Корректор мощности принцип работы. Микросхемы для построения высокоэффективных корректоров от STMicroelectronics

На сегодняшний день существуют два подхода к построению источников питания, дающих на выходе стабильное выходное напряжение или ток — источники питания с параметрической и с импульсной стабилизацией.

В линейных источниках стабилизация выходного параметра осуществляется за счет нелинейного элемента. Импульсные — работают по принципу управления энергией в катушке индуктивности с помощью одного или нескольких коммутирующих ключей.

Преимущество первых — низкий уровень высокочастотных шумов, что важно для аналоговой аппаратуры. За импульсными источниками — более высокие мощности и лучшее соотношение мощности и размеров. Кроме того, они имеют более высокий КПД. Вопросы сложности или простоты схемотехники являются весьма спорными, т.к. современная промышленность предлагает широкий спектр решений, в том числе и однокристальных, для любых приложений.

Но для сети линейные и импульсные источники питания являются нелинейной нагрузкой — форма потребляемого тока будет отличаться от синусоидальной, что приведет к возникновению дополнительных гармоник, а следовательно — к появлению реактивной составляющей мощности, дополнительному нагреву и потерям в линиях электропередач. Кроме того, другим потребителям энергии приходится применять дополнительные меры для защиты от сетевых помех — особенно в случае импульсных блоков высокой мощности, работающих под нагрузкой. Ограничения на допустимые наводки в сети от работающего прибора регламентируются соответствующими международными и государственными стандартами. Можно не сомневается, что российские стандарты в этой области будут ужесточаться и приближаться к мировым. В итоге именно те компании, которые освоят техники снижения сетевых помех, получат значительное преимущество над конкурентами.

Для снижения влияния потребителя тока на сеть применяются активные или пассивные корректоры. Пассивные корректоры представляют собой дроссели, чаще всего применяемые в устройствах небольшой мощности и некритичные к габаритным размерам. В остальных случаях целесообразно применение активных высокочастотных корректоров, часто называемых корректорами коэффициента мощности (ККМ или PFC — Power Factor Correction). К основным задачам ККМ можно отнести:

  • Придание потребляемому от сети току синусоидальной формы (снижение коэффициента гармоник);
  • Ограничение выходной мощности;
  • Защиту от короткого замыкания;
  • Защиту от пониженного или повышенного напряжений.

Фактически, ККМ можно рассматривать как некий буферный каскад (схему), снижающий взаимное влияние питающей сети и источника питания.

Типовая структура корректора мощности представлена на рисунке 1.

Рис. 1.

ККМ может быть реализован не только на дискретных элементах, но и при помощи специализированных микросхем — контроллеров ККМ (PFC-корректоры). К основным производителям контроллеров корректоров коэффициента мощности относятся:

  • STMicroelectronics- L4981, L656x;
  • Texas Instruments- UCx854, UC28xx;
  • International Rectifier — IR115x;
  • ON Semiconductor- MC3x262, MC33368, NCP165x, NCP160x;
  • Fairchild Semiconductor- FAN48xx, FAN69x, FAN7527;
  • Linear Technology Corporation- LTC1248.

ККМ-контроллеры STMicroelectronics

Компания STMicroelectronics предлагает несколько серий производительных контроллеров ККМ, способных обеспечить различные режимы работы прибора. Дополнительные опции упрощают построение импульсных источников питания, учитывая стандарты энергосбережения и требования к уровню вносимых в питающую сеть искажений.

Таблица 1. Контроллеры корректора коэффициента мощности STMicroelectronics

Микросхема Корпус Режим работы Напряжение
питания, В
Ток потребления, мА активный/стартовый (низкопотребляющий) Примечание
L4981 PDIP 20; SO-20 ССМ 19,5 12/0,3 Мягкий старт; защита от перенапряжения, перегрузки по току
L6561 DIP-8; SO-8 TM 11…18 4/0,05 Защита от перенапряжения
L6562A DIP-8; SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения
L6562AT SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения
L6563H SO-16 TM, tracking boost 10,3…22,5 5/0,09
L6563S SO-14 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора
L6564 SSOP 10 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора

Микросхема контроллера корректора мощности L4981 позволяет построить высокоэффективные блоки питания с синусоидальным током потребления. Коэффициент мощности может достигать величины 0,99 при низком уровне гармоник. Сама микросхема реализована по технологии BCD 60II и работает по принципу контроля среднего тока (CCM), поддерживая синусоидальность потребляемого тока.

L4981 может быть использована в системах с питающими напряжениями 85…265 В без внешнего драйвера силового ключа. Серия «A» для ШИМ-контроллера использует фиксированную частоту; серия «B» для оптимизации входного фильтра дополнительно использует частотную модуляцию.

Также в состав микросхемы входят: прецизионный источник опорного напряжения, усилитель рассогласования, схема блокировки работы при критическом падении напряжения, датчик тока, схема мягкого старта и защита от перенапряжения и перегрузки по току. Уровень срабатывания защиты по току для L4981A задается при помощи внешнего резистора; для повышения точности в серии L4981B используется внешний делитель напряжения.

Ключевые особенности:

  • Boost-ШИМ с коэффициентом мощности до 0,99;
  • Искажение тока не более 5%;
  • Универсальный вход;
  • Мощный выходной каскад (биполярные и МОП-транзисторы);
  • Защита от просадки напряжения с гистерезисом и программируемым порогом включения;
  • Встроенный источник опорного напряжения с точностью 2% (доступен извне);
  • Низкий ток запуска (~0,3мА);
  • Система мягкого включения.

Серия L6561 является улучшенной версией PFC-контроллера L6560 (полностью с ним совместима). Основные новшества:

  • Улучшенный аналоговый умножитель, позволяющий устройству работать в широком диапазоне входных напряжений (от 85 до 265В) с превосходными показателями коэффициента гармоник (THD);
  • Стартовый ток уменьшен до нескольких миллиампер (~4мА);
  • Добавлен вывод разрешения работы, гарантирующий низкое энергопотребление в режиме ожидания (stand by ).

Ключевые возможности, воплощенные в смешанной технологии BCD:

  • Ультранизкий стартовый ток (~50мкА);
  • 1% встроенный источник опорного напряжения;
  • Программируемая защита от перенапряжения;
  • Токовый датчик без внешнего фильтра низких частот;
  • Малый ток покоя.

Выходной каскад способен управлять силовыми МОП- или IGBT-ключами с токами управления до 400 мА. Микросхема работает в переходном режиме работы корректоров коэффициента мощности — Transition Mode (TM) — промежуточный режим между непрерывным (CCM) и прерывистым (DCM). L6561 оптимизирована для балластных схем питания газоразрядных ламп, сетевых адаптеров, импульсных источников питания.

Контроллер ККМ L6562A/L6562AT также работает в переходном режиме (TM) и совместим повыводно с предшественниками L6561 и L6562. Его высоколинейный умножитель имеет специальную схему, уменьшающую рассогласование входного переменного тока, что позволяет оперировать в широком диапазоне входных напряжений с низким коэффициентом гармоник при различных нагрузках. Выходное напряжение контролируется операционным усилителем с высокоточным источником опорного напряжения (до 1% точности).

L6562A/L6562AT в режиме покоя имеет потребление порядка 60 мкА и рабочий ток всего 5 мА. Наличие входа управления включением/выключением облегчает создание конечных устройств, отвечающих требованиям стандартов Blue Angel, EnergyStar, Energy2000 и ряда других.

Эффективная двухуровневая система защиты от перенапряжения срабатывает даже в случае возникновения перегрузки в момент запуска корректора или же в случае отрыва нагрузки при работе.

Выходной каскад способен обеспечить выходной ток до 600 мА и входной до 800 мА, что является достаточным для управления мощными силовыми MOSFETs или IGBT-ключами. В дополнение к указанным выше возможностям L6562A может оперировать в проприетарном режиме фиксированного времени выключения (Fixed-Off-Time ) — рисунок 2.


Рис. 2.

Серии ККМ-контроллеров L6563, L6563S, L6563H, L6564 построены по схеме типового корректора коэффициента мощности, работающего в режиме TM с рядом дополнительных возможностей.

L6563, L6563S имеют режим работы Tracking boost, двунаправленный вход упреждения напряжения, вход разрешения работы, прецизионный источник опорного напряжения (точность при 25°С в пределах 1…1,5%). Кроме того, в микросхему интегрированы: схемы защиты от перенапряжения с настраиваемым порогом, разрыва контура обратной связи (выключение микросхемы), насыщения индуктора (выключение микросхемы); программируемый детектор критического падения переменного напряжения. Максимальный ток потребления L6563х составляет не более 6 мА в активном режиме, стартовый ток менее 100 мкА.

Микросхема контроллера корректора
коэффициента мощности L6562A

Сферы применения ККМ-контроллера включают в себя:

  • Импульсные блоки питания, отвечающие требованиям стандартов IEC61000-3-2 (телевизоры, мониторы, компьютеры, игровые консоли);
  • AC/DC-преобразователи/зарядные устройства с мощностью до 400 Вт;
  • Электронный балласт;
  • Входной уровень серверов и веб-серверов.

Ключевыми особенностями L6562A являются:

  • Проприетарное решение умножителя;
  • Настраиваемые уровни защиты от перенапряжения;
  • Ультранизкий стартовый ток- 30мкА;
  • Низкий ток покоя- 2,5мА;
  • Мощный выходной каскад для управления силовыми ключами- -600,800мА.

Микросхемы выпускаются в компактных восьмивыводных корпусах DIP-8 и SO-8. Структурная схема L6562A показана на рисунке 3.


Рис. 3.

Инверсный вход усилителя ошибки разделяет функции вывода разрешения работы микросхемы. При напряжении на нем ниже 0,2 В он выключает микросхему, тем самым понижая ее энергопотребление, а при превышении порога в 0,45 В микросхема переходит в активный режим. Основное назначение данной функции — управление ККМ-контроллером, например, он может управляться следующим за ним ШИМ-контроллером преобразователя напряжения. Дополнительной возможностью, предоставляемой функцией выключения, является автоматическое отключение в случае замыкания на землю напряжения низкоомного резистора выходного делителя или обрыва цепи делителя.

Выходной сигнал усилителя ошибки поступает на его инверсный вход через компенсирующие цепи обратной связи. Фактически, работа данных цепей определяет стабильность выходного напряжения, высокий коэффициент мощности и низкий уровень гармоник.

После выпрямителя основное питающее напряжение поступает на вход умножителя через делитель напряжения и служит источником опорного синусоидального сигнала для токовой петли.

Напряжение с измерительного резистора в цепи силового ключа поступает на вход компаратора ШИМ, где сравнивается с опорным синусоидальным сигналом для определения момента размыкания ключа. Для снижения влияния импульсных помех аппаратно реализована задержка в 200 нс от фронта импульса. По отрицательному фронту импульса размагничивания индуктора происходит замыкание силового ключа.

Примером схемы включения L6562A может служить повышающий источник напряжения на 400 В (рисунок 4).


Рис. 4.

Вторым примером может служить применение L6562A в составе источника питания для светодиодных светильников (рисунок 5).


Рис. 5.

L6562A имеет специализированную схему, снижающую влияние переходных процессов в районе нулевого переменного входного напряжения, когда диоды в выпрямительном мосту еще закрыты, и ток через мост равен нулю. Для борьбы с данным эффектом встроенная схема заставляет ККМ-контроллер перекачивать больше энергии в момент пересечения нуля сетевым напряжением (увеличивается промежуток времени нахождения силового ключа в открытом состоянии). В результате уменьшается промежуток времени, в течение которого потребление энергии (тока) схемой недостаточно, и полностью разряжается фильтрующий конденсатор, стоящий после моста. Низкое значение опорного напряжения позволяет использовать более низкоомный резистор для измерения тока в цепи силового ключа, соответственно снижается и рассеиваемая на нем мощность (меньше рассеиваемой мощности ® меньше нагрев ® ниже требования к системе охлаждения и вентиляции). Низкие входные токи динамической защиты от перенапряжения допускают применение высокоомного верхнего резистора в делителе напряжения цепи обратной связи по напряжению без увеличения влияния шума. В итоге снижается ток потребления схемы в режиме ожидания (важно в связи с требованиями стандартов энергосбережения). В таблице 2 приведены основные параметры ККМ-контроллера L6562A.

Таблица 2. Основные эксплуатационные параметры L6562A

Параметр Значение
Пороги включения/выключения, В 12,5/10
Разброс значений порога выключения (макс), В ± 0,5
Ток микросхемы перед запуском (макс), мкА 60
Усиление умножителя 0,38
Значение опорного напряжения, В 1,08
Время реакции на изменение тока, нс 175
Динамический ток переключения схемы OVP, мкА 27
Пороги детектора нуля, выключения/срабатывания/удержания, В 1,4/0,7/0
Пороги включения/выключения микросхемы, В 0,45/0,2
Падение напряжения на внутреннем драйвере ключа, В 2,2
Задержка относительно фронта импульса в датчике тока, нс 200

Все это делает L6562A прекрасным недорогим решением для ИБП мощностью до 350 Вт, совместимых с требованиями стандартов EN61000-3-2.

Варианты применения и методика расчета типовых узлов для схем на основе L6562A/АТ приводятся в руководствах по применению; список основных документов приведен ниже.

AN3159: STEVAL-ILH005V2: 150 W HID electronic ballast — встраиваемый блок электронного балласта мощностью до 150 Вт.

AN2761: Solution for designing a transition mode PFC preregulator with the L6562A — примеры построения предварительного регулятора с ККМ в транзитивном режиме на основе L6562A.

AN2782: Solution for designing a 400 W fixed-off-time controlled PFC preregulator with the L6562A — Пример разработки 400-ваттного предварительного регулятора с ККМ на базе L6552A в режиме фиксированного времени во выключенном состоянии.

AN2928: Modified buck converter for LED applications — Модифицированный понижающий преобразователь для светодиодного освещения.

AN3256: Low-cost LED driver for an A19 lamp — Светодиодный драйвер для ламп А19 по низкой цене.

AN2983: Constant current inverse buck LED driver using L6562A — Светодиодный драйвер постоянного тока на L6562A.

AN2835: 70 W HID lamp ballast based on the L6569, L6385E and L6562A — Схема электронного балласта для газоразрядных ламп.

AN2755: 400 W FOT-controlled PFC pre-regulator with the L6562A — 400-ватный предварительный регулятор на базе L6562A в режиме fixed-off-time.

AN2838: 35 W wide-range high power factor flyback converter demonstration board using the L6562A — Демонстрационная плата 35-ваттного широкодиапазонного конвертера с высоким коэффициентом мощности на основе L6562A.

AN3111: 18 W single-stage offline LED driver — Автономный одноуровневый 18-ваттный светодиодный драйвер.

AN2711: 120 VAC input-Triac dimmable LED driver based on the L6562A — Тиристорный регулируемый светодиодный драйвер на L6562A мощностью 120 Вт.

Демонстрационные платы, предлагаемые STMicroelectronics, позволяют быстро разобраться с различными режимами работы микросхем, а также посмотреть, как поведут себя устройства в разных условиях эксплуатации. Кроме того, отладочные средства служат прототипами устройств. На момент написания статьи для ознакомления с L6562A предлагается следующий набор отладочных средств — таблица 3.

Таблица 3. Отладочные средства для L6562A

Плата Внешний вид Описание
STEVAL-ILL027V2 18-ваттный автономный светодиодный драйвер
EVL6562A-TM-80W Оценочная плата 80-ваттного корректора коэффициента мощности работающего в режиме TM
STEVAL-ILL013V1 Регулируемый автономный ККМ и светодиодный драйвер с регулировкой мощности на базе L6562A
EVL6562A-LED Демонстрационная плата светодиодного драйвера постоянного тока на L6562A
STEVAL-ILL016V2 Тиристорный автономный светодиодный драйвер на L6562AD и TSM1052
STEVAL-ILL019V1 35-ваттный автономный светодиодный драйвер для четырехканальных светодиодных источников типа HB RGGB
STEVAL-ILL034V1 Светодиодный драйвер для ламп типа A19 на базе L6562A (ориентировано на американский рынок)
EVL6562A-400W L6562A Предварительный регулятор напряжения с корректором коэффициента мощности в режиме fixed-off-time

ККМ-контроллеры STMicroelectronics серий L6563S/H

Помимо стандартных функций и возможностей контроллеры коэффициента мощности серии L6563S/H (рис. 6) имеют ряд опций, улучшающих характеристики конечных устройств, работающих на их основе.


Рис. 6.

Среди отличительных особенностей:

  • Возможность работы в режиме tracking boost;
  • 1/V 2 -коррекция;
  • Защита от перенапряжения, разрыва цепи обратной связи, насыщения индуктора.

Высоколинейный умножитель с коррекцией ступенчатых искажений основного тока позволяет микросхемам работать в широком диапазоне входного переменного напряжения при минимальном уровне нелинейных искажений даже при больших нагрузках.

Выходное напряжение контролируется усилителем ошибки и прецизионным источником напряжения (1% при 25°С). Стабильность контура обратной связи отслеживается упреждающей связью по напряжению (1/V 2 -коррекция), которая в данной микросхеме использует уникальную проприетарную технику, позволяющую существенно улучшить переходные процессы на линии при падениях или скачках сетевого напряжения (т.н. двунаправленная связь — «bidirectional»).

ККМ-контроллер L6563H имеет тот же набор функций, что и L6563/L6563S, с добавлением высоковольтного источника запуска. Эта возможность востребована в приложениях с жесткими требованиями по энергосбережению, а также в тех случаях, когда контроллер ККМ работает в режиме мастера.

Дополнительно L6563H имеет возможность работы в режиме отслеживания повышения (tracking boost operation ) — выходное напряжение изменяется, реагируя на изменения сетевого напряжения.

L6563H может быть использован в составе блоков питания мощностью до 400 Вт при соответствии требованиям стандартов EN61000-3-2, JEITA-MITI.

Микросхема L6564 является более компактной версией L6563S в корпусе SSOP-10 — имеет тот же драйвер, источник опорного напряжения и систему управления. В серии L6563A отсутствует защита от насыщения индуктора.

Так же, как и L6562A, ККМ-контроллеры L6263x могут работать в режиме фиксированного времени выключения (Fixed-Off-Time ). Кроме того, выводы состояния контроллера позволяют управлять ШИМ-контроллером DC/DC-преобразователя, питаемого предварительным регулятором ККМ-контроллера при нештатных ситуациях (разрыв обратной связи, насыщение индуктора, перегрузка). С другой стороны, возможно отключение ККМ-контроллера в том случае, если DC/DC-конвертор работает на малую нагрузку. В отличие от серий L6562x имеются отдельные входы управления контроллером, что делает управление достаточно гибким.

AN3142: Solution for designing a 400 W fixed-off-time controlled PFC preregulator with the L6563S and L6563H — 400-ваттный ККМ-регулятор на L6563S и L6563H в режиме fixed-off-time.

AN3027: How to design a transition-mode PFC pre-regulator with the L6563S and L6563H — Разработка ТМ ККМ-контроллера с помощью L6563S and L6563H.

AN3203: EVL250W-ATX80PL: 250W ATX SMPS demonstration board — Демонстрационная плата ATX блока питания на 250 ВТ.

AN3180: A 200 W ripple-free input current PFC pre-regulator with the L6563S 1 — Корректор коэффициента мощности на L6563L свободный от шума входного тока.

AN2994: 400 W FOT-controlled PFC pre-regulator with the L6563S — 400-ваттный ККМ-контроллер на L6563S в режиме fixed-off-time.

AN3119: 250 W transition-mode PFC pre-regulator with the new L6563S — 250-ваттный ККМ-контроллер на L6563S в режиме transition-mode.

AN2941: 19 V — 75 W SMPS compliant with latest ENERGY STARR criteria using the L6563S and the L6566A — Импульсный блок питания с выходным напряжением 19 В мощностью 75 Вт совместимый с требованиями новейшего стандарта Energy Starr.

AN3065: 100 W transition-mode PFC pre-regulator with the L6563S — 100-ваттный ККМ-контроллер на L6563S в режиме transition-mode.

Демонстрационные платы для L6563S/ L6564 показаны в таблице 4.

Таблица 4. Отладочные средства для L6563S/ L6564

Наименование Внешний вид Описание
EVL250W-ATX80PL Плата ATX блока питания на 250 Вт
EVL6563S-250W 250-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM
EVL6563S-100W 100-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM
EVL6563S-200ZRC Корректор коэффициента мощности на L6563S свободный от шума входного тока (200 Вт)
EVL185W-LEDTV Блок питания мощностью 185 Вт для LED-телевизоров с корректором коэффициента мощности, режимом ожидания на базе L6564, L6599A, и VIPER27L

Дополнительно по запросу разработчика могут быть предоставлены программные продукты для автоматизации разработки и расчета схем на L6563S, L6564 в режимах TM и fixed-off-time.

Рекомендации по выбору компонентов
для ККМ-контроллера

Для корректной работы микросхем ККМ-контроллеров, стабильной работы прибора и его соответствия требованиям стандартов необходимо выбрать подходящий режим работы.

Как правило, для мощностей меньше 200 Вт ККМ-контроллеры L6562A/3S/3H/4 включаются в режиме TM. Для приборов, оперирующих мощностями более 200 Вт, применяется микросхема L4981 (ее режим работы CCM). Возможно также применение серий L6562A/3S/3H/4 в режимах Fixed-Off-Time или Reeple-Steering.

Силовой MOSFET-ключ и выпрямительный диод для силовой части корректора мощности или источника питания можно легко выбрать из продукции STMicroelectronics.

Для устройств малой мощности (до 100 Вт) подходят силовые ключи семейства SuperMesh3, например, серии STx10N62K3. Для средней мощности (100…1000 Вт) — семейство MDMesh2 серии STx25NM50M. И для мощных источников, работающих с мощностями более 1 кВт — семейство MDMesh5 серии STP42N65M5.

Заключение

Несмотря на сравнительно небольшой по количеству серий ассортимент предлагаемых ККМ-контроллеров, продукция STMicroelectronics, благодаря ряду удачных схемотехнических решений и разнообразию возможных режимов работы, перекрывает практически весь спектр приложений импульсных преобразователей энергии — повышающие/понижающие блоки питания, драйверы светодиодных светильников, корректоры коэффициента мощности.

Кроме того, для всего спектра приложений осуществляется информационная и техническая поддержка разработчика — от рекомендаций по применению и программ для расчета блоков и узлов до отладочных и демонстрационных плат.

Получение технической информации, заказ образцов, поставка — e-mail:

О компании ST Microelectronics

Проблемы отбора мощности классическим выпрямителем

Основной проблемой классического выпрямителя с накопительным конденсатором, работающего от синусоидального или другого непрямоугольного напряжения, является тот факт, что отбор энергии от сети происходит только в те моменты времени, когда напряжение в ней больше, чем напряжение на накопительном конденсаторе. Действительно, конденсатор может заряжаться только если к нему приложено напряжение, большее чем то, до которого он уже заряжен.

Причем в те моменты, когда напряжение сети становится больше напряжения конденсатора, ток зарядки очень велик, а все остальное время он нулевой. Получается, что, например, для синусоидального напряжения питания, наблюдаются всплески тока при достижении напряжением амплитудных значений. Если Ваше устройство потребляет небольшую мощность, то это можно стерпеть. Но для нагрузки, скажем, 1 кВт 220В всплески тока могут достигать 100 А. Что совершенно неприемлемо.

Вашему вниманию подборки материалов:

R7 - 10 Ом.

R6 - 0.1 Ом.

R4 - 300 кОм, R5 - 30 кОм.

R3 - 100 кОм, C4 - 1 нФ. Эти элементы задают частоту работы ШИМ контроллера. Подбираем их так, чтобы частота составила 30 кГц.

C3 - 0.05 мкФ. Это частотная коррекция цепи обратной связи. Если выходное напряжение начинает пульсировать или недостаточно быстро устанавливается при изменении тока нагрузки, то эту емкость надо подобрать.

VD2 - HER208.

C1 - 1000 мкФ. C2 - 4700 мкФ.

VD1 - Стабилитрон 15 В. R1 - 300 кОм 0.5 Вт.

VT1 - Высоковольтный транзистор на 400 вольт. Это схема запуска, через этот транзистор ток идет только в начале работы. После появления ЭДС на обмотке L2, транзистор закрывается. Так что рассеиваемая мощность на этом транзисторе невелика.

D2 - интегральный стабилизатор напряжения (КРЕН) на 12В.

D1 - Интегральный ШИМ контроллер. Подойдет 1156ЕУ3 или его импортный аналог UC3823 .

Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резистор R6, исключить резисторы R4 и R5, подвесить (никуда не подключать) ножку 11. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.

L1 - дроссель 2 мГн, рассчитанный на ток 3 А. Можно намотать на сердечнике Ш16х20 четырьмя проводами 0.5 мм, сложенными вместе, 130 витков, зазор 3 мм. L2 - 8 витков провода 0.2 мм.

Выходное напряжение формируется на конденсаторе C5.

Комментарий: В параметрах дросселя была ошибка, на которую нам указали читатели. Теперь она исправлена. Кроме того, для повышения стабильности работы схемы может быть полезно ограничить максимальное время открытия силового полевого транзистора. Для этого устанавливаем подстроечный резистор между 16 ножкой микросхемы и минусовым проводом питания, а движок соединяем с ножкой 8. (Как, например, на этой схеме .) Подстраивая этот резистор, можно регулировать максимальную скважность импульсов от ШИМ-контроллера.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Здравствуйте! Можно ли обмотку l2 дополнительно использовать для питания: драйв еров ir2101 и гальванически связанного с ними контроллера инвертора трехфазного асинхронного двигателя. Питание драйверов верхних ключей бутстрепное. С уважением, Борис
Схема импульсного блока питания. Расчет на разные напряжения и токи....

Полумостовой импульсный стабилизированный преобразователь напряжения, ...
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание...

ШИМ, PWM контроллер. Усилитель ошибки. Частота. Инвертирующий, неинвер...
ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты....

устройство для резервного, аварийного, запасного питания котла, циркул...
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр...

Режим непрерывного / прерывного (прерывистого) тока через катушку инду...
Сравнение режимов непрерывного и прерывного тока. Онлайн расчет для повышающей, ...


Понижение напряжения постоянного тока. Как работает понижающий преобразователь н...

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение...
Составной транзистор - схемы, применение, расчет параметров. Схемы Дарлингтона, ...


И.П. Сидоров Ю.А.

внимание. Высокое напряжение, опасно для жизни.

Внимание при реализации приведенной схемы корректора коэффициента мощности необходимо иметь опыт работы с опасными для жизни напряжениями и соблюдать предельную осторожность.

в схеме действует опасное для жизни напряжение 400 вольт

В случае допущения ошибок при сборке, напряжение в схеме может достигать 1000 и более вольт.

В момент включения и проверки собранной схемы необходимо пользоваться защитными очками.


Принципиальная электрическая схема (исправленная) корректора коэффициента мощности показана на рис. 1.


рис. 1. корректор коэффициента мощности - схема. открыть в большом размере
Предыдущая схема - открыть в большом размере


На схеме цветными блоками отмечены функциональные узлы:
  • Коричневый - фильтр помех;
  • Синий - модуль мягкого старта (soft-start);
  • Красный - внутренний источник питания;
  • Зеленый - корректор коэффициента мощности;
  • Голубой - модуль контроля рабочих параметров;
  • Желтый - модуль включения вентилятора принудительного охлаждения.

На исправленном варианте схемы отмечено (доступно и в большом размере):
красный прямоугольником - новые элементы схемы;
зеленым овалом - новые точки подключения конденсаторов C3 и С4.

Фильтр помех защищает питающую сеть от помех генерируемых при коммутации ключевых транзисторов. Также фильтр защищает схему от помех питающей сети и всплесков напряжения в сети.

Модуль мягкого старта ограничивает потребления тока из питающеё сети в момент первичной зарядки выходных электролитических конденсаторов. Этот модуль генерирует инвертированный сигнал KKM_SUCCESS. При появление сигнала (так как сигнал инвертированный - момент при котором напряжение упадет ниже 1В) можно включить нагрузку подключенную к выходу корректора коэффициента мощности. В случае игнорирования этого сигнала некоторые элементы схемы могут выйти из строя.

Внутренний источник питания генерирует постоянное напряжение 15В (допустимы отклонения +/-2В). Это напряжение используется для питания внутренних схем ККМ.

Корректор коэффициента мощности - основная часть схемы. ККМ выполнен на контроллере ir1155s, рабочая частота в данной схеме 160кГц (допустимы отклонения +/-5кГц). Для усиления токов управления коммутирующих транзисторов используется одноканальный драйвер tc4420, драйвер обеспечивает силу тока управляющих сигналов до 6А.

Модуль контроля рабочих параметров контролирует уровень пониженного питающего напряжения; рабочую температуру ККМ, момент достижения номинального напряжения на выходе ККМ

Модуль включения вентилятора принудительного охлаждения выполняет включение вентиляторов при появлении соответствующего сигнала.


Таблицы номиналов элементов схемы ККМ .

При сборке корректора коэффициента мощности необходимо использовать только оригинальные комплектующие. В случае использования неоригинальных комплектующих (контрафактных, поддельных и прочее), ККМ работать не будет или будет работать не верно и пр.

Этап 1. необходимо выполнить монтаж всех элементов за исключением:
R3 - варистор;
L3 - дроссель ККМ
C25.2-C25.4 - выходные электролитические конденсаторы, установить только один.

Монтажная плата спроектирована с учетом установки в корпус из радиаторного профиля. В этом случае стенки корпуса для элементов D1, D9, Q5, Q6 выполняют роль теплоотвода, а отведение тепла от дросселя L3 будет затруднено. Температура дросселя, в этом случае, служит индикатором нагрева всего устройства и поэтому терморезистор R40 устанавливается под дросселем.

В случае использования корпуса конструкции в которой роль теплоотвода для элементов D1, D9, Q5, Q6 будет использоваться радиатор - терморезистор R40 необходимо установить на поверхность радиатора. Необходимо обеспечить электроизоляцию корпуса радиатора и терморезистора.

Затем монтажную плату необходимо очистить от остатков флюса и других загрязнений.

Монтажная плата после этого этапа сборки будет выглядеть следующим образом


рис. 2. Верхняя часть монтажной платы ККМ.

На этой монтажной плате терморезистор и отводящий провод помещены в термоусадочную изоляцию. Так как терморезистор будет прикреплен к радиатору механическим способом, для повышения прочности электроизоляции он помещен в дополнительную термоусадочную изоляцию.


рис. 3. Нижняя часть монтажной платы ККМ.

К плате ККМ нужно подключить вентилятор 12В ток не более 0,2А.


ВНИМАНИЕ!!! В устройстве действует опасное для жизни напряжение 400 вольт.


Плату ККМ необходимо подключить к регулируемому источнику переменного напряжения 220В 50 Гц с ограничением силы тока 0,05 А.

После подачи питания, светодиод D8 должен светиться, напряжение на стабилитроне D5 должно быть в пределах 14-17 вольт. В случае отсутствия напряжения, необходимо проверить напряжение на конденсаторе С12 оно должно быть около 310 вольт. Если напряжение присутствует это означает неработоспособность дежурного источника питания. Частой причиной его неработоспособности является неверная сборка импульсного трансформатора T1.

Напряжение на выводе 4 микросхемы U1 (ir1155s) должно быть около 3,62 В, напряжение на выводе 6 около 3,75 В.

С помощью осциллографа необходимо проверить работу модуля ККМ. Для этого щуп осциллографа нужно подключить к выводу 6 или 7 микросхемы U3 (tc4420). Импульсы на выводе должны соответствовать следующему изображению.


рис. 4. График сигналов на выходе микросхемы драйвера tc4420.

Частота импульсов должна быть 160кГц (+/- 5кГц). Частота импульсов задается конденсатором С10. Увеличение емкости приводит к уменьшению частоты.

Амплитуда сигналов на выводах SG силовых транзисторов будет немного ниже, чем на выводе их драйвера (рис. 5).


рис. 5. График сигналов на выходах SG силовых транзисторов.

При этом график сигнала на резисторах Rg (R17, R18) будет следующим (рис. 6).


рис. 6. График сигнала на резисторах Rg (R17, R18).

Далее, контролируя сигналы на выводе драйвера, необходимо плавно уменьшать напряжение. При входном напряжении 150-155 вольт, генерация импульсов должна прекратиться. После прекращения генерации импульсов, входное напряжение необходимо плавно увеличивать, при входном напряжении 160-165 вольт, генерация импульсов должна возобновиться.

Продолжая плавно увеличивать напряжение, при достижении 270-280 вольт (АС) должны сработать реле (определить можно по их характерному звуку). Напряжение сигнала KKM_SUCCESS должно быть не более 1 вольта. Затем напряжение необходимо плавно уменьшать, при снижении напряжения до 250-260 вольт, реле должны выключиться, сигнал на выходе KKM_SUCCESS должен быть более 5 вольт.

Используя термофен, необходимо нагреть терморезистор, при достижении температуры 45-50 С° должен включиться вентилятор, при достижении температуры 75-85 С° генерация импульсов должна прекратиться. Во время остывания терморезистора последовательно должны возобновиться генерация импульсов и выключиться вентилятор.

Отключите питание.


ВНИМАНИЕ!!! после отключения питания в схеме некоторое время (несколько минут) будет сохраняться опасное для жизни напряжение.


Этап 3. Необходимо установить оставшиеся элементы схемы: R3, L3, C25.2-C25.4 и теплотвод для элементов D1, D9, Q5, Q6. На теплоотвод необходимо установить терморезистор обеспечив низкое тепловое сопротивление между ними. Также необходимо обеспечить низкое тепловое сопротивление между D1, D9, Q5, Q6 и радиатором. В случае затрудненной передачи тепла к радиатору эти элементы выйдут из строя.

Качество установки радиатора, с точки зрения теплоотведения, удобно проконтролировать с помощью тепловизора.

Теплоотвод нужно соединить с шиной Earth (на монтажной плате рядом с Y конденсаторами имеются необходимые для этого монтажные отверстия).

Крайне важно проверить электроизоляцию между шинами Earth и N или L (шины N-L используются для подачи электропитания). Напряжение пробоя электроизоляции должно быть не менее 1000 Вольт. Проверять напряжение пробоя изоляции свыше 1000 Вольт не следут. Эту процедуру можно выполнить с помощью специального прибора - тестера электроизоляции.

ВНИМАНИЕ!!!. В случае нарушения проверяемой электроизояции, при проверке некоторые элементы схемы могут выйти из строя.


Пример сборки корректора коэффициента мощности показан на следующих изображениях.



Этап 4. Подключите ККМ к питающий сети ограничив потребляемую силу тока 10А. После включения напряжение на выходе ККМ должно быть около 385-400 В. Также должен быть слышен звук включения реле. Подключите к выходу ККМ резистивную нагрузку 300 Ом. Напряжение на выходе ККМ должно остаться в техже пределах. PF должен быть не ниже 0,7.

Подключите ККМ к питающей сети без ограничителя тока. Увеличивая нагрузку до 2000 ватт PF должен также возрастать до значения не ниже 0,95. График PF в зависимости от нагрузки показан на рис. 7.


рис. 7. График зависимости PF от нагрузки.

Если значение PF не увеличивается до значения 0,95 при увеличении нагрузки это свидетельствует о некорректной работе ККМ. Вероятными причинами такой некорректной могут быть: резистивный датчик тока, дроссель, ошибки при изготовлении монтажной платы, контрафактные элементы D9, Q5, Q6, С18.1, C18.2, внутренний источник питания недостаточной мощности.


Осциллограммы потребляемых токов и выходных пульсаций.

В ходе нагрузочных тестов был определен КПД (рис. 8). Если принять во внимание погрешность измерительных приборов, вероятно, реальный КПД будет на 1-2% ниже. КПД был измерен при подключении ККМ к питающей сети с помощью двух дополнительных фильтров синфазных помех.


рис. 8. КПД корректора коэффициента мощности.

Данные для обоих графиков были получены при напряжениях питающей сети 200 и 240 вольт.

Этап 5. После всех проверок, разрядный резистор R23 можно удалить. Сборку и проверку ККМ на этом этапе можно считать завершенной.

Вопросы и предложения пишите на адрес электронной почты с пометкой ККМ или PFC.

Содержимое корзины

На рынке персональных компьютеров становится все больше и больше блоков питания со встроенными корректорами мощности. Они выполнены с использованием различных интегральных микросхем, и поэтому имеют разные схемы построения, хотя общие принципы схемотехники (о которых рассказывалось в предыдущей публикации), практически, одинаковы. Поэтому, рассмотрев всего лишь одну микросхему, а именно, UCC3818, мы получим хорошее представление об архитектуре большинства контроллеров коррекции мощности.

Микросхема UCC3818 относится к семейству контроллеров коррекции мощности, к которому принадлежат еще и такие контроллеры, как UCC2817, UCC2818 и UCC3817. Различие между контроллерами этого семейства заключается в разных диапазонах рабочих температур и разных значениях напряжений UVLO (напряжения включения и напряжения выключения микросхемы). Микросхемы семейства являются ШИМ-контроллерами, выполняющими все функции, необходимые для активной коррекции коэффициента мощности. Контроллеры позволяют доводить значения коэффициент мощности почти до единицы путем формирования необходимой формы входного тока, в зависимости от параметров входного переменного напряжения. Контроллеры семейства работают в режиме среднего тока, в результате чего обеспечивается стабильность входного тока и малые искажения синусоидальности сетевого тока.

Контроллеры UCC x817/x818 имеют следующие основные особенности:

- обеспечивают управление повышающим преобразователем;

- ограничивают искажения, вносимые в питающую сеть;

- обеспечивают модуляцию передней кромки импульса тока;

- позволяют работать с любым переменным напряжением, использующимся в любых странах мира;

- обеспечивают защиту от превышения напряжения;

- обеспечивают ограничение потребляемой мощности на заданном уровне;

- работают в режиме среднего тока;

- обеспечивают улучшенное подавление шумов;

- имеют улучшенный алгоритм опережающего управления;

- имеют типовое значение пускового тока, равное 150 мкА;

- созданы с использованием маломощной технологии BiCMOS.

Контролеры семейства разработаны в компании Texas Instrument"s и обладают малым значением пускового тока и низким уровнем потребляемой мощности. В контроллерах используется технология модуляции передней кромки импульса тока, т.е. длительность рабочего цикла регулируется путем изменения времени начала заряда сглаживающего конденсатора (а не временем прекращения зарядного тока). Данная технология позволяет уменьшить величину пульсаций на сглаживающем конденсаторе, устанавливаемом на выходе корректора мощности, что, в итоге, приводит к уменьшению габаритов этого конденсатора, а, следовательно, и к снижению его стоимости и стоимости всей схемы.

Усилитель тока имеет малое входное смещение (2 мВ), что позволяет уменьшать искажения тока в условиях малой нагрузки.

Рис.1 Архитектура ШИМ-контроллера семейства UCC3818

Блок-схема ШИМ-контроллеров UCCx817/x818 представлена на рис.1. Предельные значения основных параметров микросхем представлены в табл.1.

Таблица 1. Предельные значения параметров UCC3818

Параметр

Обознач.

Значение

Питающее напряжение

18 V

Ток потребления

20 mA

Выходной управляющий ток (продолжительный)

I DRVOUT

0.2 A

Выходной управляющий ток

I DRVOUT

1.2 A

CAI , MOUT , SS

Входное напряжение на контакте PKLMT

Входное напряжение на контактах VSENSE , OVP / EN

10 V

Входной ток контактов RT , IAC , PKLMT

10 mA

Максимальное отрицательное напряжение на контактах DRVOUT , PKLMT , MOUT

V NEG

0.5 V

Рассеиваемая мощность

Температура пайки (10 сек)

T SOL

300° C

Контроллеры выпускаются в 16-контактных корпусах типа SOIC, PDIP, TSSOP. Распределение сигналов по контактам микросхемы представлено на рис.2, а в табл.2 дается описание этих сигналов.

Рис.2 Цоколевка микросхемы UCC3818

Таблица 2. Назначение контактов микросхемы UCC3818

Обознач.

Описание

«Земля». Относительного это контакта измеряются все напряжения. Контакты VCC и REF должны подключаться к «земле» через конденсаторы 0.1 мкФ , или через большие керамические конденсаторы.

PKLMT

Вход ограничения пикового тока корректора мощности. Порогом для токового ограничения является уровень . Для формирования смещения сигнала ограничения тока используется внешний резистивный делитель, подключенный с одной стороны к «отрицательному» выводу токового датчика, а с другой стороны, к источнику опорного напряжения VREF . Полученное таким образом смещение соответствует пиковому значению тока. Ограничение тока осуществляется в тот момент, когда напряжение контакта PKLMT становится ниже .

CAOUT

Выход усилителя тока. Это выход операционного усилителя с широкой полосой пропускания, который измеряет величину сетевого тока и формирует команды для широтно-импульсного модулятора корректора мощности. Это позволяет устанавливать необходимого значение рабочего цикла ШИМ. Компенсационные внешние элементы устанавливаются между выходом CAOUT и входом MOUT .

Неинвертирующий вход усилителя тока. Этот вход используется для контроля величины сетевого тока с помощью токового датчика, в качестве которого используется низкоомный резистор. Вход CAI соединен через резистор с той стороной токового датчика, которая подключена к «земле». Величина сетевого тока измеряется по разности потенциалов на контакте CAI и контакте MOUT (именно между двумя этими контактами и включается токовый датчик).

MOUT

Мультиплексированный контакт, являющийся выходом умножителя и одновременно инвертирующим входом усилителя тока. Такая конфигурация позволяет улучшить защиту от помех и позволяет работать в режиме модуляции переднего фронта. Совместно с контактом CAI используется для контроля величины сетевого тока.

Вход аналогового умножителя. На этом входе создается ток, пропорциональный мгновенному значению входного напряжения. Умножитель настроен таким образом, что позволяет отслеживать очень малые изменения входного тока. Рекомендуемое максимальное значение входного тока составляет 500 мкА .

VAOUT

Выход усилителя ошибки по напряжению. Этим операционным усилителем осуществляется регулировка выходного напряжения. Выход усилителя внутренне ограничивается на величине примерно 5.5 В .

Напряжение упреждающего управления. На этот контакт подается сигнал, пропорциональный среднедействующему ( RMS ) значению напряжения. При отсутствии питающей сети на контакте VFF должно устанавливаться напряжение 1.4В .

VREF

Выход опорного напряжения. На этом выходе формируется постоянное стабилизированное напряжение величиной 7.5В . Выходной ток этого контакта может достигать величины 20 мА, что необходимо для питания внешних периферийных цепей. В составе микросхемы имеется внутренняя цепь ограничения тока при коротких замыканиях. Выход VREF запрещен и установлен в , если питающее напряжение Vcc ниже порога UVLO . Между контактом VREF и «землей» должен устанавливаться шунтирующий керамический конденсатор емкостью около 0.1мкФ (или больше) для обеспечения стабильности опорного напряжения.

OVP / EN

Вход внутреннего компаратора, который запрещает работу выходного драйвера микросхемы в случае, если выходное напряжение превышает заданный уровень.

VSENSE

Инвертирующий вход усилителя ошибки по напряжению. Обычно этот вход соединен с компенсационной цепью и с выходом повышающего преобразователя (подключается через делитель).

Контакт для подключения частотозадающего резистора. Внешний резистор, включенный между этим выводом и «землей» задает величину тока для заряда конденсатора, подключенного к контакту CT . Номинал резистора рекомендуется выбирать в диапазоне 10…100 кОм . Номинальное напряжение на данном контакте равно .

Контакт для программирования «мягкого старта». К этому контакту подключается внешний конденсатор. Конденсатор разряжается, если питающее напряжение Vcc становится низким. Если работа «мягкого старта» разрешена, внешний конденсатор начинает заряжаться внутренним источником тока. Напряжение контакта SS используется как сигнал ошибки во время запуска микросхемы, разрешая регулировать ширину выходных импульсов. В случае, когда питающее напряжение Vcc падает, сигнал OVP / EN быстро опускается ниже 1.9В и внешний конденсатор SS быстро разряжается и запрещает функционирование ШИМ.

Контакт для подключения частотозадающего конденсатора. Конденсатор, задающий частоту ШИМ, включается между этим контактом и «землей». Этот конденсатор должен располагаться как можно ближе к «земле».

Положительное питающее напряжение. Для нормального функционирования, этот вход должен быть подключен к стабилизированному источнику, формирующему выходной ток величиной, как минимум, 20 мА и напряжение величиной 10…17 В . К контакту Vcc напрямую должен быть подключен шунтирующий конденсатор для поглощения импульсов тока, необходимых для заряда емкости затвора внешнего MOSFET -транзистора. Чтобы предотвратить формирование выходных импульсов неправильной формы на контакте DRVOUT , выходной драйвер контроллера должен быть заблокирован до тех пор, пока напряжение на контакте Vcc превышает верхний порог UVLO и находится ниже нижнего порога UVLO .

DRVOUT

Выходной сигнал, управляющий внешним силовым ключом, в качестве которого используется полевой транзистор, т.е.на выходе формируются сигналы управления затвором полевого транзистора. Выход представляет собой тотемный выход, построенный на MOSFET -транзисторах. Между выходом DRVOUT и затвором внешнего полевого транзистора должен устанавливаться последовательный токоограничивающий резистор, который обеспечивает согласование между выходным сопротивлением микросхемы и сопротивлением затвора. Резистор позволяет избежать перегрузки выхода DRVOUT .

Рассмотрим практический вариант применения микросхемы UCC3818 в составе блока питания HPC 360-302. В этом блоке питания используется активный высокочастотный корректор мощности, устанавливаемый сразу же после диодного моста (рис.3). Входом схемы корректора мощности являются точки, обозначенные BD+ («плюс» диодного моста) и BD- («минус» диодного моста). Таким образом, на вход корректора мощности подается напряжение величиной примерно 300В. Выходом корректора мощности является напряжение Vo величиной около 400В (относительно точки GND).

Рис.3 Положение корректора мощности в блоке питания HPC 360-302

Принципиальная схема корректора мощности блока питания HPC 360-302 представлена на рис.4.

Рис.4 Принципиальная схема корректора мощности блока питания HPC 360-302

Питающее напряжение Vcc для контроллера UCC3818 формируется интегральным стабилизатором на напряжение +12В типа 7812 (IC1). На вход этого стабилизатора подается постоянное нестабилизированное напряжение величиной 15...20 В. Это напряжение формируется дежурным преобразователем блока питания. Для его формирования задействована дополнительная обмотка импульсного трансформатора дежурного преобразователя (рис.5). Импульсы, генерируемые в этой обмотке, выпрямляются диодом D8 и сглаживаются конденсатором С10. Ограничение полученного напряжения осуществляется стабилитроном ZD1. Таким образом, контроллер UCC3818 запускается сразу же, как только блок питания включается в сеть, и начинает работать дежурный преобразователь.

Рис.5 Формирование питающего напряжения для UCC3818 в корректоре мощности блока питания HPC 360-302

Включение UCC3818 происходит в момент, когда напряжение Vcc на конт.15 превышает значение 10.2 В.

При включении контроллера на конт.9 появляется опорное напряжение VREF величиной 7.5В, на конт.14 (CT) появляется пилообразное напряжение внутреннего частотозадающего генератора, а на выходе – на конт.16 (DRVOUT) появляются прямоугольные импульсы. Выходные импульсы контроллера управляют внешним силовым ключом, который в данной схеме образован двумя параллельно включенными полевыми транзисторами QF1 и QF2. параллельное включение двух транзисторов позволяет увеличить мощность схемы.

Переключение транзисторов QF1 и QF2 приводит к созданию импульсного тока в дросселе L1. Этот дроссель является, пожалуй «главным» элементом всей схемы. Импульсы, наводимые в дросселе, имеют амплитуду, значительно превышающую 300В. Эти импульсы выпрямляются диодом D7, в результате чего создается напряжение постоянного тока величиной около 400В.

Функцию токового датчика в схеме выполняют два параллельно включенных резистора большой мощности R14/R14A. Падение напряжения на этих резисторах пропорционально току, потребляемому схемой из сети. Это падение напряжения оценивается контроллером через входные контакты CAI (конт.4) и MOUT (конт.5). Кроме того, превышение током предельного значения отслеживается через конт.2 (PKLMT). Чем больше величина потребляемого тока, тем меньше напряжение на конт.2.

Выходное напряжение корректора мощности обозначено на схеме Vo. Величина этого напряжения контролируется микросхемой UCC3813 через входы VSENSE (конт.11) и OVP/EN (конт.10). Выходное напряжение подается на эти контакты через резистивный делитель, в который входят резисторы R2/R3/R4/R5/R19. Компенсационная цепь усилителя ошибки по напряжения состоит из элементов C7/C15/R7 и включена между конт.11 (VSENSE) и конт.7 (VAOUT).

Длительность периода «мягкого старта», в течение которого длительность выходных импульсов контроллера плавно нарастает в момент его включения, задается конденсатором С4, подключенным к конт.13 (SS).

Включение в сеть переменного тока нелинейных нагрузок, например, светильников с газоразрядными лампами, управляемых электродвигателей, импульсных источников питания приводит к тому, что потребляемый этими устройствами ток имеет импульсный характер с большим процентом содержания высоких гармоник. Из-за этого могут возникать проблемы электромагнитной совместимости при работе различного оборудования. Также это приводит к снижению активной мощности сети.

В целях предотвращения подобного негативного воздействия на питающие сети в Европе и США действует стандарт МЭК IEC 1000-3-2 , определяющий нормы по гармоническим составляющим потребляемого тока и коэффициенту мощности для систем электропитания мощностью более 50 Вт и всех типов осветительного оборудования. Начиная с 80-х годов прошлого века и по сей день, эти нормы последовательно ужесточаются, что вызвало необходимость принятия специальных мер и подтолкнуло разработчиков оборудования к разработке различных вариантов схем, обеспечивающих повышение коэффициента мощности.

Начиная с 80-х годов прошлого столетия, в вышеупомянутых странах начали активно разрабатываться и использоваться микросхемы, на базе которых можно легко создать простые корректоры коэффициента мощности для выпрямительных устройств и электронных балластов.

В Советском Союзе, а позднее и в Российской Федерации, подобных ограничений для потребителей электроэнергии не вводилось. По этой причине вопросам повышения коэффициента мощности не уделялось достаточного внимания в технической литературе. В последние годы ситуация несколько изменилась, во многом благодаря наличию импортных электронных компонентов, применение которых позволяет создавать схемы активных корректоров, надежных в работе и недорогих по стоимости.

Мощность искажения и обобщенный коэффициент мощности

Негативное влияние на питающую сеть определяется двумя составляющими: искажение формы тока питающей сети и потребление реактивной мощности. Степень влияния потребителя на питающую сеть зависит от его мощности.

Искажение формы тока обусловлено тем, что ток на входе вентильного преобразователя несинусоидальный (рисунок 1). Несинусоидальные токи создают на внутреннем сопротивлении питающей сети несинусоидальные падения напряжения, вызывая искажения формы питающего напряжения. Несинусоидальные напряжения сети раскладываются в ряд Фурье на нечетные синусоидальные составляющие высших гармоник. Первая - основная (та, которая должна быть в идеале), третья, пятая и т.д. Высшие гармоники оказывают крайне негативное влияние на многих потребителей, заставляя их применять специальные (зачастую весьма дорогостоящие) меры по их нейтрализации.

Рис. 1.

Потребление реактивной мощности приводит к отставанию тока от напряжения на угол (рисунок 2). Реактивную мощность потребляют выпрямители, использующие однооперационные тиристоры, задерживающие момент включения относительно точки естественной коммутации, что вызывает отставание тока от напряжения. Но еще больше реактивной мощности потребляют асинхронные электродвигатели, имеющие преимущественно индуктивный характер нагрузки. Это влечет колоссальные потери полезной мощности, за которую, к тому же, никто не хочет платить - бытовые электросчетчики считают только активную мощность.

Рис. 2.

Для описания воздействия преобразователя на питающую сеть введено понятие полной мощности:

, где:

- эффективное значение первичного напряжения,

- эффективное значение первичного тока,

, - эффективные значения напряжения и тока первичной гармоники,

Эффективные значения напряжений и тока высших гармоник.

Если первичное напряжение синусоидальное - , тогда:

,

,

ϕ 1 - угол сдвига фаз между синусоидальным напряжением и первой гармоникой тока.

N - мощность искажения, вызванная протеканием в сети токов высших гармоник. Средняя за период мощность, обусловленная этими гармониками равна нулю, т.к. частоты гармоник и первичного напряжения не совпадают.

Высшие гармоники токов вызывают помехи в чувствительном оборудовании и дополнительные потери от вихревых токов в сетевых трансформаторах.

Для вентильных преобразователей вводится понятие коэффициента мощности χ, характеризующее эффект реактивной мощности и мощности искажений:

,

- коэффициент искажения первичного тока.

Таким образом, очевидно, что коэффициент мощности зависит от угла запаздывания тока относительно напряжения и величины высших гармоник тока.

Методы повышения коэффициента мощности

Существует несколько способов уменьшения негативного влияния преобразователя на питающую сеть. Вот некоторые из них:

    Использование многоступенчатого фазового управления (рисунок 3).

Рис. 3.

Применение выпрямителя с отводами от трансформатора приводит к увеличению числа пульсаций за период. Чем больше ответвлений от трансформатора, тем больше число пульсаций за период, тем ближе форма входного тока к синусоидальной. Существенным недостатком этого метода является высокая стоимость и габариты трансформатора с достаточным количеством ответвлений (для достижения эффекта их должно быть больше, чем на рисунке). Изготовление моточного элемента такой сложности - весьма непростая задача, плохо поддающаяся автоматизации - отсюда и цена. А если разрабатываемый источник вторичного электропитания мелкосерийный, то такой способ однозначно неприемлем.

Рис. 4.

    Увеличения фазности выпрямителя. Метод приводит к увеличению числа пульсаций за период. Недостатком метода является очень сложная конструкция трансформатора, дорогой и громоздкий выпрямитель. Кроме того, не у всех потребителей имеется трехфазная сеть.

    Использование корректоров коэффициента мощности (ККМ) . Существуют электронные и неэлектронные ККМ. В качестве неэлектронных ККМ широко применяются электромагнитные компенсаторы реактивной мощности - синхронные двигатели, вырабатывающие в сеть реактивную мощность. Очевидно, в силу понятных причин, такие системы непригодны для бытового потребителя. Электронные ККМ - система схемотехнических решений, призванная увеличить коэффициент мощности - является, пожалуй, самым оптимальным решением для бытового потребления.

Принцип работы ККМ

Основная задача ККМ - сведение к нулю отставания потребляемого тока от напряжения в сети при сохранении синусоидальной формы тока. Для этого необходимо отбирать от сети ток не короткими интервалами, а на всем периоде работы. Мощность, отбираемая от источника, должна оставаться постоянной даже в случае изменения напряжения сети. Это значит, что при снижении напряжения сети ток нагрузки должен быть увеличен, и наоборот. Для этих целей пригодны преобразователи с индуктивным накопителем и передачей энергии на обратном ходу.

Методы коррекции можно условно разделить на низкочастотные и высокочастотные. Если частота работы корректора намного выше частоты питающей сети - это высокочастотный корректор, в противном случае - низкочастотный.

Рассмотрим принцип работы типового корректора мощности (рисунок 5). На положительной полуволне, в момент перехода сетевого напряжения через ноль, открывается транзистор VT1, ток протекает по цепи L1-VD3-VD8. После запирания транзистора VT1, дроссель начинает отдавать накопленную в нем энергию, через диоды VD1 и VD6 в фильтрующий конденсатор и нагрузку. При отрицательной полуволне процесс имеет аналогичный характер, только работают другие пары диодов. В результате применения такого корректора ток потребления имеет псевдосинусоидальный характер, а коэффициент мощности достигает значения 0,96…0,98. Недостатком такой схемы являются большие габариты, обусловленные применением низкочастотного дросселя.

Рис. 5.

Повышение частоты работы ККМ позволяет сократить габариты фильтра (рисунок 6). При открытом силовом ключе VT1 ток в дросселе L1 линейно нарастает - при этом диод VD5 заперт, а конденсатор С1 разряжается на нагрузку.

Рис. 6.

Затем транзистор запирается, напряжение на дросселе L1 отпирает диод VD5 и дроссель отдает накопленную энергию конденсатору, одновременно питая нагрузку (рисунок 7). В простейшем случае схема работает с постоянным рабочим циклом. Существуют способы увеличения эффективности коррекции путем динамического изменения рабочего цикла (т.е. путем согласования цикла с огибающей напряжения сетевого выпрямителя).

Рис. 7. Формы напряжений и токов высокочастотного ККМ: а) с переменной частотой коммутации, б) с постоянной частотой коммутации

Микросхемы для построения высокоэффективных корректоров от STMicroelectronics

Учитывая возможности современной электронной индустрии, высокочастотные ККМ являются оптимальным выбором. Интегральное исполнение всего корректора мощности или его управляющей части стало, по сути, стандартом. В настоящее время существует большее многообразие микросхем управления для построения схем ККМ, выпускаемых различными производителями. Среди всего этого многообразия стоит обратить внимание на микросхемы L6561/2/3, выпускаемые компанией STMicroelectronics (www.st.com).

L6561, L6562 и L6563 - серия микросхем, специально спроектированных инженерами компании STMicroelectronics для построения высокоэффективных корректоров коэффициента мощности (табл. 1).

Таблица 1. Микросхемы корректоров коэффициента мощности

Наименование Напряжение
питания, В
Ток
включения, мкА
Ток потребления в активном режиме, мА Ток потребления в ждущем режиме, мА Выходной ток смещения, мкА Время нарастания тока силового ключа, нс Время спада тока силового ключа, нс
L6561 11…18 50 4 2,6 -1 40 40
L6562 10,3…22 40 3,5 2,5 -1 40 30
L6563 10,3…22 50 3,8 3 -1 40 30

На основе L6561/2/3 можно построить недорогой, но эффективный корректор (рисунок 8). За счет встроенной системы упреждающего управления, разработчикам удалось достигнуть обеспечения высокой точности регулирования выходного напряжения (1,5%), контролируемого встроенным усилителем рассогласования.

Рис. 8.

Предусмотрена возможность взаимодействия с DC/DC-преобразователем, подключаемым к корректору. Это взаимодействие состоит в отключении преобразователя микросхемой (если он поддерживает такую возможность) при возникновении неблагоприятных внешних условий (перегрев, перенапряжение). С другой стороны, преобразователь тоже может инициировать включение и выключение микросхемы. Встроенный драйвер позволяет управлять мощными MOSFET- или IGBT-транзисторами. Согласно утверждению производителя, на основе LP6561/2/3 можно реализовать источник питания, мощностью до 300 Вт.

В отличие от аналогов других производителей, LP6561/2/3 снабжены специальными цепями, понижающими проводимость искажений входного тока, возникающих при достижении входным напряжением нулевого значения. Основная причина этих помех - «мертвая зона», возникающая при работе диодного моста, когда все четыре диода оказываются закрытыми. Пара диодов, работающих на положительную полуволну, оказываются закрытыми из-за смены полярности питающего напряжения, а другая пара еще не успела открыться из-за собственной барьерной емкости. Этот эффект усиливается при наличии фильтрующего конденсатора, расположенного за диодным мостом, который, при смене полярности питания, сохраняет некоторое остаточное напряжение, не позволяющее диодам вовремя открываться. Таким образом, очевидно, что ток в эти моменты не протекает, его форма искажается. Применение новых контроллеров ККМ позволяет в значительной степени сократить время «мертвой зоны», уменьшая тем самым искажения.

В некоторых случаях было бы очень удобно контролировать выходное напряжение, поступающее на DC/DC-преобразователь при помощи ККМ. L6561/2/3 позволяют осуществлять такой контроль, получивший название «tracking boost control». Для этого достаточно установить резистор между выводом TBO и GND.

Стоит отметить, что все три микросхемы совместимы друг с другом по выводам. Это может значительно упростить разработку печатной платы устройства.

Итак, можно выделить следующие особенности микросхем L6561/2/3:

    настраиваемая защита от перенапряжения;

    сверхнизкий ток запуска (менее 50 мкА);

    низкий ток покоя (менее 3 мА);

    широкий предел входных напряжений;

    встроенный фильтр, повышающий чувствительность;

    возможность отключения от нагрузки;

    возможность управления выходным напряжением;

    возможность взаимодействия непосредственно с преобразователем.

Заключение

В настоящее время существуют строгие требования к соблюдению мер безопасности и экономичности современных электронных устройств. В частности, при разработке современных импульсных источников питания необходимо учитывать официально принятые стандарты. IEC 1000-3-2 является стандартом для любого мощного импульсного источника питания, поскольку определяет нормы по гармоническим составляющим потребляемого тока и коэффициенту мощности для систем электропитания, мощностью более 50 Вт и всех типов осветительного оборудования. Наличие корректора коэффициента мощности помогает удовлетворению требований этого стандарта, т.е. его наличие в мощном источнике питания является простой необходимостью. L6561/2/3 - оптимальный выбор для построения эффективного и одновременно недорогого корректора коэффициента мощности.

Получение технической информации, заказ образцов, поставка — e-mail:

О компании ST Microelectronics
Статьи по теме: