) Настроить все транковые порты и задать им имя:
Switch(config-if)#description DESCRIPTION-OF-INTERFACE Switch(config-if)#switchport mode trunk Switch(config-if)#switchport trunk allowed vlan VLAN-NUMBERS

5) Не забывайте сохраняться:
Switch#copy running-config startup-config

Итого: чего мы добились? Все устройства в одной подсети видят друг друга, но не видят устройства из другой. В следующем выпуске разбираемся с этим вопросом, а также обратимся к статической маршрутизации и L3-коммутаторам.
В общем-то на этом данный урок можно закончить. В видео вы сможете ещё раз увидеть, как настраиваются вланы. В качестве домашнего задания настройте вланы на коммутаторах для серверов.

Здесь вы можете скачать конфигурацию всех устройств:
Lift-me-Up_Configuration.zip
И наш проект РТ:
Lift-me-UP_v2-VLANs.pkt

P.S.
Важное дополнение: в предыдущей части, говоря о native vlan мы вас немного дезинформировали. На оборудовании cisco такая схема работы невозможна.
Напомним, что нами предлагалось передавать на коммутатор msk-rubl-asw1 нетегированными кадры 101-го влана и принимать их там в первый.
Дело в том, что, как мы уже упомянули выше, с точки зрения cisco с обеих сторон на коммутаторах должен быть настроен одинаковый номер влана, иначе начинаются проблемы с протоколом STP и в логах можно увидеть предупреждения о неверной настройке. Поэтому 101-й влан мы передаём на устройство обычным образом, кадры будут тегированными и соответственно, 101-й влан тоже необходимо создавать на msk-rubl-asw1.

Ещё раз хотим заметить, что при всём желании мы не сможем охватить все нюансы и тонкости, поэтому и не ставим перед собой такой задачи. Такие вещи, как принцип построения MAC-адреса, значения поля Ether Type или для чего нужен CRC в конце кадра, вам предстоит изучить самостоятельно. Добавить метки

Реализация VLAN в устройствах CISCO

В устройствах Cisco , протокол VTP (VLAN Trunking Protocol) предусматривает VLAN-домены для упрощения администрирования. VTP также выполняет «чистку» трафика, направляя VLAN трафик только на те коммутаторы, которые имеют целевые VLAN-порты (функция VTP pruning). Коммутаторы Cisco в основном используют протокол 802.1Q Trunk вместо устаревшего проприетарного ISL (Inter-Switch Link) для обеспечения совместимости информации.

По умолчанию на каждом порту коммутатора имеется сеть VLAN1 или VLAN управления. Сеть управления не может быть удалена, однако могут быть созданы дополнительные сети VLAN и этим альтернативным VLAN могут быть дополнительно назначены порты.

Native VLAN - это параметр каждого порта, который определяет номер VLAN, который получают все непомеченные (untagged) пакеты.

Обозначение членства в VLAN

Для этого существуют следующие решения:

  • по порту (Port-based, 802.1Q): порту коммутатора вручную назначается одна VLAN. В случае, если одному порту должны соответствовать несколько VLAN (например, если соединение VLAN проходит через несколько свитчей), то этот порт должен быть членом транка . Только одна VLAN может получать все пакеты, не отнесённые ни к одной VLAN (в терминологии 3Com , Planet, D-Link , Zyxel , HP - untagged , в терминологии Cisco - native VLAN ). Свитч будет добавлять метки данной VLAN ко всем принятым кадрам не имеющим никаких меток. VLAN, построенные на базе портов, имеют некоторые ограничения.
  • по MAC-адресу (MAC-based): членство в VLANe основывается на MAC-адресе рабочей станции . В таком случае свитч имеет таблицу MAC-адресов всех устройств вместе с VLANами, к которым они принадлежат.
  • по протоколу (Protocol-based): данные 3-4 уровня в заголовке пакета используются чтобы определить членство в VLANe. Например, -машины могут быть переведены в первую VLAN, а AppleTalk -машины во вторую. Основной недостаток этого метода в том, что он нарушает независимость уровней, поэтому, например, переход с IPv4 на IPv6 приведет к нарушению работоспособности сети.
  • методом аутентификации (Authentication based): устройства могут быть автоматически перемещены в VLAN основываясь на данных аутентификации пользователя или устройства при использовании протокола 802.1x .

Преимущества

  • Облегчается перемещение, добавление устройств и изменение их соединений друг с другом.
  • Достигается большая степень административного контроля вследствие наличия устройства, осуществляющего между сетями VLAN маршрутизацию на 3-м уровне.
  • Уменьшается потребление полосы пропускания по сравнению с ситуацией одного широковещательного домена.
  • Сокращается непроизводственное использование CPU за счет сокращения пересылки широковещательных сообщений.
  • Предотвращение широковещательных штормов и предотвращение петель.

См. также

Источники

  • Эндрю Таненбаум , 2003, «Computer Networks», Pearson Education International, New Jersey.

Ссылки

  • IEEE’s 802.1Q standard 1998 version (2003 version)(2005 version)
  • OpenWRT guide to VLANs : Provides a good beginners guide to all VLANS
  • Some FAQ about the VLANs
  • VLAN на Xgu.ru - подробная информация о настройке и использовании VLAN в активном сетевом оборудовании Cisco и HP ProCurve и в операционных системах Linux и FreeBSD
  • Виртуальные Локальные Сети: VLAN на примере Cisco Catalyst
  • Возможности современных коммутаторов по организации виртуальных сетей

Wikimedia Foundation . 2010 .

Смотреть что такое "VLAN" в других словарях:

    vlan - vlan … Dictionnaire des rimes

    - (от англ. Virtual Local Area Network) виртуальная локальная вычислительная сеть, известная так же как VLAN, представляет собой группу хостов с общим набором требований, которые взаимодействуют так, как если бы они были подключены к… … Википедия

    vlan - [ vlɑ̃ ] interj. 1803; onomat. ♦ Onomatopée imitant un bruit fort et sec. « Patatras ! vlan ! pif ! paf ! boum ! » (A. Daudet). Fig. (parole brutale) Et vlan ! dans les gencives (cf. Et toc). ⇒VLAN, onomat. et subst. masc. I. Onomat. }

Статьи по теме: