Эффект вытеснения тока в проводнике. Скин-эффект и его применение

Проникая в глубину проводника, амплитуда в электромагнитных волнах постепенно уменьшается. Это и есть скин-эффект, который носит другое название поверхностного эффекта. Например, если ток, имеющий высокую частоту, протекает по проводнику, то его распределение происходит не по всему сечению, а, в основном, в поверхностных слоях.

Принцип действия скин-эффекта

Это действие следует рассматривать на примере относительно длинного цилиндрического проводника, на который оказывает воздействие переменное напряжение, имеющее определенную частоту с изменением по времени.

Если взять постоянное напряжение, частота которого равна нулю, то в этом случае распределение электрического тока будет по всему сечению проводника. Это связано с тем, что напряженность постоянного тока будет одинаковой в каждой точке сечения проводника. Силовые линии магнитного поля, создаваемого током, образуются в виде концентрических окружностей, центр которых совпадает с осью проводника. Таким образом, постоянный ток распределяется по сечению вне зависимости от действия магнитного поля.

В случае с переменным током в проводнике, происходит его изменение во времени с одновременным изменением магнитного поля. При изменении потока магнитного поля наблюдается появление электродвижущей силы. Именно эта ЭДС вытесняет электрический к поверхности проводника с помощью магнитного поля. При очень высоких частотах весь ток будет протекать только по тонкому слою наружной части проводника.

Свойства скин-эффекта

Скин-эффект связан не только с высокочастотными токами, которые изменяются во времени. Это связано с любым временным изменением токов. Возникновение скин-эффекта может наблюдаться при непосредственном подключении проводника к постоянному напряжению. Именно в этот момент появляется ЭДС индукции большого значения, компенсирующая действие внешнего электрического поля на оси. Окончание этого процесса отмечается во время равномерного распределения тока в проводнике по всему сечению.

При очень быстром изменении тока, водится специальное время, в течение которого ток и магнитное поле проникают в глубину проводника. Эта величина носит наименование скин-нового времени. При этом, следует учитывать и тот фактор, что с уменьшением удельного сопротивления проводника, увеличивается время проникновения в него тока и магнитного поля.

В случае использования сверхпроводников, скин-время, теоретически, будет иметь бесконечно большое значение, магнитного поля не наблюдается, а протекание тока происходит исключительно по поверхности.

1. Поверхностный эффект ……………………………………………………..2

2. Электрический поверхностный эффект на примере шины прямоугольного сечения …………………………………………………….3

3. Расчёт комплексного сопротивления шины ……………………………...9

4. Магнитный поверхностный эффект ………………………………………11

5. Расчёт комплексной мощности в листе, обтекаемом синусоидальным магнитным потоком …………………………………...15

6. Анализ выражений для удельной комплексной мощности ……………17

7. Приближённые способы расчёта комплексной мощности в стальном листе, обтекаемом магнитным потоком.………………….....18

8. Электрический поверхностный эффект в проводнике круглого сечения …………………………………………………………….21

9. Эффект близости ……………………………………………………………..26

10. Комплексное сопротивление шины при наличии эффекта близости ………………………………………………………………………30

11. Параметры однофазного шинопровода …………………………………33

12. Электромагнитные поля и параметры шин трёхфазного шинопровода ………………………………………………………………..34

13. Расчёт поля в шинах С, В, А ……………………………………………...36

14. Расчёт комплексного сопротивления шины ……………………………38

15. Эквивалентные схемы замещения трёхфазного шинопровода при симметричной системе токов ………………………………………...40

16. Электромагнитное поле в оболочке кабеля …………………………….45

17. Комплексное сопротивление оболочки ………………………………….47

18. Список литературы ………………………………………………………...49

Поверхностный эффект

Экспериментально установлено и теоретически подтверждено, что переменный электрический ток (в том числе и синусоидаль­ный) в отличие от постоянного неравномерно распределяется по сечению токопровода. При этом всегда существует тенденция вы­теснения тока из внутренней части проводника в периферийную, т.е. плотность тока в проводнике возрастает по мере перемещения из глубины к поверхности провода. Это явление называют электрическим поверхностным эффектом. Его можно объяснить следующим образом.

Ранее указывалось, что вектор Пойнтинга имеет нормальную к боковой поверхности проводника составляющую, и это свидетельствует о проникновении в проводник энергии из окружающего про­странства через эту поверхность. Одновременно отмечалось, что электромагнитные волны распространяются в направлении вектора Пойнтинга и в проводящей среде затухают в том же направлении. Но если это так, то в проводнике, обтекаемом током, плотность тока, а также электрическая и магнитная напряженности у поверхности должны быть больше, чем в глубине. Электрическому поверхностному эффекту может быть дано и другое более наглядное объяснение. Если токопровод обтекается синусоидальным током, то его внутренние части сцеплены с большим магнитным потоком по сравнению с периферийными, и поэтому в них в соответствии с законом электромагнитной индукции будут наводиться большие электродвижущие силы, препятствующие изменению тока и находящиеся практически в противофазе с вектором плотности тока. По этой причине можно считать, что во внутренних частях токопровода суммарные электрические напряженности и плотности тока связанные между собой законом Ома () , будут иметь меньшие значения, чем в периферийных.

Если частота тока и параметры таковы, что глубина проникновения волны много меньше поперечного сечения проводника (Δ« d ), то ток в проводнике будет сосредоточен лишь в тонком поверхностном слое, толщина которого практически определяется глубиной проникновения волны. Такой поверхностный эффект называют ярко выраженным. Вытеснение тока приводит к увеличению активного сопротивления токопровода по сравнению с его значением при постоянном токе. Именно по этим причинам в высокочастотных установках индуктор выполняется в виде медной труб­ки, внутри которой для охлаждения пропускается жидкость.

Если глубина проникновения волны соизмерима с габаритными размерами, то проводник называют прозрачным и считают, что по сечению этого проводника ток распределяется практически равномерно.

Если в проводящем ферромагнетике замыкается переменный магнитный поток, то он также вытесняется на поверхность магнитопровода, в поверхностном слое возрастают магнитная индукция и напряженность, а это влечет за собой увеличение плотности вихревого тока и джоулевых потерь.

При магнитном поверхностном эффекте также вводится в рассмотрение глубина проникновения волны, и при условии, что Δ« d , эффект считается ярко выраженным. Явление магнитного поверхностного эффекта широко используется в электротермии, однако в электрических машинах, трансформаторах и других подобных установках проявление этого эффекта крайне нежелательно.

Электрический поверхностный эффект на примере шины прямоугольного сечения

На рис. 1 изображена шина прямоугольного сечения, обтекаемая током I. Поле в шине удовлетворяет уравнению Гельмгольца

Внутри шины существуют электромагнитное поле и ток проводимости. За пределами шины (удельная проводимость (γ=0) ток проводимости (δ=0) отсутствует, но электрическое и магнитное поля существуют. Так как внутреннее и внешнее электромагнитные поля взаимосвязаны, то при решении задачи о расчете поля внутри шины необходимо знать законы распределения поля и за ее пределами.

Таким образом, при строгом подходе нужно решать задачу о расчете поля во всем пространстве - внутри и за пределами шины.

Так как эта задача очень сложна для точного аналитического реше­ния, сформулируем такие условия и допущения, при которых задачу о поверхностном эффекте в шине можно будет решить приближенно с хорошей точностью. Сначала рассмотрим поле в круглом проводе (рис. 2).

Магнитные линии представляют собой концентрические окружности. В данном примере поток, обусловленный током в проводе, разделяется на две составляющие - внутренний и внешний. Это свойство круглого провода используется в инженерной практике при определении внутренней индуктивности провода. Как видно из рис. 3, при квадратном сечении провода такое четкое разграничение потоков сделать нельзя, так как контур сечения уже не является силовой линией.

Определим, какое влияние оказывает геометрия шины (h /2 a ) на распределение поля в ее объеме. Из рис. 4 следует, что по мере увеличения относительных размеров (h /2а) силовые линии внутри шины начинают принимать очертания, приближающиеся к форме внешнего контура шины. Если же отношение h /2 a » 1 (рис. 5), то практически во всем объеме шины вектор магнитной напряженности становится направленным вдоль большей боковой поверхности шины, т. с. в сторону координаты у.

Если теперь пренебречь краевыми эффектами, то для шины при h » 2 a возможно решение задачи в системе координат (х, у, z ) в предпо­ложении, что

,
,

,
.

Рис.4 Рис. 5

Поставим задачу: рассчитать распределе­ние поля Е и Н в объеме прямоугольной шины (рис. ПО) и вычислить ее комплекс­ное сопротивление синусоидальному току, если шина h/2a » 1 обтекается током I с частотой ω .

Рис. 6 Рис. 7

Параметры среды: μ , γ . Приня­тое допущение Ė=Ė x (z ) приводит к урав­нению Гельмгольца (индекс х в дальнейшем опустим) относительно вектора электричес­кой напряженности

, (5.34)

где
.

Решением уравнения (5.34) является совокупность экспоненциальных функций

, (5.35)

. (5-36)

Запишем общее решение для , используя второе уравнение Максвелла
. Поскольку в рассматриваемом случае
, то

. (5.37)

С учётом (5.35)

. (5.38)

Далее отыщем постоянные интегрирования С 1 и С 2 . Поскольку исследуемое поле обладает симметрией
, следовательно, из (5.35) имеем

Очевидно, что последнее равенство справедливо, если С 1 2 =С/2 .

Тогда с учётом условия симметрии выражения (5.35) и (5.38) будут иметь вид соответственно

, (5.39)

. (5.40)

Постоянная интегрирования С пропорциональна заданному в шине току I .

Выделим некоторый участок dS = hdz (рис. 7). Тогда

(5.41)

J n


.

Отсюда находим
. (5.42)

В итоге окончательное решение для Ė имеет вид:

. (5.43)

Подстановка (5.42) в (5.40) с уче­том (5.34) позволяет получить реше­ние для магнитной напряженности:

. (5.44)

Таким образом, (5.43) и (5.44) есть окончательные выражены для электрической и магнитной напряженностей и в объем шины.

Интерес представляет качественный анализ распределения плотности тока в объеме шины (рис.8). В соответствии с законом Ома
для плотности тока в шине имеем

.

Картина распределения δ(z ) , очевидно, будет зависеть от ко­эффициента распространения
.

Если на низких частотах па­раметр а/∆ мал (ра << 1) , то при малом аргументе shpz ≈1 , Shpa pa и тогда

Таким образом при этих условиях ток равномерно распределяется по шине и поверхностный эффект не проявляется. По мере роста частоты картина изменяет­ся, поскольку с ростом па­раметра (ра) увеличивает­ся неравномерность рас­пределения тока по сече­нию шины.

СКИН-ЭФФЕКТ - затухание эл--магн. волн по мере их проникновения в проводящую среду. Переменное во времени электрич. поле Е и связанное с ним магн. поле Н не проникают в глубь проводника, а сосредоточены в осн. в относительно тонком приповерхностном слое толщиной, называемой глубиной скин-слоя. Происхождение С--э. объясняется тем, что под действием внеш. перем. поля в проводнике свободные электроны создают токи, поле к-рых компенсирует внеш. поле в объёме проводника. С--э. проявляется у металлов , в плазме, ионосфере (на коротких волнах), в вырожденных полупроводниках и др. средах с достаточно большой проводимостью.

Глубина скин-слоя существенно зависит от проводимости, частоты эл--магн. поля w, от состояния поверхности. На малых частотах велика, убывает с ростом частоты и для металлов на частотах оптич. диапазона оказывается сравнимой с длиной волны см. Столь малым проникновением эл--магн. поля и почти полным его отражением объясняется металлич. блеск хороших проводников. На ещё больших частотах, превышающих плазменную частоту , в проводниках оказывается возможным распространение эл--магн. волн. Их затухание определяется как внутризонными, так и межзонными электронными переходами (см. Зонная теория ).

Теоретич. описание С--э. сводится к решению кинетич. ур-ния для носителей с целью определения связи тока с полем и последующему решению Максвелла уравнений . Наиб. просто описывается т. н. нормальный С--э., к-рый имеет место, когда велика по сравнению с эфф. l электронов. Величина l определяется расстоянием, проходимым электроном за время между 2 актами рассеяния ( - ) либо за период поля 1/w в зависимости от того, какая из этих длин меньше. В общем случае , где v - скорость электрона.

При нормальном С--э. распределение поля в проводнике зависит лишь от дифференц. проводимости, отличие к-рой от проводимости на пост. токе учитывается (для изотропной среды) соотношением ; оно зависит также от формы поверхности образца. Проводимость связана с диэлектрич. проницаемостью среды соотношением, где - вклад в диэлектрич. проницаемость локализованных электронных состояний (диэлектрич. проницаемость ионной решетки).

Для плоской поверхности образца (плоскость ху )и нормального падения волны (z) распределение поля в проводнике имеет вид

где Е(0) - амплитуда поля на поверхности, , коэф. преломления п и затухания связаны соотношением, где диэлектрич. проницаемость (- диэлектрич. проницаемость решётки) (см. Высокочастотная проводимость ).

Для цилиндрич. провода радиусом r 0 распределение поля выражается через функцию Бесселя:

где Е(r 0) - поле на поверхности, С--э. существенно сказывается на зависимости сопротивления провода от его радиуса. В то время как на пост. токе сопротивление провода R длины L обратно пропорционально площади сечения , на переменном токе в предельном случае, когда ток течёт в очень тонком приповерхностном слое , сопротивление обратно пропорционально длине окружности поперечного сечения

В пределе НЧ, когда можно не учитывать частотную дисперсию, а также пренебречь величиной, глубина скин-слоя:

коэф. преломления:

С повышением частоты в ИК-области для металлов при условии проводимость - плазменная частота электронов. В этом диапазоне и глубина скин-слоя, т. е. не зависит от частоты и выражается через концентрацию электронов и их эфф. массу т, т. к. .В этом же диапазоне коэф. п мал по сравнению с и взаимодействие электронов с поверхностью образца существенно влияет как на п , так и на поглощение энергии, пропорциональное мнимой части е. Сталкиваясь с поверхностью, электроны рассеиваются на статич. неоднородностях и тепловых поверхностных колебаниях (см. Поверхность ).Аномальный С--э. описывает ситуацию при ; он наблюдается в СВЧ-диапазоне в чистых металлах при низких темп-pax. Связь между плотностью тока l и полем Е является здесь нелокальной, т.е. значение тока в нек-рой точке проводника определяется полем в окрестности этой точки с размером ~ l . Задача о распределении поля сводится к интегро-дифференц. ур-нию, решение к-рого даёт, в частности, асимптотич. закон убывания поля Е . Наряду с компонентой, убывающей на расстоянии ~ от поверхности, наблюдается медленное убывание на расстоянии ~l . Выражение для 8 в этом случае иное. Напр., для предельно аномального С--э., т. е. при, глубина скин-слоя

При аномальном С. э. рассеяние электронов на поверхности образца мало сказывается на величине. Здесь существенную роль играют электроны с малыми углами скольжения, для к-рых отражение близко к зеркальному. Заметно влияет на аномальный С--э. пост. магн. поле Н, параллельное поверхности. Электроны, закручиваемые магн. полем, при зеркальном отражении многократно сталкиваются с поверхностью образца и долгое время двигаются в пределах скин-слоя. Это приводит к росту проводимости и уменьшению глубины скин-слоя

где - ларморовский радиус; предполагается. Др. электроны, не сталкивающиеся с поверхностью, возвращаются в скин-слой после каждого оборота вокруг магн. поля, благодаря чему в металлах наблюдается циклотронный резонанс .

Более точный количеств. смысл как при нормальном, так и аномальном С--э. (в отличие от) имеет поверхностный импеданс Z .В НЧ-области нормального С--э.

и уменьшается с темп-рой Т , т. к. растёт. Для предельно аномального С--э.

где параметр В определяется спектром электронов; в изотропном приближении

Лит.: Ландау Л. Д., Л и ф ш и ц к . м., сплошных сред, 2 изд., М., 1982, с. 291-99; Л и ф ш и ц Е. М., Питаевский Л. П., Физическая кинетика, М., 1979, с. 436-49; F а 1 k о v s k у L. A., Transport phenomena at metal surfaces, «Adv. in Phys.», 1983, v. 32, № 5, p. 753; Aбрикосов А. А., Основы теории металлов, М., 1987, с. 105- 117. Л. А. Фальковский ,

Скин-эффект нелинейный . При достаточно высоких значениях напряжённости перем. эл--магн. поля, когда параметры среды, напр. проводимость, начинают зависеть от поля, С--э. становится нелинейным, т. е. толщина скин-слоя также начинает зависеть от интенсивности эл--магн. поля. Наиб. легко нелинейный С--э. реализуется в плазме. Пороговые значения амплитуд электрич. и магн. полей, при к-рых происходит переход С--э. в нелинейный, зависят от параметров среды и частот.

В области НЧ определяющее влияние на проникновение поля оказывает дифференц. проводимость среды. Зависимость её от электрич. поля (т. н. электрическая нелинейность) обусловливается разогревом носителей, аномальным сопротивлением, пробоем среды и т. д. Пороговые амплитуды, при к-рых возникает нелинейность дифференц. электрич. проводимости, могут различаться весьма сильно для разных механизмов нелинейности. Вследствие этого затухание эл--магн. поля может быть не экспоненциальным, а, напр., степенным или к--л. другим в зависимости от вида, т. е. меняется структура скин-слоя. Но характерный масштаб затухания по порядку величины остаётся равным

Значительно большее влияние в этой области частот оказывают магнитные нелинейности, к-рые могут менять С--э. не только количественно, но и качественно. Их действие проявляется при условии , где - частота носителей. В режиме магн. нелинейности С--э. необходимо учитывать тензорный характер сопротивления среды в магн. поле. Зависимость диагональных компонент сопротивления от Н (магнетосопротивление )аналогична влиянию электрич. нелинейностей. Недиагональные компоненты тензора сопротивления (см. Холла эффект )наиб. ярко проявляются в нестационарной задаче о проникновении в плазму постоянного магн. поля, включаемого в нек-рый момент времени t = 0. Тогда глубина проникновения поля в плазму меняется со временем:. В режиме нелинейного С--э. в зависимости от напряжённости магн. поля вместо обычного диффузионного закона проникновения магнитного поля, при к-ром происходит либо быстрое конвективное проникновение поля в плазму со скоростью порядка токовой скорости носителей (т. е.), либо запирание поля на конечной толщине [т. е.]. Существ. роль в этих процессах играет неоднородность среды, а именно, если носители при токовом движении попадают в область более высокой своей концентрации, то реализуется конвективное проникновение, в противоположном случае - запирание.

При наложении на плазму переменного магн. поля может возникать эффект детектирования, состоящий в том, что наряду с формированием скин-слоя у границы плазмы в глубь среды уходит нелинейная волна поля нек-рого фиксиров. направления, зависящего от направления градиента концентрации носителей, а другие направления запираются.

В ИК-области, когда , нелинейные изменения происходят при, когда носителей в скин-слое толщиной с/w р не хватает для переноса тока даже при их движении со скоростью, близкой с . В результате глубина проникновения поля увеличивается (чтобы повысить число носителей) до необходимой для поддержания тока:. В области высоких частот толщина скин-слоя в плазме может как уменьшаться, так и возрастать в зависимости от знака нелинейного вклада в диэлектрич. проницаемость. В отличие от линейного режима, в случае нелинейного С--э. при медленном увеличении напряжённости поля оно, начиная с нек-рой пороговой амплитуды, проникает в глубь плазмы на расстояние, определяемое диссипативным затуханием. (Это происходит при положит. нелинейном вкладе.) В случае достаточно слабой диссипации нелинейное проникновение поля в плазму может носить характер гистерезиса, т. е. зависеть от предыстории процесса. Напр., для плазменного слоя конечной толщины эффективность Т проникновения эл--магн. волны через слой, измеряемая отношением потоков энергии после слоя и перед ним, является неоднозначной ф-цией интенсивности падающей волны l (как схематически показано на рис.).

Зависимость эффективности проникновения Т электромагнитной волны через слой от её интенсивности I .

Применение эффекта

С др. стороны, Скин-эффект находит применение в практике. На Скин-эффекте основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 Гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На Скин-эффект основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка).

Индукционная нагревательная установка, электротермическая установка для нагрева металлических заготовок или деталей с применением индукционного нагрева./

Также на скин-эффекте основано действие взрывомагнитных генераторов (ВМГ), взрывомагнитных генераторов частоты (ВМГЧ) и в частности ударно-волновых излучателей (УВИ).

Глубина слоя проводника, в котором напряженность электрического поля уменьшается в e раз, называется глубиной скин-слоя. Зависимость глубины скин-слоя от частоты для медного проводника приведена в таблице. - волноводы. поверхностном слое.

Формула для расчёта глубины скин-слоя в металле (приближённая)

Здесь е0 = 8,85419*10-12 Ф/м - абсолютная диэлектрическая проницаемость вакуума, с - удельное сопротивление, c - скорость света, мm - относительная магнитная проницаемость (близка к единице для пара- и диамагнетиков - меди, серебра, и т.п.), щ = 2р * f. Все величины выражены в системе СИ.

Более простая формула для расчета

с - удельное сопротивление, мm - относительная магнитная проницаемость, f - частота.

Всем известно - от плазменного шара током не бьет. Хотя напряжение в десятки тысяч вольт проходит через человека… Почему???

Если подать на плазменный шар очень высокое напряжение - более 100KV - разряды начнут выходить из стеклянной колбы. Опять же, эти искры можно «потрогать», только Вы ничего не почувствуете.

Снимем шар с подставки.

И, наконец, отключим саму подставку от катушки Тесла.

Во всех 4 случаях через человека проходит ток в 100-200KV, но почему же он не оказывает никакого действия? Сила тока маленькая? Нет, включив в цепь >катушка Тесла -> провод -> искра -> человек< лампу накаливания (если в ней будет хотя бы один виток волоска - опыт не получится), можно заставить волосок нагреться.

Ответ прост: высокочастотный ток проходит только по поверхности проводника (коже), вызывая лишь нагревание. Но не стоит думать, что разряд от катушки Тесла полностью безопасен по 2 причинам

1) некоторые искры могут иметь низкую частоту

2) в месте входа искры в тело будет ожог.

Для избежания ожогов необходимо держать в руке небольшой металлический НЕ изолированный предмет (например, отвертку, кусочек фольги или провода).

Во время экспериментов была использована 450W катушку Тесла, включенная на средней мощности, чтобы не допустить повреждение WEB камеры, которая вела съемку.

СКИН система представляет собой надёжный и безопасный комплекс, предназначенный для обогрева трубопроводов, имеющих различную длину, при подводной, подземной и надземной прокладке, а также, в зонах, обладающих повышенной взрывоопасностью.

СКИН система является единственно возможным методом обогрева для трубопроводов без сопроводительной сети, длина которых может составлять до 30 тысяч метров;

· система сконструирована с высокими показателями надёжности и прочности;

· СКИН эффект даёт возможность обогревать магистрали любой протяжённости;

· можно применять в зонах повышенной взрывоопасности;

· элементы для нагрева имеют показатель тепловыделения до 120 Ватт на метр;

· СКИН система работает при температуре до 200 градусов;

· имеется разрешение на применение в зонах повышенной взрывоопасности от Федеральной службы по экологическому, технологическому и атомному надзору и сертификат соответствия ГОСТ Р;

· на внешних частях элементов, которые выделяют тепло, нет потенциала, они не нуждаются в электроизоляции, так как заземлены.

На высоких частотах ток, протекающий через проводник, распределяется по его сечению неравномерно. Под действием сильных магнитных полей переменного тока происходит «выталкивание» тока от центра проводника к его поверхности (скин-эффект ). В результате ток протекает по меньшей площади поперечного сечения, что выглядит как уменьшение диаметра провода. Чем выше частота, тем меньше толщина поверхностного слоя (скин-слоя ), по которому течет ток, и тем больше сопротивление проводника протекающему току. Глубина скин-слоя определяется как расстояние ниже поверхности, где плотность тока падает на 1/e от значения на поверхности (e - основание натурального логарифма).

Для минимизации потерь, возникающих из-за скин-эффекта , применяются проводники особой конструкции, которые состоят из большого числа тонких жил, изолированных одна от другой. Жилы переплетены между собой так, что каждая проходит по поверхности и в любом месте поперечного сечения на всём протяжении провода; это усредняет импеданс каждой жилы, в результате чего в них протекают равные токи. В таком проводнике, называемымлитцендратом (нем.Litzen - пряди иDraht - провод), ток течет по поверхности каждой жилы, в результате рабочая площадь поперечного сечения проводника значительно увеличивается, а сопротивление токам высокой частоты уменьшается.

Как правило, при проектировании устройств, требующих применения литцендрата, значения рабочей частоты и тока в проводнике известны заранее. Поскольку главное преимущество литцендрата заключается в уменьшении сопротивления переменному току по сравнению с одножильным проводом эквивалентного сечения, основным параметром, который учитывается при выборе конструкции и сечения провода, является рабочая частота. В таблице 1 показана зависимость соотношения между сопротивлениями переменному току и постоянному току (коэффициент H) от коэффициента X для одиночного изолированного проводника круглого сечения:

Таблица 1.

где: d – диаметр провода, мм, f – частота, МГц.

Из Таблицы 1 и другой эмпирической информации была получена Таблица 2, в которой приведены рекомендуемые диаметры единичной жилы изолированной жилы многожильного провода в зависимости от рабочей частоты.

Таблица 2.

Активное

Коэффициент

сопротивление

изоляции,

жилы, Ом/м

60 Гц…1 кГц

100…200 кГц

200…350 кГц

350…850 кГц

850…1,4 МГц

1,4…2,8 МГц

После выбора диаметра жилы соотношение между сопротивлениями переменному и постоянному току идеального литцендрата, т.е. такого, в котором каждая жила последовательно «пронизывает» каждую точку площади поперечного сечения, может быть определено по следующей формуле:

H +K

где: H – коэффициент из Таблиц 1 и 2,

G - коэффициент поправки на вихревые токи, определяемый по формуле:

N – количество жил в кабеле, d1 – диаметр жилы, мм,

d0 – диаметр жгута, мм, f – частота, Гц,

K – постоянная, зависящая от количества жил в кабеле, определяется по следующей таблице:

Таблица 3.

Сопротивление многожильного кабеля постоянному току зависит от следующих факторов:

1. сечения жилы,

2. количества жил,

3. коэффициента удлинения одиночной жилы по сравнению с единицей длины жгута, возникающего как результат плетения жил. Типичными считаются значения 1,5% для каждого порядка операции плетения жил в жгут и 2,5% для

каждого порядка операции скручивания жгутов в кабель.

Следующая формула позволяет определить сопротивление постоянному току литцендрата любой конструкции:

R (1.015) N B

(1.025) N C

где: RS – сопротивление единичной жилы, Ом (см. таблицу 2), NB – количество порядков операции плетения в жгут,

NC – количество порядков операции скручивания жгутов в кабель, NS – общее количество жил в кабеле.

Рис.1. Литцендрат 1-го типа

Рис.2. Литцендрат 2-го типа

Пример 1 . Рассчитаем сопротивления провода типа 2 (см. Рис.2), состоящего из 450 жил диаметром 0,079 мм на частоте 100 кГц. Данный провод производится путём свивания пяти жгутов (скручивание жгутов в кабельпервого порядка), каждый их которых, в свою очередь, получен свиванием трёх жгутов (плетениевторого порядка), сформированных из

30 жил диаметром 0,079 мм (плетение первого порядка).

1. Определим активное сопротивление провода по формуле (4):

R = 3780.5* (1.015 ) 2 (1.025 ) 1 = 8.87 Ом / км ,

2. Вычисляем отношение R AC при помощи формулы (2):

1.0000+ 2*

*(7.877 *10− 5 ) = 1.035 ,

Преимущество литцендрата становится очевидным при сравнении с круглым проводом диаметром 1,67 мм, имеющим эквивалентную площадь сечения. Активное сопротивление одножильного провода составит порядка 7,853 Ом/км, однако на частоте 100 кГц соотношение между сопротивлениями переменному и постоянному току возрастает примерно до 21,4; таким образом, сопротивление переменному току составит

Пример 2 . Рассчитаем сопротивления провода типа 2 (см. Рис.2), состоящего из 1260 жил диаметром 0,100 мм на частоте 66 кГц. Этот провод образован из семи жгутов (скручивание жгутов в кабельпервого порядка), каждый их которых, в свою очередь, получен свиванием шести жгутов (плетениевторого порядка), сформированных из 30 жил диаметром 0,100 мм (плетениепервого порядка).

1. Определим активное сопротивление провода по формуле (4):

2176.5*(1.015) 2 (1.025) 1

1.824Ом /км ,

2. Вычисляем отношение

при помощи формулы (2):

1.0000+ 2*

*(8.81*10− 5 ) = 1.124 ,

Одножильный провод диаметром 3,55 мм имеет такую же площадь поперечного сечения, но очевидно, что при глубине скин-слоя, равного 0,257 мм, такой провод можно рассматривать как тонкостенный цилиндр с толщиной стенки, равной глубине скин-слоя.

По материалам фирмы New England Wire

Статьи по теме: