Классификация нейронных сетей и их свойства. Нейронные сети: их применение, работа

Нейронные сети можно разделить по ряду признаков.

С точки зрения топологии , можно выделить три основных типа нейронных сетей (рис. 2.4):

· полносвязные;

· многослойные или слоистые;

· слабосвязные (с локальными связями).

Рис. 2.4. Архитектуры нейронных сетей: а – полносвязная сеть; б – многослойная сеть с последовательными связями;

в – слабосвязные сети

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных (слоистых) нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q +1) называются последовательными.

В свою очередь, среди многослойных нейронных сетей выделяют следующие типы.

1) Монотонные. Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой, кроме последнего (выходного), разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока к нейронам блока ведут только возбуждающие связи, то это означает, что любой выходной сигнал блока является монотонной неубывающей функцией любого выходного сигнала блока . Если же эти связи только тормозящие, то любой выходной сигнал блока является невозрастающей функцией любого выходного сигнала блока . Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов.

2) Сети без обратных связей . В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал q - го слоя подается на вход всех нейронов (q +1)-го слоя; однако возможен вариант соединения q - го слоя с произвольным -м слоем.


Среди многослойных сетей без обратных связей различают полносвязные (выход каждого нейрона q –го слоя связан с входом каждого нейрона (q +1)–го слоя) и частично полносвязные . Классическим вариантом слоистых сетей являются полносвязные сети прямого распространения (рис. 2.5).

3) Сети с обратными связями . В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие:

· слоисто-циклические , отличающиеся тем, что слои замкнуты в кольцо: последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные;

· слоисто-полносвязные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части: прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к следующему слою;

· полносвязно-слоистые , по своей структуре аналогичные слоисто-полно-связным , но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих.

В качестве примера сетей с обратными связями на рис. 2.6 представлены частично-рекуррентные сети Элмана и Жордана.

В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексогональной решетки. Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями.

Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные . Гомогенные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Рис. 2.6. Частично-рекуррентные сети: а – Элмана; б – Жордана

Существуют бинарные и аналоговые сети . Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние).

Еще одна классификация делит нейронные сети на синхронные и асинхронные . В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором – состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами.

Нейронные сети классифицируются по следующим видам обучения:

  1. нейронные сети проходящие обучение с учителем;
  2. нейронные сети проходящие обучение без учителя.

Рассмотрим эти виды немного подробнее.

Нейронные сети проходящие обучение с учителем.

При обучении с учителем подразумевается, что каждый вектор, входящий в существующий целевой вектор, который представляет из себя требуемый выход. Совместно они являются обучающей парой. Сеть обучается на нескольких обучающих парах.
Предоставляется выходной вектор, определяется выход сети и сравнивается с представленными векторами.
Далее изменяют веса в соответствии с математическим алгоритмом, который стремится уменьшить ошибку.
Векторы множества обучающих данных предъявляются последовательно. По мере прохода вычисляются ошибки и веса и подстраиваются для всех векторов, пока ошибка по обучающим данным не достигнет нужного уровня.

Нейронные сети, обучающиеся без помощи учителя.

Обучение без учителя выглядить намного более часто встречающейся моделью обучения особенно часто встречающююся в биологических нейронных сетях.

Развитая и другими учёными, она не требует целевой вектор для выходов. Из этого следует что, не требуются и сравнения с заранее подготовленными идеальными вариантами ответов. Обучающие данные состоят только из входных векторов.

Обучающий алгоритм меняет веса своей сети так, чтобы образовывались согласованные выходные векторы, тоесть чтобы предоставление достаточно схожих входных векторов выдавало похожие выходы.
Процесс обучения, последовательно, определяет статистические свойства предоставленных обучающих данных и группирует похожие векторы в классы.

Изменение весов

Нейронные сети так же делятся на следующие группы. С фиксированными связями – веса которых выбираются заранее исходя из задачи и с динамическими связями – которые перестраивают свои веса в процессе обучения.

Тип входных данных

Входные данные так же делятся на несколько; аналоговые входные данные представлены в виде действительных чисел и двоичные информация которых представляется в виде нулей и единиц.

Модели нейронной сети которые чаще всего используются на данный момент

Сети прямого распространения – все связи этой сети имеют строгое направление от входных нейронов к их выходам. Среди таких сетей хочется отметить: простейший персептрон автором которого является и многослойный персептрон .

Нейронные сети Реккурентного типа – данные с выходных нейронов или из скрытого слоя передается частично обратно на входные нейроны.

Радиально базисные функции – это нейронная сеть, в основе которой является наличие скрытого слоя из радиальных элементов и выходного слоя из линейных элементов. Такие сети довольно компактны и обучаются достаточно быстро.

Они были предложены в работах Broomhead and Lowe (1988) и Moody and Darkin (1989) .
Радиально базисная сеть пользуется следующими уникальными свойствами: один скрытый слой, нейроны только скрытого слоя имеют нелинейную функцию активации и синаптические веса скрытого и входного слоев являются единицей.

Сети Кохонена или Самоорганизующиеся карты – это класс сетей обычно обучается без помощи учителя и часто применяется в задачах связанных с распознаванием изображений.
Такие сети способны определять новые элементы во входных данных: если пройдя обучение сеть увидит набор данных, непохожий ни на один из знакомых образцов, то она классифицирует такой набор и не выявит его новизну.
Сеть Кохонена имеет всего два слоя: выходной и входной, составленный из радиальных элементов.

Новые виды архитектуры нейронных сетей появляются постоянно, и в них можно запутаться. Мы собрали для вас своеобразную шпаргалку, содержащую большую часть существующих видов ИНС. Хотя все они представлены как уникальные, картинки свидетельствуют о том, что многие из них очень похожи.

Проблема нарисованных выше графов заключается в том, что они не показывают, как соответствующие сети используются на практике. Например, вариационные автокодировщики (VAE) выглядят совсем как простые автокодировщики (AE), но их процессы обучения существенно различаются. Случаи использования отличаются ещё больше, поскольку VAE - это генератор, которому для получения нового образца подаётся новый шум. AE же просто сравнивает полученные данные с наиболее похожим образцом, полученным во время обучения.

Стоит заметить, что хотя большинство этих аббревиатур общеприняты, есть и исключения. Под RNN иногда подразумевают рекурсивную нейронную сеть, но обычно имеют в виду рекуррентную. Также можно часто встретить использование аббревиатуры RNN, когда речь идёт про любую рекуррентную НС. Автокодировщики также сталкиваются с этой проблемой, когда вариационные и шумоподавляющие автокодировщики (VAE, DAE) называют просто автокодировщиками (AE). Кроме того, во многих аббревиатурах различается количество букв «N» в конце, поскольку в каких-то случаях используется «neural network», а в каких-то - просто «network».

Для каждой архитектуры будет дано очень краткое описание и ссылка на статью, ей посвящённую. Если вы хотите быстро познакомиться с нейронными сетями с нуля, следуйте переведенному нами , состоящему всего из четырех шагов.


Нейронные сети прямого распространения
(feed forward neural networks, FF или FFNN) и перцептроны (perceptrons, P) очень прямолинейны, они передают информацию от входа к выходу. Нейронные сети часто описываются в виде слоёного торта, где каждый слой состоит из входных, скрытых или выходных клеток. Клетки одного слоя не связаны между собой, а соседние слои обычно полностью связаны. Самая простая нейронная сеть имеет две входных клетки и одну выходную, и может использоваться в качестве модели логических вентилей. FFNN обычно обучается по методу обратного распространения ошибки, в котором сеть получает множества входных и выходных данных. Этот процесс называется обучением с учителем, и он отличается от обучения без учителя тем, что во втором случае множество выходных данных сеть составляет самостоятельно. Вышеупомянутая ошибка является разницей между вводом и выводом. Если у сети есть достаточное количество скрытых нейронов, она теоретически способна смоделировать взаимодействие между входным и выходными данными. Практически такие сети используются редко, но их часто комбинируют с другими типами для получения новых.

Сети радиально-базисных функций (radial basis function, RBF) - это FFNN, которая использует радиальные базисные функции как функции активации. Больше она ничем не выделяется 🙂

Нейронная сеть Хопфилда (Hopfield network, HN) - это полносвязная нейронная сеть с симметричной матрицей связей. Во время получения входных данных каждый узел является входом, в процессе обучения он становится скрытым, а затем становится выходом. Сеть обучается так: значения нейронов устанавливаются в соответствии с желаемым шаблоном, после чего вычисляются веса, которые в дальнейшем не меняются. После того, как сеть обучилась на одном или нескольких шаблонах, она всегда будет сводиться к одному из них (но не всегда - к желаемому). Она стабилизируется в зависимости от общей «энергии» и «температуры» сети. У каждого нейрона есть свой порог активации, зависящий от температуры, при прохождении которого нейрон принимает одно из двух значений (обычно -1 или 1, иногда 0 или 1). Такая сеть часто называется сетью с ассоциативной памятью; как человек, видя половину таблицы, может представить вторую половину таблицы, так и эта сеть, получая таблицу, наполовину зашумленную, восстанавливает её до полной.

Цепи Маркова (Markov chains, MC или discrete time Markov Chains, DTMC) - это предшественники машин Больцмана (BM) и сетей Хопфилда (HN). Их смысл можно объяснить так: каковы мои шансы попасть в один из следующих узлов, если я нахожусь в данном? Каждое следующее состояние зависит только от предыдущего. Хотя на самом деле цепи Маркова не являются НС, они весьма похожи. Также цепи Маркова не обязательно полносвязны.

Машина Больцмана (Boltzmann machine, BM) очень похожа на сеть Хопфилда, но в ней некоторые нейроны помечены как входные, а некоторые - как скрытые. Входные нейроны в дальнейшем становятся выходными. Машина Больцмана - это стохастическая сеть. Обучение проходит по методу обратного распространения ошибки или по алгоритму сравнительной расходимости. В целом процесс обучения очень похож на таковой у сети Хопфилда.

Ограниченная машина Больцмана (restricted Boltzmann machine, RBM) удивительно похожа на машину Больцмана и, следовательно, на сеть Хопфилда. Единственной разницей является её ограниченность. В ней нейроны одного типа не связаны между собой. Ограниченную машину Больцмана можно обучать как FFNN, но с одним нюансом: вместо прямой передачи данных и обратного распространения ошибки нужно передавать данные сперва в прямом направлении, затем в обратном. После этого проходит обучение по методу прямого и обратного распространения ошибки.

Автокодировщик (autoencoder, AE) чем-то похож на FFNN, так как это скорее другой способ использования FFNN, нежели фундаментально другая архитектура. Основной идеей является автоматическое кодирование (в смысле сжатия, не шифрования) информации. Сама сеть по форме напоминает песочные часы, в ней скрытые слои меньше входного и выходного, причём она симметрична. Сеть можно обучить методом обратного распространения ошибки, подавая входные данные и задавая ошибку равной разнице между входом и выходом.

Разреженный автокодировщик (sparse autoencoder, SAE) - в каком-то смысле противоположность обычного. Вместо того, чтобы обучать сеть отображать информацию в меньшем «объёме» узлов, мы увеличиваем их количество. Вместо того, чтобы сужаться к центру, сеть там раздувается. Сети такого типа полезны для работы с большим количеством мелких свойств набора данных. Если обучать сеть как обычный автокодировщик, ничего полезного не выйдет. Поэтому кроме входных данных подаётся ещё и специальный фильтр разреженности, который пропускает только определённые ошибки.

Вариационные автокодировщики (variational autoencoder, VAE) обладают схожей с AE архитектурой, но обучают их иному: приближению вероятностного распределения входных образцов. В этом они берут начало от машин Больцмана. Тем не менее, они опираются на байесовскую математику, когда речь идёт о вероятностных выводах и независимости, которые интуитивно понятны, но сложны в реализации. Если обобщить, то можно сказать что эта сеть принимает в расчёт влияния нейронов. Если что-то одно происходит в одном месте, а что-то другое — в другом, то эти события не обязательно связаны, и это должно учитываться.

Шумоподавляющие автокодировщики (denoising autoencoder, DAE) - это AE, в которые входные данные подаются в зашумленном состоянии. Ошибку мы вычисляем так же, и выходные данные сравниваются с зашумленными. Благодаря этому сеть учится обращать внимание на более широкие свойства, поскольку маленькие могут изменяться вместе с шумом.


Сеть типа «deep belief»
(deep belief networks, DBN) - это название, которое получил тип архитектуры, в которой сеть состоит из нескольких соединённых RBM или VAE. Такие сети обучаются поблочно, причём каждому блоку требуется лишь уметь закодировать предыдущий. Такая техника называется «жадным обучением», которая заключается в выборе локальных оптимальных решений, не гарантирующих оптимальный конечный результат. Также сеть можно обучить (методом обратного распространения ошибки) отображать данные в виде вероятностной модели. Если использовать обучение без учителя, стабилизированную модель можно использовать для генерации новых данных.


Свёрточные нейронные сети
(convolutional neural networks, CNN) и глубинные свёрточные нейронные сети (deep convolutional neural networks, DCNN) сильно отличаются от других видов сетей. Обычно они используются для обработки изображений, реже для аудио. Типичным способом применения CNN является классификация изображений: если на изображении есть кошка, сеть выдаст «кошка», если есть собака - «собака». Такие сети обычно используют «сканер», не парсящий все данные за один раз. Например, если у вас есть изображение 200×200, вы не будете сразу обрабатывать все 40 тысяч пикселей. Вместо это сеть считает квадрат размера 20 x 20 (обычно из левого верхнего угла), затем сдвинется на 1 пиксель и считает новый квадрат, и т.д. Эти входные данные затем передаются через свёрточные слои, в которых не все узлы соединены между собой. Эти слои имеют свойство сжиматься с глубиной, причём часто используются степени двойки: 32, 16, 8, 4, 2, 1. На практике к концу CNN прикрепляют FFNN для дальнейшей обработки данных. Такие сети называются глубинными (DCNN).

Развёртывающие нейронные сети (deconvolutional networks, DN) , также называемые обратными графическими сетями, являются обратным к свёрточным нейронным сетям. Представьте, что вы передаёте сети слово «кошка», а она генерирует картинки с кошками, похожие на реальные изображения котов. DNN тоже можно объединять с FFNN. Стоит заметить, что в большинстве случаев сети передаётся не строка, а какой бинарный вектор: например, <0, 1> - это кошка, <1, 0> - собака, а <1, 1> - и кошка, и собака.

13.10.2017

Можно провести следующую классификацию нейронных сетей:

Характер обучения

Классификация нейронных сетей по характеру обучения делит их на:

  • нейронные сети, использующие обучение с учителем;
  • нейронные сети, использующие обучение без учителя.

Рассмотрим это подробнее.

Нейронные сети, использующие обучение с учителем. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором. Далее веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемого уровня.

Нейронные сети, использующие обучение без учителя. Обучение без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы.

Настройка весов

  • сети с фиксированными связями – весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи;
  • сети с динамическими связями – для них в процессе обучения происходит настройка синаптических весов.

Тип входной информации

  • аналоговая – входная информация представлена в форме действительных чисел;
  • двоичная – вся входная информация в таких сетях представляется в виде нулей и единиц.

Применяемая модель нейронной сети

Сети прямого распространения – все связи направлены строго от входных нейронов к выходным. К таким сетям относятся, например: простейший персептрон (разработанный Розенблаттом) и многослойный персептрон.

Реккурентные нейронные сети – сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя.

Радиально базисные функции – вид нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Предложены в работах Broomhead and Lowe (1988) и Moody and Darkin (1989). Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синаптические веса входного и скрытого слоев равны единицы.

Самоорганизующиеся карты или Сети Кохонена – такой класс сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

Типы нейронных сетей

Проблема нарисованных выше графов заключается в том, что они не показывают, как соответствующие сети используются на практике. Например, вариационные автокодировщики (VAE) выглядят совсем как простые автокодировщики (AE), но их процессы обучения существенно различаются. Случаи использования отличаются ещё больше, поскольку VAE - это генератор, которому для получения нового образца подаётся новый шум. AE же просто сравнивает полученные данные с наиболее похожим образцом, полученным во время обучения.

Стоит заметить, что хотя большинство этих аббревиатур общеприняты, есть и исключения. Под RNN иногда подразумевают рекурсивную нейронную сеть, но обычно имеют в виду рекуррентную. Также можно часто встретить использование аббревиатуры RNN, когда речь идёт про любую рекуррентную НС. Автокодировщики также сталкиваются с этой проблемой, когда вариационные и шумоподавляющие автокодировщики (VAE, DAE) называют просто автокодировщиками (AE). Кроме того, во многих аббревиатурах различается количество букв “N” в конце, поскольку в каких-то случаях используется “neural network”, а в каких-то - просто “network”.

Часть 1: Базовые архитектуры

Нейронные сети прямого распространения (feed forward neural networks, FF или FFNN) и перцептроны (perceptrons, P) очень прямолинейны, они передают информацию от входа к выходу. Нейронные сети часто описываются в виде слоёного торта, где каждый слой состоит из входных, скрытых или выходных клеток. Клетки одного слоя не связаны между собой, а соседние слои обычно полностью связаны. Самая простая нейронная сеть имеет две входных клетки и одну выходную, и может использоваться в качестве модели логических вентилей. FFNN обычно обучается по методу обратного распространения ошибки, в котором сеть получает множества входных и выходных данных. Этот процесс называется обучением с учителем, и он отличается от обучения без учителя тем, что во втором случае множество выходных данных сеть составляет самостоятельно. Вышеупомянутая ошибка является разницей между вводом и выводом. Если у сети есть достаточное количество скрытых нейронов, она теоретически способна смоделировать взаимодействие между входным и выходными данными. Практически такие сети используются редко, но их часто комбинируют с другими типами для получения новых.

Сети радиально-базисных функций (radial basis function, RBF) - это FFNN, которая использует радиальные базисные функции как функции активации. Больше она ничем не выделяется.

Нейронная сеть Хопфилда (Hopfield network, HN) - это полносвязная нейронная сеть с симметричной матрицей связей. Во время получения входных данных каждый узел является входом, в процессе обучения он становится скрытым, а затем становится выходом. Сеть обучается так: значения нейронов устанавливаются в соответствии с желаемым шаблоном, после чего вычисляются веса, которые в дальнейшем не меняются. После того, как сеть обучилась на одном или нескольких шаблонах, она всегда будет сводиться к одному из них (но не всегда - к желаемому). Она стабилизируется в зависимости от общей “энергии” и “температуры” сети. У каждого нейрона есть свой порог активации, зависящий от температуры, при прохождении которого нейрон принимает одно из двух значений (обычно -1 или 1, иногда 0 или 1). Такая сеть часто называется сетью с ассоциативной памятью; как человек, видя половину таблицы, может представить вторую половину таблицы, так и эта сеть, получая таблицу, наполовину зашумленную, восстанавливает её до полной.

Цепи Маркова (Markov chains, MC или discrete time Markov Chains, DTMC) - это предшественники машин Больцмана (BM) и сетей Хопфилда (HN). Их смысл можно объяснить так: каковы мои шансы попасть в один из следующих узлов, если я нахожусь в данном? Каждое следующее состояние зависит только от предыдущего. Хотя на самом деле цепи Маркова не являются НС, они весьма похожи. Также цепи Маркова не обязательно полносвязны.

Машина Больцмана (Boltzmann machine, BM) очень похожа на сеть Хопфилда, но в ней некоторые нейроны помечены как входные, а некоторые - как скрытые. Входные нейроны в дальнейшем становятся выходными. Машина Больцмана - это стохастическая сеть. Обучение проходит по методу обратного распространения ошибки или по алгоритму сравнительной расходимости. В целом процесс обучения очень похож на таковой у сети Хопфилда.

Ограниченная машина Больцмана (restricted Boltzmann machine, RBM) удивительно похожа на машину Больцмана и, следовательно, на сеть Хопфилда. Единственной разницей является её ограниченность. В ней нейроны одного типа не связаны между собой. Ограниченную машину Больцмана можно обучать как FFNN, но с одним нюансом: вместо прямой передачи данных и обратного распространения ошибки нужно передавать данные сперва в прямом направлении, затем в обратном. После этого проходит обучение по методу прямого и обратного распространения ошибки.

Автокодировщик (autoencoder, AE) чем-то похож на FFNN, так как это скорее другой способ использования FFNN, нежели фундаментально другая архитектура. Основной идеей является автоматическое кодирование (в смысле сжатия, не шифрования) информации. Сама сеть по форме напоминает песочные часы, в ней скрытые слои меньше входного и выходного, причём она симметрична. Сеть можно обучить методом обратного распространения ошибки, подавая входные данные и задавая ошибку равной разнице между входом и выходом.

Разреженный автокодировщик (sparse autoencoder, SAE) - в каком-то смысле противоположность обычного. Вместо того, чтобы обучать сеть отображать информацию в меньшем “объёме” узлов, мы увеличиваем их количество. Вместо того, чтобы сужаться к центру, сеть там раздувается. Сети такого типа полезны для работы с большим количеством мелких свойств набора данных. Если обучать сеть как обычный автокодировщик, ничего полезного не выйдет. Поэтому кроме входных данных подаётся ещё и специальный фильтр разреженности, который пропускает только определённые ошибки.

Вариационные автокодировщики (variational autoencoder, VAE) обладают схожей с AE архитектурой, но обучают их иному: приближению вероятностного распределения входных образцов. В этом они берут начало от машин Больцмана. Тем не менее, они опираются на байесовскую математику, когда речь идёт о вероятностных выводах и независимости, которые интуитивно понятны, но сложны в реализации. Если обобщить, то можно сказать что эта сеть принимает в расчёт влияния нейронов. Если что-то одно происходит в одном месте, а что-то другое – в другом, то эти события не обязательно связаны, и это должно учитываться.

Шумоподавляющие автокодировщики (denoising autoencoder, DAE) - это AE, в которые входные данные подаются в зашумленном состоянии. Ошибку мы вычисляем так же, и выходные данные сравниваются с зашумленными. Благодаря этому сеть учится обращать внимание на более широкие свойства, поскольку маленькие могут изменяться вместе с шумом.

Сеть типа “deep belief” (deep belief networks, DBN) - это название, которое получил тип архитектуры, в которой сеть состоит из нескольких соединённых RBM или VAE. Такие сети обучаются поблочно, причём каждому блоку требуется лишь уметь закодировать предыдущий. Такая техника называется “жадным обучением”, которая заключается в выборе локальных оптимальных решений, не гарантирующих оптимальный конечный результат. Также сеть можно обучить (методом обратного распространения ошибки) отображать данные в виде вероятностной модели. Если использовать обучение без учителя, стабилизированную модель можно использовать для генерации новых данных.

Свёрточные нейронные сети (convolutional neural networks, CNN) и глубинные свёрточные нейронные сети (deep convolutional neural networks, DCNN) сильно отличаются от других видов сетей. Обычно они используются для обработки изображений, реже для аудио. Типичным способом применения CNN является классификация изображений: если на изображении есть кошка, сеть выдаст “кошка”, если есть собака - “собака”. Такие сети обычно используют “сканер”, не парсящий все данные за один раз. Например, если у вас есть изображение 200×200, вы не будете сразу обрабатывать все 40 тысяч пикселей. Вместо это сеть считает квадрат размера 20 x 20 (обычно из левого верхнего угла), затем сдвинется на 1 пиксель и считает новый квадрат, и т.д. Эти входные данные затем передаются через свёрточные слои, в которых не все узлы соединены между собой. Эти слои имеют свойство сжиматься с глубиной, причём часто используются степени двойки: 32, 16, 8, 4, 2, 1. На практике к концу CNN прикрепляют FFNN для дальнейшей обработки данных. Такие сети называются глубинными (DCNN).

Развёртывающие нейронные сети (deconvolutional networks, DN), также называемые обратными графическими сетями, являются обратным к свёрточным нейронным сетям. Представьте, что вы передаёте сети слово “кошка”, а она генерирует картинки с кошками, похожие на реальные изображения котов. DNN тоже можно объединять с FFNN. Стоит заметить, что в большинстве случаев сети передаётся не строка, а какой бинарный вектор: например, - это кошка, - собака, а - и кошка, и собака.

Часть 2: Продвинутые конфигурации

Глубинные свёрточные обратные графические сети (deep convolutional inverse graphics networks, DCIGN) названы слегка некорректно, поскольку они по сути являются вариационными автокодировщиками, кодирующая и декодирующая части которых представлены свёрточной и развёртывающей НС соответственно. Сети такого типа моделируют свойства в виде вероятностей, поэтому их можно научить создавать картинку с собакой и кошкой, даже если сеть видела только картинки, на которых было только одно из животных. Возможно и удаление одного из двух объектов. Также были созданы сети, которые могли менять источник освещения и вращать объект. Сети такого типа обычно обучают методом обратного распространения ошибки.

Генеративные состязательные сети (generative adversarial networks, GAN) - это сети другого вида, они похожи на близнецов. Такие сети состоят из любых двух (обычно из FF и CNN), одна из которых контент генерирует, а другая - оценивает. Сеть-дискриминатор получает обучающие или созданные генератором данные. Степень угадывания дискриминатором источника данных в дальнейшем участвует в формировании ошибки. Таким образом, возникает состязание между генератором и дискриминатором, где первый учится обманывать первого, а второй - раскрывать обман. Обучать такие сети весьма тяжело, поскольку нужно не только обучить каждую из них, но и настроить баланс.

Рекуррентные нейронные сети (recurrent neural networks, RNN) - это сети типа FFNN, но с особенностью: нейроны получают информацию не только от предыдущего слоя, но и от самих себя предыдущего прохода. Это означает, что порядок, в котором вы подаёте данные и обучаете сеть, становится важным. Большой сложностью сетей RNN является проблема исчезающего (или взрывного) градиента, которая заключается в быстрой потере информации с течением времени. Конечно, это влияет лишь на веса, а не состояния нейронов, но ведь именно в них накапливается информация. Обычно сети такого типа используются для автоматического дополнения информации.

Сети с долгой краткосрочной памятью (long short term memory, LSTM) стараются решить вышеупомянутую проблему потери информации, используя фильтры и явно заданную клетку памяти. У каждого нейрона есть клетка памяти и три фильтра: входной, выходной и забывающий. Целью этих фильтров является защита информации. Входной фильтр определяет, сколько информации из предыдущего слоя будет храниться в клетке. Выходной фильтр определяет, сколько информации получат следующие слои. Ну а забывающий фильтр, каким бы странным не казался, также выполняет полезную функцию: например, если сеть изучает книгу и переходит на новую главу, какие-то символы из старой можно забыть. Такие сети способны научиться создавать сложные структуры, например, писать как Шекспир или сочинять простую музыку, но и ресурсов они потребляют немало.

Управляемые рекуррентные нейроны (gated recurrent units, GRU) - это небольшая вариация предыдущей сети. У них на один фильтр меньше, и связи реализованы иначе. Фильтр обновления определяет, сколько информации останется от прошлого состояния и сколько будет взято из предыдущего слоя. Фильтр сброса работает примерно как забывающий фильтр.

Нейронные машины Тьюринга (neural Turing machines, NTM) можно рассматривать как абстрактную модель LSTM и попытку показать, что на самом деле происходит внутри нейронной сети. Ячейка памяти не помещена в нейрон, а размещена отдельно с целью объединить эффективность обычного хранилища данных и мощь нейронной сети. Собственно, поэтому такие сети и называются машинами Тьюринга - в силу способности читать и записывать данные и менять состояние в зависимости от прочитанного они являются тьюринг-полными.

Двунаправленные RNN, LSTM и GRU (bidirectional recurrent neural networks, bidirectional long / short term memory networks и bidirectional gated recurrent units, BiRNN, BiLSTM и BiGRU) не показаны в таблице, поскольку они ничем не отличаются от своих однонаправленных вариантов. Разница заключается в том, что эти сети используют не только данные из «прошлого», но и из «будущего». Например, обычную сеть типа LSTM обучают угадывать слово «рыба», подавая буквы по одной, а двунаправленную - подавая ещё и следующую букву из последовательности. Такие сети способны, например, не только расширять изображение по краям, но и заполнять дыры внутри.

Глубинные остаточные сети (deep residual networks, DRN) - это очень глубокие сети типа FFNN с дополнительными связями между отделёнными друг от друга слоями. Такие сети можно обучать на шаблонах глубиной аж до 150 слоёв - гораздо больше, чем можно было бы ожидать. Однако, было показано, что эти сети мало чем отличаются от рекуррентных, и их часто сравнивают с сетями LSTM.

Нейронная эхо-сеть (echo state networks, ESN) - это ещё одна разновидность рекуррентных сетей. Её особенностью является отсутствие сформированных слоёв, т.е. связи между нейронами случайны. Соответственно, метод обратного распространения ошибки не срабатывает. Вместо этого нужно подавать входных данные, передавать их по сети и обновлять нейроны, наблюдая за выходными данными.

Метод экстремального обучения (extreme learning machines, ELM) - это, по сути, сеть типа FFNN, но со случайными связями. Они очень похожи на сети LSM и ESN, но используются как FFNN. Так происходит не только потому, что они не рекуррентны, но и потому, что их можно обучать просто методом обратного распространения ошибки.

Метод неустойчивых состояний (liquid state machines, LSM) похож на эхо-сеть, но есть существенное отличие: сигмоидная активация заменена пороговой функцией, а каждый нейрон является накопительной ячейкой памяти. Таким образом, при обновлении нейрона его значение не становится равным сумме соседей, а прибавляется само к себе, и при достижении порога сообщается другим нейронам.

Метод опорных векторов (support vector machines, SVM) находит оптимальные решения задачи оптимизации. Классическая версия способна категоризировать линейно разделяемые данные: например, различать изображения с котом Томом и с котом Гарфилдом. В процессе обучения сеть как бы размещает все данные на 2D-графике и пытается разделить данные прямой линией так, чтобы с каждой стороны были данные только одного класса и чтобы расстояние от данные до линии было максимальным. Используя трюк с ядром, можно классифицировать данные размерности n. Что характерно, этот метод не всегда рассматривается как нейронная сеть.

И наконец, нейронные сети Кохонена (Kohonen networks, KN) , также известные как самоорганизующиеся карты (self organising (feature) maps, SOM, SOFM) , завершают наш список. Эти сети используют соревновательное обучение для классификации данных без учителя. Сети подаются входные данные, после чего сеть определяет, какие из нейронов максимально совпадают с ними. После этого эти нейроны изменяются для ещё большей точности совпадения, в процессе двигая за собой соседей. Иногда карты Кохонена также не считаются нейронными сетями.

    количество входов

    функция активации

Типов графа межнейронных связей

  • перекрестные

    обратные

Способом формирования весов связей, т.е. алгоритмом обучения

  • С учителем

    Без учителя

    Смешанный

Пример: Эффективность решения задач с применением с применением нейронных сетей зависит от правильности выбора нейропарадигмы, а также имеющихся в базе данных примеров для обучения.

Нейронные сети классифицируются следующим образом:

I . С точки зрения топологии

Классический пример- сеть Хопфильда

    Многослойные

    а) полносвяные

б) частично полносвязные

2. С обратными связями(рекурентные)

Пример: сеть Элмана

Сеть Жордана(обратные связи через слой)

3. Слабосвязные

Пример: сеть Кохонена – самоорганизующиеся карты

II . По типам структур нейронов:

1. Гомогенные

Функции активации всех нейронов одинаковые

2. Гетерогенные

Функции активации всех нейронов разные

III . По видам сигналов, которыми оперируют нейронные сети

    Бинарные(от 0 до 1)

    Сигналовые- оперируют действительными числами.

IV . По методу обучения

  1. Обучение с учителем

    Обучение без учителя

    Смешанные

Существуют уже заранее известные структуры нейросетей, которые более эффективно решают определенные типы задач.

Типовые структуры и решаемые задачи

Лекция 8.

Сети Кохонэна Обучение «без учителя»

Сети Кохонэна предназначены для решения задач кластеризации.

Постановка задачи кластеризации

Дано:

где n- номер объекта

m- номер признака

Каждый объект характеризуется вектором:

Найти: ядра кластеров количества K

C=

Т.е построить некую функцию L(p), которая позволяет определить номер кластера по номеру объекта. Причем, построение должно вестись на основе следующего критерия: минимизация всех внутриклассовых расстояний.

(1)

Где первая сумма- это сумма по всем объектам, а вторая- по всем кластерам.

Алгоритм кластеризации:

1. Задается количество кластеров и начальные значения ядер кластеров.

Способы начального задания значений:

    случайными числами

    одинаковыми числами

    по некоторым эвристическим правилам, которые основаны на предварительном анализе данных(на основе главных компонент)

2. Фиксируются постоянно ядра кластеров

Ищется разбиение l(p) объектов на кластеры, исходя из критерия (1).

3. Фиксируются постоянно разбиения

Корректируются ядра кластеров

, таким образом, что:

(2)

Результатом выполнения является новый набор ядер.

Шаги 2,3 повторяются до тех пор, пока (1) перестанет изменятся, то есть, стабилизируется.

Преобразование этого алгоритма для реализации его в нейросетевом базисе:

    Определим количество входов и выходов в нейросети

Количество входов = количеству признаков одного объекта;

Входным вектором будет являться
;

Количество выходов это количество кластеров (К);

    Преобразуем основной критерий (1):

С учетом знака “-” критерий D будет максимизироваться:

(3)

Псевдокод алгоритма:

Цикл 1: для p=1,n

Цикл 2: для l=1,k

Находим :max

Структура нейросети для реализации алгоритма

Сеть однослойная(слой Кохонэна). Каждый нейрон слоя Кохонэна с помощью своих весовых коэффициентов запоминает координаты ядра кластера и отвечает за отнесение объектов к этому кластеру.

Интерпретатор - выбирает максимальное значение среди всех выходов и выдает номер этого выхода, который является номером кластера.

Сеть Кохонэна может работать в двух режимах:

    соответствует выдаче номера кластера

    производится нормировка всех выходов и тогда выходы

рассматриваются как вероятности принадлежности объекта к тому или иному кластеру.

В псевдокоде самый внутренний цикл: (цикл по i)- это один нейрон в

слое Кохонэна. Цикл по l- весь слой Кохонэна, цикл по p в структуре нейросети не реализуется, а реализуется в процессе обучения.

Обучение сети Кохонэна

Шаг 1: инициализация весов(т.е. присваиваем начальные значения всем в сети).

Шаг 2: подаем на вход вектор из обучающей выборки.

Шаг 3:
, находитсяи максимальный
, т.е. максимальный номер “победившего нейрона”.

Шаг 4: корректировка весов сети Кохонэна

Статьи по теме: