Принцип работы никель-металлогидридных аккумуляторов и возможности их замены. Тренировка NiMH аккумуляторов

Купил на Али кучку держателей для аккумуляторов (или просто батареек) формата АА… Вещь бывает нужна в хозяйстве, тем более, если собираешь или ремонтируешь какие-либо электронные приборы или гаджеты. Собственно больше то и писать о них было бы нечего (ну только оценить сопротивление контактов, померить длину проводков и оценить на зуб и глаз пластмассу - что будет в обзоре), но наткнулся на одну статью в интернете и родилась идея проверить, можно ли восстановить емкость отработавших свой срок NiCd и NiMh аккумуляторов, которых накопилось в хозяйстве, и выбросить их просто на свалку рука не поднимается, т.к такие элементы нужно сдавать на утилизацию… Что из этого получилось, и вообще получилось ли… Можно узнать прочитав обзор…
Внимание - много фото, трафик!!!

Вот собственно, сама статья, которую я упоминал в оглавлении обзора…


Начал искать еще информацию про восстановление утративших емкость NiCd и NiMh АКБ и поиск привел меня на занимательную статью на английском, которую вы сможете прочитать пройдя по ссылке: Не знающие английский могут воспользоваться возможностями автоматического перевода на русский системой Google. Из статьи я вынес главное, что элементы NiCd и NiMh имеют память (у NiCd это очень выражено, у NiMh менее выражено, но все же эффект имеет место), и что бы продлить жизнь им, необходимо разряжать, до определенного напряжения перед зарядкой.


Наверное многие знают об этом, что производитель рекомендует разряжать аккумуляторы до остаточного напряжения 0.9-1В, а только потом ставить на зарядку. Но часто это игнорируется и со временем элементы теряют емкость, в них образуются кристаллы солей кадмия и никеля. И что бы их, хотя бы частично, разбить, нужно разряжать аккумуляторы небольшим током до остаточного напряжения 0.4-0.5В…

Кстати, немного о том, как устроен аккумулятор: Основу любого аккумулятора составляют положительный и отрицательный электроды. Разберем на основе NiCd аккумулятора. Положительный электрод (катод) содержит гидрооксид никеля NiOOH с графитовым порошком (5-8%), а отрицательный (анод) - металлический кадмий Cd в виде порошка.


Аккумуляторы этого типа часто называют рулонными, так как электроды скатаны в цилиндр (рулон) вместе с разделяющим слоем, помещены в металлический корпус и залиты электролитом. Разделитель (сепаратор), увлажненный электролитом, изолирует пластины друг от друга. Он изготавливается из нетканого материала, который должен быть устойчив к воздействию щелочи. Электролитом чаще всего выступает гидрооксид калия KOH с добавкой гидроксида лития LiOH, способствующего образованию никелатов лития и увеличения емкости на 20%.

Никель-металлогидридные аккумуляторы по своей конструкции являются аналогами никель-кадмиевых аккумуляторов, а по электрохимическим процессам - никель-водородных аккумуляторов. Удельная энергия Ni-MH-аккумулятора значительно выше удельной энергии Ni-Cd- и Ni-Н2-аккумуляторов
Аккумулятор NiMh (Никель-металлогидридный), устроен почти так же как NiCd:


Положительный и отрицательный электроды, разделенные сепаратором, свернуты в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой. Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае сбоя при эксплуатации аккумулятора.

Вооружившись знаниями, я решил попробовать собрать нечто подобное как в статье «Автоматическая разряжалка», и на практике проверить поможет это или нет, восстановить, хотя бы частично, утратившие емкость аккумуляторы… Собрал такое тестовое устройство по схеме приведенной в статье. В статье в качестве индикации была применена лампочка на 1В 75мА, уж не знаю где автор нашел такую. Так же в статье было предложено использовать светодиод, но эта идея не пройдет, поскольку все светодиоды при 1-1.5В не светят… Потому в качестве индикатора был применен амперметр…

Начальный ток разрядки свежезаряженной АКБ составляет 250мА, и постепенно падает. При остаточном напряжении в 1В, ток разряда снижается до 30-40мА, как раз примерно такой ток и нужен, что бы попытаться разбить кристаллы «шлака» в аккумуляторе…
Провел небольшое тестирования «убитого» радиотелефоном Ni-Mh аккумулятора формата ААА, всего было проведено 4 цикла заряда-разряда. Тестирование проводилось таким образом: Аккумулятор был разряжен до рекомендуемого производителем напряжения в 1В и был полностью заряжен при помощи автоматического Зарядного устройства Soshine (спасибо китайцам)

Зарядное устройство считает количество «закаченного» в АКБ заряда, конечно это неправильный способ оценки емкости, т.к нужно измерять емкость АКБ при разряде, а не заряде (в дальнейшем будем измерять емкость правильно), но косвенно можно судить, изменяется или нет емкость «убитого» аккумулятора…

Лирическое отступление

Кстати, на Муське, многие авторы этим «грешат», измеряя емкость аккумуляторов при помощи всеми любимого, «белого доктора»… Измерив «вдуваемый» в аккумулятор заряд, с важным видом рассуждают о емкости батареи, не учитывая, что не всё «вдутое» можно «выдуть» назад, а так же многочисленные потери энергии на саморазряд, нагрев батареи и т.п. Любой обзор девайса имеющего USB порт, считается не полным, если в нем нет фотографии «белого доктора». Китайцы вероятно обогатились на продажах этих супер-устройств для тестирования...))))


Полностью заряженный аккумулятор взял 480мА/ч «заряда» и был поставлен на разрядку в изготовленное разрядное устройство… Отсечка разрядки произошла при остаточном напряжении АКБ при 0.5В… Это значение зависит от параметров транзисторов, использованных в разрядном устройстве… Цикл Заряда-Разряда повторяли 4 раза… Результаты предварительного тестирования привожу ниже:

1- заряд - 680мА/ч

2- заряд - 726мА/ч

3- заряд - 737мА/ч

4- заряд - 814мА/ч

Что ж мы видим положительную динамику… По крайней мере, в аккумулятор входит все больше «заряда», но к сожалению это только косвенная оценка емкости, а что бы оценить точно, нужно разряжать аккумулятор измеряя емкость…
Чем мы и займемся далее))))
Для правильной оценки емкости аккумуляторов было заказано новое Зарядно-разрядное устройство ВМ200 в у китайцев… Оно способно разряжать АКБ и измерять емкость, это будет намного точнее…

Поскольку можно сразу же тестировать 4 АКБ, было решено переделать разряжалку, и сделать её тоже 4-х канальной. Зарядно-разрядное устройство ВМ200 конечно способно самостоятельно разряжать АКБ, но делает она это до остаточного напряжения 0.9В, а это мало, мне необходимо разрядить каждый элемент до 0.4В, потому была найдена схема другого разряжающего устройства в интернете

Я перевел эту схему на современные элементы и размножил до 4-х каналов…
Получилось вот такое разрядное устройство:




Поскольку во всех 4-х каналах, я выставляю одинаковое напряжение отсечки компараторов, то обошелся одним стабилитроном и одним построечным резистором на все четыре канала…
Для желающих повторить, даю ссылку на печатную плату, на ней все элементы подписаны

Вот тут-то мы и дошли до наших держателей для АКБ или батареек… Мне нужно было 4 шт, остальные уйдут «про запас»… Как обычно ссылка уже идет в «никуда», потому я поставил в заголовке аналогичный товар у другого продавца. Под спойлером прикладываю скриншот заказа, а то не поверят, что я заказываю запчасти у китайцев…))))

Скрин заказа


Пока ко мне на всех парáх, на рикшах китайцы, в поте лица, везут мои 2 посылки, позволю себе короткое лирическое отступление… Обязательно найдутся пару читателей «муськи», которые скажут, что я занимаюсь фигней, тем более изготавливая печатные платы, и вообще надо не париться, а просто выкидывать отслужившие аккумуляторы… Возможно, это и правильно, но у каждого свой путь, кто-то водку пьет, кто-то в баню ходит, ну а мне нравится что-то созидать, пусть даже это кажется кому-то бессмысленным… Главное, что мне это нравится, ну а вам я желаю просто хорошо отдохнуть, читая мой обзор, может быть узнать что-то новое и обсудить это в комментариях, только не доводите споры до «холивара»…)))
Пока ждал посылку, сделал модуль индикации, вместо вольтметра для первого варианта платы, что на двух транзисторах…

развлекаюсь под спойлером

Это все сделано на микросхеме LM3914, практически по типовой схеме с даташита. Питание 5В от какой-то зарядки сотового телефона… На плате есть перемычка, которой можно переключать микросхему из режима «Точка», в режим «Столбик» и обратно…

обратная сторона


Когда горит один красный светодиод, напряжение на АКБ, равно 0.2В, когда горит весь столбик - значит на АКБ 1.2В. Каждый потухший светодиод сообщает, что напряжение на АКБ упало еще на 0.1В… Удобно использовать эту плату в виде вольтметра индикатора с довольно высокой точностью...

Наконец то обе посылки пришли, я не буду описывать распаковку, взвешивание, измерение размеров, ибо и так понятно, что держатели батареек формата АА, чуть больше самих батареек… Вот общий вид держателя.


Пластмасса упругая, держит аккумулятор хорошо, более того, довольно сложно пальцами вытащить батарейку, приходится поддевать каким-либо тонким предметом, отверткой, например.
Проверим сопротивление пружинного контакта. 2 миллиОма…


Длина проводов (красного и черного) около 15 см.

Настроим теперь напряжение отсечки компараторов, это можно сделать на любом канале из четырех. И проверим ток которым будут разряжаться наши аккумуляторы… Подаем на разрядное устройство 5В с какого то источника питания от сотового телефона. Видим что все светодиоды горят. Зеленый сигнализирует, что подключено питание, а красные 4 светодиода нам сообщают, что все компараторы находятся в закрытом состоянии, и разряд не происходит.

Описание процесса настройки и фотографии под спойлером

Присоединяем к первому каналу лабораторный блок питания и даем 1.2В - это напряжение полностью заряженного аккумулятора… Видим, что началась разрядка током 70мА (справа точный амперметр имеющий 4 разряда после запятой)


Обратите внимание, что светодиод первого канала потух, сигнализируя, что началась разрядка в этом канале…


При напряжении на аккумуляторе в 0.5В ток разряда составляет 40мА, в принципе как раз примерно такой ток нам и нужен для успешного разбиения образовавшихся кристаллов…


При напряжении 0.4В компаратор закрывается и разрядка на этом окончена. Обратите внимание, что ток на амперметре стал нулевой


При помощи кримпера (не дешевый, профессиональный, куплен на Али), обжимаем провода в специальные наконечники для разъемов


Получается вот такой обжатый наконечник… Приятно работать профессиональным инструментом, хотя он и не дешев, но удобство и результат стоят того.

Ну что же… все готово, отбираем кандидатов на восстановление емкости. Под номерами 1 и 2 идут NiMh аккумуляторы от электробритвы «Panasonic» изначальная емкость не известна. После 3 лет работы в электробритве полностью заряженных аккумуляторов не стало хватать на один сеанс бритья. Под номерами 3 и 4 NiCd аккумуляторы, изначальная емкость 600мА, отработали свое в электрокардиографе…
Поскольку аккумуляторы долго лежали без использования, сначало необходимо их «взбодрить», это можно сделать на Зарядном устройстве ВМ200 выбрав режим Gharge-Refresh - зарядное устройство проведет 3 цикла разрядки до 0.9В, а затем полная зарядка и так 3 раза. При этом емкость незначительно повышается. Таким образом мы исключим погрешность, незначительного повышения емкости, которая добавится после нескольких циклов «тренировки» долго лежащих без работы аккумуляторов. Тренировка была проведена, по времени заняло примерно 36 часов

Теперь можно приступить к процессу восстановления…


Вставляем все аккумуляторы в зарядное устройство, выбираем режим «Зарядка-Тест»… и ждем… После полной зарядки током 200мА, ЗУ разрядит аккумуляторы до 0.9В током 100мА и посчитает отданную емкость. Будем оперировать ей, как начальной емкостью до восстановления.


Вот под утро зарядное устройство выдало посчитанную емкость аккумуляторов, её будем использовать как начальные значения, Никель-Кадмиевые аккумуляторы потеряли половину своей начальной емкости, Никель-металлогидридные, не известно сколько имели емкости изначально, подозреваю, где-то 1200мАч, но это не важно, нам главное динамика и восстановление емкости.


Ставим все аккумуляторы в разрядное устройство, видим, что все красные светодиоды потухли, во всех четырех каналах началась разрядка аккумуляторов. При постижении остаточного напряжения 0.4В на каждом аккумуляторе, компараторы закроются, и красные светодиоды зажгутся, сигнализируя об окончании разрядки. Это может занять много времени…


Пришел с работы, на разрядном устройстве горят все 4 красных светодиода. На всякий случай замерил вольтметром остаточное напряжение на всех аккумуляторах. Примерно 0.4В на каждом…

Ну что же, начинаем повторять цикл разрядки-зарядки. Долго-нудно, день-ночь. Все тестирование заняло 4 суток. На дисплее ЗУ ВМ200 видна положительная динамика, все больше и больше заряда «входит» в аккумуляторы… Видно что метод работает...)))))


Но точки над i расставит заключительное тестирование емкости аккумуляторов при разряде.
5 циклов зарядки-разрядки прошли… Ставим аккумуляторы на определение емкости, это режим «Gharge-Test»… Ну и вот окончательный результат - вердикт…


Как мы видим, емкость какой была, такой и осталась… Чуда не произошло, хотя все говорило, что аккумуляторы восстанавливаются, т.к. растет «закачиваемая» емкость… Но увы…
На этом месте Муськовчане, имеющие гуманитарное образование, опечалено закрыли обзор и поставили мне жирный минус… Муськовчане, имеющие инженерное образование, похихикали и подумали, что законы физики, химии, старость и старуху с косой никто еще не обманул… И они об этом заранее знали… Но… Есть одно небольшое НО…
Как вы помните, я ранее писал про восстановление аккумуляторов формата ААА от радио телефона, в начале статьи… Аккумуляторы отработали 2 года, и перестали держать заряд. Если снять телефон с зарядки, через 10-15 минут на экране мигал значок разряженной батарейки, и требовал поставить телефон на зарядку. Если его требование игнорировалось, то телефон просто отключался. Это было примерно год назад. После 4-х циклов разряда-заряда, я опять поставил аккумуляторы в телефон, и они уже год как работают в нем, пусть ставить на зарядку телефон приходится немного чаще, чем с новыми аккумуляторами, НО!!! Телефон нормально работает год с восстановленными аккумуляторами!!! Почему и как, я не знаю… Но факт остается фактом…
Теперь вернем заряженные аккумуляторы в бритву «Panasonic»… До восстановления аккумуляторов хватало примерно на 4-5 минут после полной зарядки… Потом бритва неизбежно «умирала»… Ну что же, проверим, поставил аккумуляторы на место… Я побрился… потом еще 25 минут держал бритву включенной… Жужжит, как имеющая новые аккумуляторы… Дальше не стал мучить двигатель… выключил… Чувствую, что мне еще хватит этих аккумуляторов на некоторое время…
Выводы я делать не буду, каждый может сделать их самостоятельно… Спасибо всем, кто дочитал мой обзор до конца…
В завершение обзора, по традиции животное… Животному понравилась пластмасса и сопротивление пружинного контакта, но крайне не понравилась длина проводков… Длинее надо… и шуршун должен быть на конце проводков…

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Электротехнический институт

Направление 551300–Электротехника, электромеханика и электротехнологии

Кафедра – Электропривода и электрооборудования

Реферат по дисциплине

«Источники гарантированного и бесперебойного электропитания промышленных предприятий»

на тему НИКЕЛЬ-МЕТАЛЛОГИДРИДНЫЕ АККУМУЛЯТОРЫ

Студенты группы 7М142

Крупина Н.В._______________

Кондрашов С.А._____________

«_____»________________

Руководитель профессор, д.т.н.

Гарганеев А.Г._______________

«_____»___________2009г.

Томск – 2009


Введение

1. Терминология

3. Никель-металлогидридные аккумуляторы

4. Основные процессы Ni-MH аккумуляторов

5. Конструкция электродов Ni-MH аккумуляторов

6. Конструкция Ni-MH аккумуляторов

7. Характеристики Ni-MH аккумуляторов

8. Зарядка Ni-MH аккумулятора

9. Достоинства и недостатки Ni-MH аккумуляторов

10. Стандарты и обозначения НМ-аккумуляторов

11. Хранение и эксплуатация Ni-MH аккумуляторов

12. Производители и перспективность НМ-аккумуляторов

13. Утилизация

Заключение

Список использованных источников


Введение

Практически невозможно представить современный мир без всякого рода электронной техники. Цифровые технологии настолько удачно вписались в нашу жизнь, сделав ее удобней и интересней, что отказаться от них мы уже просто не в силах.

Однако не стоит забывать, что для работы мобильных устройств нужны портативные источники питания, которые смогли бы обеспечить все более возрастающие потребности современной электроники. Мы получили WiFi и Bluetooth, освободившись от проводов для передачи данных, но мы все еще остаемся привязанными к электрическим сетям.

Прикладная наука, однако, не стоит на месте, предлагая все новые и новые виды источников электроэнергии. С другой стороны все же странно, что при наличии такого числа новых технологий, у нас все еще «умирают» батарейки телефонов, смартфонов, КПК и прочих гаджетов. Происходит это потому, что люди задумываются над правильным обращением с аккумулятором исключительно тогда, когда он окончательно вышел из строя и его со спокойной душой можно сдать в утиль. При этом следует понимать, что замена аккумулятора может влететь в копеечку. Не спорим, мало кому нравится строго соблюдать правила эксплуатации, но, к сожалению, только таким образом долговечность аккумулятора может быть доведена до максимума.

На сегодняшний день распространены аккумуляторы пяти различных электрохимических схем никель-кадмиевые (Ni-Cd), никель-металлогидридные (Ni-MH), свинцово-кислотные (Sealed Lead Acid, SLA), литий-ионные (Li-Ion) и литий-полимерные (Li-Polymer). Определяющим фактором для всех перечисленных элементов питания является не только портативность (т.е. небольшой объем и вес), но и высокая надежность, а также большое время работы. Основные параметры аккумулятора - это энергетическая плотность (или удельная энергия по массе), число циклов заряд/разряд, скорости зарядки и саморазряда. Cвинцово-кислотный аккумулятор состоит, как правило, из двух пластин (электродов), помещенных в электролит (водный раствор серной кислоты). У никелево-кадмиевого элемента отрицательные и положительные пластины скатаны вместе и помещены в металлический цилиндр. Положительная пластина состоит из гидроксида никеля, а отрицательная - из гидроксида кадмия. Две пластины изолированы разделителем, который увлажнен электролитом.

Никелево-металлогидридный аккумулятор конструктивно похож на никелево-кадмиевый аккумулятор, но имеет иной химический состав электролита и электродов. В литиево-ионном аккумуляторе электроды и сепаратор (разделитель) помещены в электролит из литиевой соли.

Существует огромное количество мифов и легенд о якобы идеальном режиме эксплуатации, о способах «тренировки», хранения, методах и режимах зарядки и восстановления аккумуляторов, но давайте попробуем разобраться.


1.Терминология

Аккумулятор (от лат. аccumulator - собиратель, accumulo - собираю, накопляю) - устройство для накопления энергии с целью ее последующего использования. Электрический аккумулятор преобразует электрическую энергию в химическую и по мере надобности обеспечивает обратное преобразование. Зарядка аккумулятора происходит путем пропускания через него электрического тока. В результате вызванных химических реакций один из электродов приобретает положительный заряд, а другой - отрицательный.

Аккумулятор, как электрический прибор, характеризуется следующими основными параметрами: электрохимической системой, напряжением, электрической емкостью, внутренним сопротивлением, током саморазряда и сроком службы.

Емкость аккумулятора - количество энергии, которой должен обладать полностью заряженный аккумулятор. В практических расчетах емкость принято выражать ампер-часах (

). Количество ампер-часов показывает период времени, в течение которого будет работать данный аккумулятор при силе тока в 1 ампер. Стоит, правда, добавить, что в современных мобильных устройствах используются токи гораздо меньшей силы, поэтому емкость аккумуляторов часто измеряется в милиампер-часах ( или , или mAh). Номинальная емкость (как должно быть) всегда указывается на самом аккумуляторе или на его упаковке. Однако реальная емкость не всегда совпадает с номинальной. На практике, реальная емкость аккумулятора колеблется в пределах от 80% до 110% от номинального значения.

Удельная емкость - отношение емкости аккумулятора к его габаритам или массе.

Цикл - одна последовательность заряда и разряда аккумулятора.

Эффект памяти - потеря емкости аккумулятора в процессе его эксплуатации. Она проявляется в тенденции аккумулятора приспосабливаться к рабочему циклу, по которому батарея работала определенный период времени. Другими словами, если заряжать аккумулятор несколько раз, не разрядив его перед этим полностью, он как бы «запоминает» свое состояние и в следующий раз просто не сможет разрядиться полностью, следовательно, емкость его уменьшается. По мере увеличения числа зарядно-разрядных циклов эффект памяти проявляется все отчетливее.

При таких условиях эксплуатации внутри аккумулятора происходит увеличение кристаллов на пластине (о строении аккумуляторов будет рассказано ниже), которые и уменьшают поверхность электрода. При мелких кристаллических образованиях внутреннего рабочего вещества площадь поверхности кристаллов максимальна, следовательно, максимально и количество энергии, запасаемой аккумулятором. При укрупнении кристаллических образований в процессе эксплуатации - площадь поверхности электрода уменьшается и, как следствие, уменьшается реальная емкость.

На рисунке 1 изображено действие эффекта памяти.

Рисунок 1 – Эффект памяти.


Саморазряд - самопроизвольная потеря аккумулятором запасенной энергии с течением времени. Это явление вызвано окислительно-восстановительными процессами, протекающими самопроизвольно, и присуще всем типам аккумуляторов, независимо от их электрохимической системы. Для количественной оценки саморазряда используется величина потерянной аккумулятором за определенное время энергии, выраженная в процентах от значения, полученного сразу после заряда. Саморазряд максимален в первые 24 часа после заряда, поэтому оценивается как за первые сутки, так и за первый месяц после заряда. Величина саморазряда аккумулятора в значительной степени зависит от температуры окружающей среды. Так, при повышении температуры выше 100°С саморазряд может увеличиться в два раза.

2. Аккумуляторы: виды и происхождение

Лидирующее положение на рынке по производству аккумуляторов занимает Япония, Тайвань, Китай, Южная Корея, и они постоянно увеличивают масштабы своего «скромного» присутствия на мировом рынке.

На рынке сегодня присутствуют десятки различных конструкций аккумуляторов, и каждая фирма-изготовитель старается достичь оптимального сочетания характеристик - высокой емкости, малых размеров и веса, работоспособности в широком температурном диапазоне и в экстремальных условиях.

В то же время исследования показывают, что более 65% пользователей мобильной и портативной техники хотят иметь еще более емкие аккумуляторы, и они готовы заплатить немалые деньги за возможность пользоваться «машинкой» (или телефоном) в течение нескольких дней без подзарядки. Именно поэтому в большинстве случаев, требуется покупка более емкой батареи, чем идущая в комплекте.

По электрохимической системе аккумуляторы делятся на несколько видов:

Свинцово-кислотные (Sealed Lead Acid, SLA);

Никель-кадмиевые (Ni-Cd);

Никель-металлогидридные (Ni-MH);

Литий-ионные (Li-Ion);

Литий-полимерные (Li-Pol);

Топливные.

В современной портативной электронике свинцовые аккумуляторы уже не используются, поэтому мы начнем наш экскурс с никелевых батарей, все еще применяемых в аккумуляторах для фотоаппаратов, ноутбуков, видеокамер и других устройств.

Родоначальником никелевых аккумуляторов были никель-кадмиевые (Ni-Cd) батареи, изобретенные еще в далеком 1899 году шведским ученым Вальдемаром Юнгнером (Waldmar Jungner). Принцип их работы заключался в том, что никель выступает в качестве положительного электрода (катода), а кадмий в качестве отрицательного (анода). На первых порах это был открытый аккумулятор, в котором кислород, выделяющийся во время заряда, уходил прямиком в атмосферу, что мешало созданию герметичного корпуса и, вкупе с дороговизной необходимых материалов, заметно притормозило начало массового производства.

Никеля.

Энциклопедичный YouTube

    1 / 5

    Химия из поддельного Ni-MH аккумулятора

    Химия из никель-кадмиевого аккумулятора

    Никель-цинковые аккумуляторы

    Где взять бесплатные LI-Ion и Ni-Mh аккумуляторы.

    Устройство аккумуляторов. Химия – просто. Li-ion battery

    Субтитры

История изобретения

Исследования в области технологии изготовления NiMH-аккумуляторов начались в 1970-е годы и были предприняты как попытка преодоления недостатков . Однако, применяемые в то время металл-гидридные соединения были нестабильны, и требуемые характеристики не были достигнуты. В результате процесс разработки NiMH-аккумуляторов застопорился. Новые металл-гидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980 году. Начиная с конца 1980-х годов NiMH-аккумуляторы постоянно совершенствовались, главным образом по плотности запасаемой энергии . Их разработчики отмечали, что для NiMH-технологий имеется потенциальная возможность достижения ещё более высоких плотностей энергии.

Параметры

  • Теоретическая энергоёмкость (Вт·ч /кг): 300 Вт·ч/кг .
  • Удельная энергоёмкость: около - 60-72 Вт·ч/кг.
  • Удельная энергоплотность (Вт·ч/дм ³): около - 150 Вт·ч/дм³.
  • ЭДС: 1,25 .
  • Рабочая температура: −60…+55 °C .(-40… +55)
  • Срок службы: около 300-500 циклов заряда/разряда.
  • саморазряд: до 100 % в год (у старых типов аккумуляторов)

Описание

У никель-металл-гидридных аккумуляторов типа «Крона», как правило - начальным напряжением 8,4 В, напряжение постепенно снижается до 7,2 В, а затем, когда энергия аккумулятора исчерпывается, напряжение снижается быстро. Этот тип аккумуляторов разработан для замены никель-кадмиевых аккумуляторов . Никель-металл-гидридные аккумуляторы имеют примерно на 20 % большую ёмкость при тех же габаритах, но меньший срок службы - от 200 до 300 циклов заряда/разряда. Саморазряд примерно в 1,5-2 раза выше, чем у никель-кадмиевых аккумуляторов.

NiMH-аккумуляторы практически избавлены от «эффекта памяти ». Это означает, что заряжать не полностью разряженный аккумулятор можно, если он не хранился больше нескольких дней в таком состоянии. Если же аккумулятор был частично разряжен, а затем не использовался в течение длительного времени (более 30 дней), то перед зарядом его необходимо разрядить.

Экологически безопасны.

Наиболее благоприятный режим работы: заряд небольшим током, 0,1 номинальной ёмкости, время заряда - 15-16 часов (типичная рекомендация производителя).

Хранение

Аккумуляторы нужно хранить полностью заряженными в холодильнике, но не ниже 0 °C . При хранении желательно регулярно (раз в 1-2 месяца) проверять напряжение. Оно не должно падать ниже 1 . Если же напряжение упало, необходимо зарядить аккумуляторы заново.

NiMH-аккумуляторы с низким саморазрядом (LSD NiMH)

Никель-металл-гидридные аккумуляторы с низким саморазрядом (the low self-discharge nickel-metal hydride battery, LSD NiMH), впервые были представлены в ноябре 2005 года фирмой Sanyo под торговой маркой Eneloop. Позднее многие мировые производители представили свои LSD NiMH-аккумуляторы.

Этот тип аккумуляторов имеет сниженный саморазряд, а значит обладает более длительным сроком хранения по сравнению с обычными NiMH. Аккумуляторы продаются как «готовые к использованию» или «предварительно заряженные» и позиционируются как замена щелочным батарейкам.

По сравнению с обычными аккумуляторами NiMH, LSD NiMH являются наиболее полезными, когда между зарядкой и использованием аккумулятора может пройти более трёх недель. Обычные NiMH-аккумуляторы теряют до 10 % ёмкости заряда в течение первых 24 часов после заряда, затем ток саморазряда стабилизируется на уровне до 0,5 % ёмкости в день. Для LSD NiMH этот параметр как правило находится в диапазоне от 0,04 % до 0,1 % ёмкости в день. Производители утверждают, что улучшив электролит и электрод, удалось добиться следующих преимуществ LSD NiMH относительно классической технологии:

  1. Возможность работать с высокими токами разряда, которые могут на порядок превышать ёмкость аккумулятора. Из-за этой особенности LSD NiMH очень хорошо справляются с мощными фонарями, фотовспышками, радиоуправляемыми моделями и любыми другими мобильными устройствами, которые требуют отдачи большого тока.
  2. Высокий коэффициент устойчивости к морозам. При −20 °C - потеря номинальной мощности составляет не более 12 %, в то время как лучшие экземпляры обычных NiMH-аккумуляторов теряют порядка 20-30 %.
  3. Лучшее сохранение рабочего напряжения. Многие устройства не имеют драйверов питания и выключаются при падении напряжения, характерного для Ni-MH - до 1,1 В, а предупреждение низкого питания наступает при 1,205 В.
  4. Большее время жизни: в 2-3 раза больше циклов заряда-разряда (до 1500 циклов) и лучше сохраняется ёмкость на протяжении жизни элемента.

Неполный список аккумуляторов долгого хранения (с низким саморазрядом):

  • AlwaysReady от Camelion
  • AccuEvolution от AccuPower
  • MaxE и MaxE Plus от Ansmann
  • Ecomax от CDR King
  • ActiveCharge/StayCharged/Pre-Charged/Accu от Duracell
  • nx-ready от ENIX energies
  • Prolife от Fujicell
  • ReCyko от Gold Peak
  • Ready4Power от Hama
  • Pre-Charged от Kodak
  • R2G от Lenmar
  • Imedion от Maha
  • EnergyOn от NexCell
  • Infinium от Panasonic
  • Hybrid, Platinum, и OPP Pre-Charged от Rayovac
  • Pleomax E-Lock от Samsung
  • Cycle Energy от Sony
  • Centura от Tenergy
  • LSD ready to use от Turnigy
  • Hybrio от Uniross
  • Instant от Vapex
  • Ready2Use от Varta
  • eniTime от Yuasa
  • Precision от Energizer

Другие преимущества NiMH-аккумуляторов с низким саморазрядом (LSD NiMH) Никель-металл-гидридные аккумуляторы с низким саморазрядом обычно имеют значительно более низкое внутреннее сопротивление, чем обычные NiMH-батареи. Это сказывается весьма положительно в устройствах с высоким токопотреблением:

  • Более стабильное напряжение
  • Уменьшенное тепловыделение, особенно на режимах быстрого заряда/разряда
  • Более высокая эффективность
  • Способность к высокой импульсной токоотдаче (пример: зарядка вспышки фотоаппарата происходит быстрее)
  • Возможность продолжительной работы в устройствах с низким энергопотреблением (пример: пульты ДУ , часы.)

Методы заряда

Зарядка производится электрическим током при напряжении на элементе до 1,4 - 1,6 В. Напряжение на полностью заряженном элементе без нагрузки составляет 1,4 В. Напряжение при нагрузке меняется от 1,4 до 0,9 В. Напряжение без нагрузки на полностью разряженном аккумуляторе составляет 1,0 - 1,1 В (дальнейшая разрядка может испортить элемент). Для зарядки аккумулятора используется постоянный или импульсный ток с кратковременными отрицательными импульсами (для предотвращения эффекта «памяти», метод заряда аккумуляторов переменным асимметричным током).

Контроль окончания заряда по изменению напряжения

Одним из методов определения окончания заряда является метод -ΔV. На изображении показан график напряжения на элементе при заряде. Зарядное устройство заряжает аккумулятор постоянным током. После того, как аккумулятор полностью заряжен, напряжение на нём начинает падать. Эффект наблюдается только при достаточно больших токах зарядки (0,5С..1 С). Зарядное устройство должно определить это падение и выключить зарядку.

Существует ещё так называемый «inflexion» - метод определения окончания быстрой зарядки. Суть метода заключается в том, что анализируется не максимум напряжения на аккумуляторе, а изменение производной напряжения по времени. То есть быстрая зарядка прекратится в тот момент, когда скорость роста напряжения будет минимальной. Это позволяет завершить фазу быстрой зарядки раньше, когда температура аккумулятора ещё не успела значительно подняться. Однако метод требует измерения напряжения с большей точностью и некоторых математических вычислений (вычисления производной и цифровой фильтрации полученного значения).

Контроль окончания заряда по изменению температуры

При зарядке элемента постоянным током бóльшая часть электрической энергии преобразуется в химическую энергию. Когда аккумулятор полностью заряжен, то подводимая электрическая энергия будет преобразовываться в тепло. При достаточно большом зарядном токе можно определить окончание заряда по резкому увеличению температуры элемента, установив датчик температуры аккумулятора. Максимальная допустимая температура аккумулятора +60 °С.

Расчет времени заряда

Для расчета времени заряда аккумулятора используется следующая формула: t = 1.3*(ёмкость аккумулятора / ток заряда)

Области применения

Замена стандартного гальванического элемента, электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Выбор емкости аккумуляторов

При использовании NiMH-аккумуляторов далеко не всегда следует гнаться за большой ёмкостью. Чем более ёмок аккумулятор, тем выше (при прочих равных условиях) его ток саморазряда. Для примера рассмотрим аккумуляторы ёмкостью 2500 мАч и 1900 мАч. Полностью заряженные и не используемые в течение, например, месячного срока аккумуляторы потеряют часть своей электрической ёмкости вследствие саморазряда. Более ёмкий аккумулятор будет терять заряд значительно быстрее, чем менее ёмкий. Таким образом по прошествии, например, месяца аккумуляторы будут иметь примерно равный заряд, а по прошествии ещё большего времени изначально более ёмкий аккумулятор будет содержать меньший заряд.

Исследования в области никель-металлгидридных батарей начались в 1970х годах как совершенствование никель-водородных батарей, поскольку вес и объем никель-водородных батарей не удовлетворял производителей (водород в этих батареях находился под высоким давлением, что требовало прочного и тяжелого стального корпуса). Использование водорода в виде гидридов металлов позволило снизить вес и объем батарей, также снизилась и опасность взрыва батареи при перегреве.

Начиная с 1980х была существенно улучшена технология производства NiMH батарей и началось коммерческое использование в различных областях. Успеху NiNH батарей способствовала увеличенная емкость (на 40% по сравнению с NiCd), использование материалов, годных к вторичной переработке («дружественность» природной среде), а также весьма длительных срок службы, часто превышающий показатели NiCd аккумуляторов.

Преимущества и недостатки NiMH аккумуляторов

Преимущества

・ бОльшая емкость - на 40% и более, чем обычные NiCd батареи
・ намного меньшая выраженность эффекта «памяти» по сравнению с никель-кадмиевыми аккумуляторами - циклы обслуживания батареи можно проводить в 2-3 раза реже
・ простая возможность транспортировки - авиакомпании перевозят без всяких предварительных условий
・ экологически безопасны - возможна переработка

Недостатки

・ ограниченное время жизни батареи - обычно около 500-700 циклов полного заряда/разряда (хотя в зависимости от режимов работы и внутреннего устройства могут быть различия в разы).
・ эффект памяти - NiMH батареи требуют периодической тренировки (цикла полного разряда/заряда аккумулятора)
・ Относительно малый срок хранения батарей - обычно не более 3х лет при хранении в разряженном состоянии, после чего теряются основные характеристики. Хранение в прохладных условиях при частичном заряде в 40-60% замедляют процесс старения батарей.
・ Высокий саморазряд батарей
・ Ограниченная мощностная емкость - при превышении допустимых нагрузок уменьшается время жизни батарей.
・ Требуется специальное зарядное устройство со стадийным алгоритмом заряда, поскольку при заряде выделяется большое количество тепла и никель-металлгидридные батареи прохо переносят перезаряд.
・ Плохая переносимость высоких температур (свыше 25-30 по Цельсию)

Конструкция NiMH аккумуляторов и АКБ

Современные никель-металлгидридные аккумуляторы имеют внутреннюю конструкцию, схожую с конструкцией никель-кадмиевых аккумуляторов. Положительный оксидно-никелевый электрод, щелочной электролит и расчетное давление водорода совпадают в обеих аккумуляторных системах. Различны только отрицательные электроды: у никель-кадмиевых аккумуляторов – кадмиевый электрод, у никель-металлгидридных – электрод на базе сплава поглощающих водород металлов.

В современных никель-металлгидридных аккумуляторах используется состав водородоадсорбирующего сплава вида AB2 и AB5. Другие сплавы вида AB или A2B не получили широкого распространения. Что же обозначают загадочные буквы A и B в составе сплава? – Под символом A скрывается металл (или смесь металлов), при образовании гидридов которых выделяется тепло. Соответственно, символ B обозначает металл, который реагирует с водородом эндотермически.

Для отрицательных электродов типа AB5 используется смесь редкоземельных элементов группы лантана (компонент А) и никель с примесями других металлов (кобальт, алюминий, марганец) – компонент B. Для электродов типа AB2 используются титан и никель с примесями циркония, ванадия, железа, марганца, хрома.

Никель-металлгидридные аккумуляторы с электродами типа AB5 имеют большее распространение из-за лучших показателей циклируемости, несмотря на то, что аккумуляторы с электродами типа AB2 более дешевы, имеют большую емкость и лучшие мощностные показатели.

В процессе циклирования происходит колебания объема отрицательного электрода до 15-25% от исходного за счет поглощения/выделения водорода. В результате колебаний объема возникает большое количество микротрещин в материале электрода. Это явление объясняет, почему для нового никель-металлгидридного аккумулятора необходимо произвести несколько «тренировочных» циклов заряда/разряда для приведения значений мощности и емкости аккумулятора к номинальным. Также у образования микротрещин есть и отрицательная сторона – увеличивается площадь поверхности электрода, которая подвергается коррозии с расходованием электролита, что приводит к постепенному увеличению внутреннего сопротивления элемента и снижению емкости. Для уменьшения скорости коррозийных процессов рекомендуется хранить никель-металлгидридные аккумуляторы в заряженном состоянии.

Отрицательный электрод имеет избыточную емкость по отношению к положительному как по перезаряду, так и по переразряду для обеспечения приемлемого уровня выделения водорода. Из-за коррозии сплава постепенно уменьшается емкость по перезаряду отрицательного электрода. Как только избыточная емкость по перезаряду исчерпается, на отрицательном электроде в конце заряда начнет выделяться большое количество водорода, что приведет к стравливанию избыточного количества водорода через клапаны элемента, «выкипанию» электролита и выходу аккумулятора из строя. Поэтому для заряда никель-металлгидридных аккумуляторов необходимо специальное зарядное усройство, учитывающее специфику поведения аккумулятора для избегания опасности саморазрушения аккумуляторного элемента. При сборе батареи аккумуляторов необходимо предусмотреть хорошую вентиляцию элементов и не курить рядом с заряжающейся никель-металлгидридной батареей большой емкости.

Со временем в результате циклирования возрастает и саморазряд аккумулятора за счет появления больших пор в материале сепаратора и образовании электрического соединения между пластинами электродов. Эта проблема может быть временно решена путем нескольких циклов глубокого разряда аккумулятора с последующим полным зарядом.

При заряде никель-металлгидридных аккумуляторов выделяется достаточно большое количество тепла, особенно в конце заряда, что является одним из признаков необходимости завершения заряда. При собирании нескольких аккумуляторных элементов в батарею необходима система контроля параметров батареи (BMS), а также наличие терморазмыкающихся токопроводящих соединительных перемычек между частью аккумуляторных элементов. Также желательно соединять аккумуляторы в батарее путем точечной сварки перемычек, а не пайки.

Разряд никель-металлгидридных аккумуляторов при низких температурах лимитируется тем фактом, что эта реакция эндотермическая и на отрицательном электроде образуется вода, разбавляющая электролит, что приводит к высокой вероятности замерзания электролита. Поэтому, чем меньше температура окружающей среды, тем меньше отдаваемая мощность и емкость аккумулятора. Напротив, при повышенной температуре в процессе разряда разрядная емкость никель-металлгидридного аккумулятора будет максимальной.

Знание конструкции и принципов работы позволит с большим пониманием отнестись к процессу эксплуатации никель-металлгидридных аккумуляторов. Надеюсь, информация, почерпнутая в статье, позволит продлить жизнь вашей аккумуляторной батареи и избежать возможных опасных последствий из-за недопонимания принципов безопасного использования никель-металлгидридных аккумуляторов.

Разрядные характеристики NiMH-аккумуляторов при различных
токах разряда при температуре окружающей среды 20 °С


изображение взято с www.compress.ru/Article.aspx?id=16846&iid=781

Никель-металлгидридная батарейка Duracell

изображение взято с www.3dnews.ru/digital/1battery/index8.htm

P.P.S.
Схема перспективного направления создания биполярных аккумуляторных батарей

схема взятя с Биполярные свинцово-кислотные батареи

Сравнительная таблица параметров различных типов аккумуляторов

NiCd NiMH Lead Acid Li-ion Li-ion polymer Reusable
Alkaline
Энергетическая плотность (W*час/кг) 45-80 60-120 30-50 110-160 100-130 80 (начальная)
Внутреннее сопротивление
(включая внутренние схемы), мОм
100-200
при 6В
200-300
при 6В
<100
при 12В
150-250
при 7.2В
200-300
при 7.2В
200-2000
при 6В
Число циклов заряда/разряда (при снижении до 80% от начальной емкости) 1500 300-500 200-300 500-1000 300-500 50
(до 50%)
Время быстрого заряда 1 час типовое 2-4 часа 8-16 часа 2-4 часа 2-4 часа 2-3 часа
Устойчивость к перезаряду средняя низкая высокая очень низкая низкая средняя
Саморазряд / месяц (при комнатной температуре) 20% 30% 5% 10% ~10% 0.3%
Напряжение элемента (номинальное) 1.25В 1.25В 3.6В 3.6В 1.5В
Ток нагрузки
- пиковый
- оптимальный
20C
1C
5C
0.5C и ниже
5C
0.2C
>2C
1C и ниже
>2C
1C и ниже
0.5C
0.2C и ниже
Температура при эксплуатации (только разряд) -40 to
60°C
-20 to
60°C
-20 to
60°C
-20 to
60°C
0 to
60°C
0 to
65°C
Требования к обслуживанию Через 30 – 60 дней Через 60 – 90 дней Через 3 – 6 месяцев Не требуется Не требуется Не требуется
Типовая цена
(US$, только для сравнения)
$50
(7.2В)
$60
(7.2В)
$25
(6В)
$100
(7.2В)
$100
(7.2В)
$5
(9В)
Цена на цикл (US$) $0.04 $0.12 $0.10 $0.14 $0.29 $0.10-0.50
Начало коммерческого использования 1950 1990 1970 1991 1999 1992

таблица взята с
Из опыта эксплуатации

NiMH элементы широко рекламируются, как элементы с высокой энергоемкостью, не боящиеся холода и не имеющие памяти. Купив цифровую фотокамеру Canon PowerShot A 610 , я естественно снабдил ее емкой памятью на 500 снимков высшего качества, а для увеличения продолжительности съемок купил 4 NiMH элемента емкостью 2500 ма* час фирмы Duracell .

Сравним характеристики выпускаемых промышленностью элементов:

Параметры

Ионно-литиевые
Li-ion

Никель-кадмиевые NiCd

Никель-
металл-гидридные NiMH

Свинцово-кислотные
Pb

Длительность службы, циклов зарядки/разрядки

1-1,5 года

500-1000

3 00-5000

Энергетическая емкость, Вт*ч/кг
Ток разряда, мA*емкость аккумулятора
Напряжение одного элемента, В
Скорость саморазряда

2-5% в месяц

10% за первые сутки,
10% за каждый последующий месяц

в 2 раз выше
NiCd

40% в год

Диапазон допустимых температур, градусы Цельсия зарядки
разрядки -20... +65
Диапазон допустимых напряжений, В

2,5-4,3 (коксовые) , 3,0-4,3 (графитовые)

5,25-6,85 (для батарей 6 В),

10,5-13,7 (для батарей 12 В)

Таблица 1.

Из таблицы видим NiMH элементы обладают высокой энергетической емкостью, что делает их предпочтительными при выборе.

Для ихзарядки было куплено интеллектуальное зарядное устройство DESAY Full-Power Harger обеспечивающее зарядку NiMH элементов с их тренировкой. Элементы оно заряжались качественно, но... Однако на шестой зарядке оно приказало долго жить. Выгорела электроника.

После замены зарядного устройства и нескольких циклов заряд-разряд, аккумуляторы стали садиться на втором - третьем десятке снимков.

Оказалось, что не смотря на заверения, NiMH элементы тоже обладают памятью.

А большинство современных портативных устройств их использующих, имеют встроенную защиту, отключающую питание при достижении некоторого минимального напряжения. Это не позволяет выполнить полную разрядку аккумулятора. Тут и начинает играть свою роль память элементов. Не полностью разряженные элементы получают неполный заряд и их емкость падает с каждой перезарядкой.

Качественные зарядные устройства позволяют выполнять зарядку без потери емкости. Но что-то я не смог найти в продаже такого для элементов емкостью 2500маh . Остается периодически проводить их тренировку.

Тренировка NiMH элементов

Все написанное ниже не относится к элементам аккумуляторной батареи имеющим сильный саморазряд . Их можно только выбросить, опыт показывает, тренировке они не поддаются.

Тренировка NiMH элементов заключается в нескольких (1-3) циклах разрядки - зарядки.

Разрядка выполняется до снижения напряжения на аккумуляторном элементе до 1В. Желательно разряжать элементы индивидуально. Причина в том, что способность принимать заряд может быть различна. И она усиливается при зарядке без тренировки. Поэтому происходит к преждевременное срабатывание защиты по напряжению вашего устройства (плеера, фотоаппарата, ...) и последующей зарядке неразряженного элемента. Результат этого нарастающая потеря емкости.

Разрядку необходимо выполнять в специальном устройстве (Рис.3), которое позволяет выполнять ее индивидуально для каждого элемента. Если нет контроля напряжения, то разрядка выполнялась до заметного снижения яркости лампочки.

А если Вы засечете время горения лампочки вы сможете определить емкость аккумулятора, она вычисляется по формуле:

Емкость = Ток разрядки х Время разрядки = I х t (А * час)

Аккумулятор емкостью 2500 ма час способен отдавать в нагрузку ток 0,75 А в течении 3,3 часа, если полученное в результате разрядки время меньше, соответственно и меньше остаточная емкость. И при уменьшении емкости Вам необходимой надо продолжить тренировку аккумулятора.

Сейчас для разрядки элементов аккумуляторов я применяю устройство изготовленное по схеме показанной на рис.3.

Оно изготовлено из старого зарядного устройства и выглядит так:

Только теперь лампочек 4 штуки, как в рис.3. О лампочках надо сказать отдельно. Если лампочка имеет ток разрядки равный номинальному для данного аккумулятора или несколько меньший ее можно использовать как нагрузку и индикатор, иначе лампочка только индикатор. Тогда резистор должен иметь такую величину, чтобы суммарное сопротивление El 1-4 и параллельного ей резистора R 1-4 было порядка 1,6 Ом.Замена лампочки на светодиод недопустима.

Пример лампочки которая может быть использована в качестве нагрузки - это криптоновая лампочка для карманного фонаря на 2,4 В.

Особый случай.

Внимание! Производители не гарантируют нормальную работу аккумуляторов при зарядных токах превышающих ток ускоренной зарядки I зар должен быть меньше емкости аккумулятора. Так для аккумуляторов емкостью 2500ма*час он должен быть ниже 2,5А.

Бывает, что NiMH элементы после разрядки имеют напряжение менее 1,1 В. В этом случае необходимо применить прием описанный в приведенной выше статье в журнале МИР ПК. Элемент или последовательная группа элементов подключается к источнику питания через автомобильную лампочку 21 Вт.

Еще раз обращаю Ваше внимание! У таких элементов обязательно надо проверить саморазряд! В большинстве случаев именно элементы с пониженным напряжением имеют повышенный саморазряд. Эти элементы проще выкинуть.

Зарядка предпочтительна индивидуальная для каждого элемента.

Для двух элементов напряжением 1,2 В зарядное напряжение не должно превышать 5-6В. При форсированной зарядке лампочка одновременно является индикатором. При снижении яркости лампочки можно проверить напряжение на NiMH элементе. Оно будет больше 1,1 В. Обычно, эта начальная, форсированная зарядка занимает от 1 до 10 минут.

Если NiMH элемент, при форсированной зарядке в течении нескольких минут не увеличивает напряжение, греется - это повод снять его с зарядки и отбраковать.

Рекомендую применять зарядные устройства только с возможностью тренировки (регенерации) элементов при перезарядке. Если нет таких, то через 5-6 рабочих циклов в аппаратуре, не дожидаясь полной потери емкости, производить их тренировку и отбраковывать элементы имеющие сильный саморазряд.

И они Вас не подведут.

В одном из форумов прокомментировали эту статью " написано тупо, но больше ничего нет ". Так Вот это не"тупо", а просто и доступно для выполнения на кухне каждому кто нуждается в помощи. Т.е. максимально просто. Продвинутые могут поставить контроллер, подключить компьютер, ...... , но это уже другая история.

Чтобы не казалось тупо

Существуют "умные" зарядники для NiMH элементов.

Такой зарядник работает с каждым аккумулятор отдельно.

Он умеет:

  1. индивидуально работать с каждым аккумулятором в разных режимах,
  2. заряжать аккумуляторы в быстром и медленном режиме,
  3. индивидуальный ЖК дисплей для каздого аккумуляторного отсека,
  4. независимо заряжать каждый из аккумуляторов,
  5. заряжать от одного до четырех аккумуляторов разной емкости и типоразмера (АА или ААА),
  6. защищать аккумулятор от перегрева,
  7. защищать каждый аккумулятор от перезарядки,
  8. определение окончание зарядки по падению напряжения,
  9. определять неисправные аккумуляторы,
  10. предварительно разряжать аккумулятор до остаточного напряжения,
  11. восстанавливать старые аккумуляторы (тренировка заряд-разряд),
  12. проверять емкость аккумуляторов,
  13. отображать на ЖК дисплее: - ток заряда, напряжение, отражать текущую емкость.

Самое главное, ПОДЧЕРКИВАЮ , данного типа устройства позволяют работать индивидуально с каждым аккумулятором.

По отзывам пользователей такое зарядное устройство позволяет восстановить большинство запущенных аккумуляторов, а исправные эксплуатировать весь гарантированный срок эксплуатации.

К сожалению я таким зарядником не пользовался, поскольку в провинции его купить просто невозможно, но в форумах Вы можете найти много отзывов.

Главное не заряжайте на больших токах, не смотря на заявленный режим с токами 0,7 - 1А, это все же малогабаритное устройство и может рассеять мощность 2-5 Вт.

Заключение

Любое восстановление NiMh аккумуляторов строго индивидуальная (с каждым отдельным элементом) работа. С постоянным контролем и отбраковкой элементов не принимающих зарядку.

И лучше всего заниматься их восстановлением с помощью интеллектуальных зарядных устройств, которые позволяют индивидуально выполнять отбраковку и цикл заряд - разряд с каждым элементом. А поскольку таких устройств автоматически работающих с аккумуляторами любой емкости не существует, то они предназначены для элементов строго определенной емкости или должны иметь управляемые токи зарядки, разрядки!

Статьи по теме: