Изобретение радио поповым кратко. Демонстрационный макет приемо-передающей системы А

3. Забытое изобретение А.С. Попова или первый в мире Детекторный радиоприемник

Итак, 7 мая 1895 года нашим соотечественником Александром Степановичем Поповым на заседании Русского физико-химического общества был продемонстрирована в действии первая в мире система беспроводной сигнализации с радиоприемником телеграфных сигналов оригинальной конструкции . Летом 1897 г. итальянец Гульельмо Маркони получает патент на аналогичное устройство. За исключением второстепенных деталей приемный аппарат Маркони по схеме и принципу действия был полностью аналогичен прибору А.С. Попова, который он разработал за 14 месяцев до этого. К сожалению, в борьбе за приоритет в создании первого в мире радиоприемника с когерером, требующим встряхивания, научная общественность как у нас в стране, так и за рубежом не уделила должного внимания не менее важному изобретению А.С. Попова - первому в мире детекторному радиоприемнику на который 110 лет назад А.С. Попов получил патенты как в России, так и в Англии и Франции, США, Испании и Швейцарии [Быстров Ю.А., Золотинкина Л.И. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» - первая научно-образовательная школа электроники России // История отечественной электроники. - т.2. - М.: ИД Столичная энциклопедия, 2012. - С 529–548.] Об этом забытом историческом факте, а также судьбе детекторного приемника на протяжении его более чем вековой истории и пойдет речь.

Заметим, что сходство первых приемников А.С. Попова (1895 г.) и Г. Маркони (1896 г.) прежде всего было в том, что принимаемые сигналы приводили в действие электромагнитный ударник, встряхивающий металлические опилки в когерере Бранли. И в том и другом случае включение электромагнита ударника производилось для приведения в действие как самописца с записью регистрируемых сигналов на бумагу (в своем грозоотметчике в 1895 г.), так и телеграфного аппарата, когда впервые в мире была передана радиотелеграмма «Генрих Герц» в 1896 г.

Но настоящий прорыв в увеличении дальности радиосвязи был связан с применением электромагнитных телефонных трубок. Впервые идея воспользоваться наушниками пришла во время проверки радиоприемной аппаратуры сотрудниками, работавшими с А.С. Поповым, П.Н. Рыбкиным и Д.С. Троицким. Они непосредственно подключили телефонные трубки к когереру, который не срабатывал, и услышали передаваемые сигналы. Дальнейшее изучение А.С. Поповым эффекта детекторного действия когерера с металлическим окисленным порошком позволило ему вообще отказаться от встряхиваемого молоточком когерера. Им было проведено множество опытов с различными типами радиокондукторов (так стал называть А.С. Попов когерер без встряхивания).

Попов дает такое описание радиокондуктора (в нашем понимании детектора): «Для передачи на большие расстояния я употребляю «радиокондуктор», состоящий из стеклянной трубки, внутри которой приклеены две ленточки из платины, на которых находятся крупинки стали, обладающие многочисленными участками с окисленной поверхностью. Трубка хорошо просушенная, закрывается герметически.(…) Я показал с той же целью, что можно комбинировать микрофонный уголь с разными металлами. Простые электроды из металла или графита с металлическими стержнями, иголками и т. д. позволяют воспроизвести это интересное явление».

Именно такого типа радиокондуктор был установлен в радиоприемниках А.С. Попова, применявшихся в спасательной операции броненосца «Генерал-адмирал Апраксин», наскочившего на скалы вблизи о. Гогланд в Финском заливе. Когда Николай II узнал об аварии броненосца он писал: «Главному морскому штабу разработать к весне 1900 г. проект соединения главнейших пунктов южного берега Финского залива телеграфной линией между Кронштадтом и Ревелем». Как видно из этого предписания, телеграфный кабель можно было проложить только весной, но к тому времени броненосец был бы раздавлен льдами. Единственным выходом было применение беспроволочного телеграфа. К этому времени Попов уже располагал усовершенствованной радиоаппаратурой с телефонными трубками и новым радиокондуктором.

В 1899 году три комплекта радиостанций конструкции А.С. Попова были изготовлены французской фирмой Дюкрите. Поэтому, несмотря на большое расстояние (47 км), которое нужно было преодолеть для передачи радиосообщений в спасательной операции, Попов приступает к решению поставленной перед ним задачи. Уже 25 января 1900 г. с о. Гогланд была послана на Котку (о. Кутсало) первая радиотелеграмма. Ответ был тревожный: «Командиру ледокола «Ермак». Около Лавенсари оторвало льдину с рыбаками. Окажите помощь». «Ермак» в тот же день пошел в Ревель, захватив спасенных им 27 рыбаков. Обмен радиотелеграфными сообщениями продолжался до апреля месяца, когда броненосец «Апраксин» был снят со скал. Всего было передано 440 радиотелеграмм.

Использованная в спасательной операции в сложнейших зимних условиях радиоаппаратура, изобретенная А.С. Поповым доказала ее надежность и пригодность для практического применения. За это Попов был удостоен Электротехническим институтом звания почетного инженера-электрика, получил высочайшую благодарность и вознаграждение от Морского министерства. А первый детекторный радиоприемник А.С. Попова, на который он получил патент в России, Англии и Франции был награжден золотой медалью на Всемирной выставке в Париже в 1900 году.

У английского патента № 2797, выданного 25 февраля 1900 г. было следующее конкретное название: «Improvementsin Coherersfor Telephonicand Telegraphic Signalling ». Русский патент (привилегия № 6066) имел более общее название: «Приемник депеш, посылаемых с помощью электромагнитных волн» (рис. 5).

Рис. 5. Собственноручный чертеж А.С. Попова из российского патента телефонного приемника депеш (1900 г.).

Хочу привести страницу из английского журнала «Engineering», июнь 1900 г. с сообщением о выдаче А.С. Попову патента на детекторный приемник в Англии (рис. 6). Как там написано в заголовке, он не требует восстановления когерера. Обращаю ваше внимание на две схемы приемника, заявленные А.С. Поповым. Первая - с радиокондуктором, подключенным к наушникам последовательно с батареей, а вторая - с наушниками, подключенными ко вторичной обмотке согласующего трансформатора (А.С. Попов называет его индукционной бобиной), первичная обмотка которого подключается в цепь с радиокондуктором. Как пишет А.С. Попов, «в этом случае звуки слышатся в телефоне громче и отчетливее, нежели в отсутствии индукционной бобины, обычно употребляемой в микротелефонных станциях».

Рис. 6. Фрагмент описания английского патента А.С. Попова

Часто задают вопрос: раз первыми прием на слух осуществили П.Н. Рыбкин и Д.С. Троицкий, почему их не считают изобретателями детекторного приемника?

Начну с разъяснения, почему патент на телефонный приемник депеш получил А.С. Попов, а не Рыбкин П.Н. или Троицкий Д.С. Для этого нужно обратиться к описанию патента, составленного самим А.С. Поповым. В самом начале он пишет, что «основанием для устройства нового приемника депеш, посланных по системе Морзе с помощью электромагнитных волн, служит вновь открытое свойство когерера». Далее: «Употребление телефона уже применялось для изучения электрических колебаний». И, наконец, о новом свойстве когерера: «Это новое свойство случайно обнаружено с трубкой (прим .: имеется ввиду когерер), мной изобретенной для телеграфа без проводников моими непосредственными помощниками - ассистентом Минного класса П.Н. Рыбкиным и капитаном Д.С. Троицким во время опытов, проводимых в Кронштадте в начале июня сего года».

Рис. 7. Рисунки из американского патента А.С. Попова .

Еще одно изобретение детекторного приемника в США принадлежит Пикару (Greenleaf Whittier Pickard «Meansforreceiving intelligence communicated by electric waves » U.S. Patent 836,531 -, 1906). Он получил патент в тот же год, что и Дэнвуди, но его приемник уже имеет более совершенную конструкцию кристаллического детектора, почти классическую. Об истории своего изобретения он опубликовал статью «How I Inverted the Crystal Detector » The Electrical Experimenter , August, 1919. В этой статье он рассказывает, что для выбора наилучшего кристаллического детектора он перепробовал свыше 30 000 комбинаций различных материалов. Кстати, до сегодняшнего дня схематическое обозначение диода принадлежит также ему.

Также после А.С. Попова на детекторный приемник получил патент в США Боше (BoseJ.C., физик из Индии). Он получил патент в 1904 г. с таким названием «Detector for electrical disturbances », заявку на который он подал в 1901 году. И хотя Боше в описании своего патента не может еще отказаться от термина когерер, ставя его в один ряд с детектором: «This invention has reference to detector sandso-called coherers for there ceptionofe lectrical disturbances, Hertzianwaves… ». Тем не менее именно он впервые ввел в обиход слово детектор(detector ).

Можно надеяться, что преданием гласности забытого американского патента нашего соотечественника А.С. Попова удастся расширить область приоритетов в истории радиотехники нашей страны. И как бы детектирующий прибор не назывался: трубка Бранли, когерер Лоджа, радиокондуктор Попова, ртутный когерер Маркони и даже двухэлектродная лампа Флеминга и т. д., все эти приборы в нашем современном понимании - детектирующие устройства. И с исторической точки зрения следует их четко различать по их свойствам и по времени появления. В этом ряду твердотельные «карборунд» Данвуди и «кошачий ус» Пикарда и даже детектор Боше не опережают детектирующий радиокондуктор Попова. Именно поэтому изобретателем первого в мире детекторного приемника, в котором окисные пленки в контакте с платиной и определяли детектирующие свойства радиокондуктора, а принятый сигнал регистрировался с помощью телефонов, можно по праву назвать Александра Степановича Попова.

Изобретение А.С. Попова получило свое развитие и в советской России. С первых дней советской власти правительство придавало большое значение развитию радиотехники в России. Уже в 1918 году в Нижнем Новгороде создается большая радиолаборатория. В состав радиолаборатории вошли такие известные ученые, как М.А. Бонч-Бруевич, В.П. Вологдин, В.К. Лебединский, В.М. Лещинский, П.А. Остряков, Д.А. Рожанский,

В.В. Татаринов, А.Ф. Шорин и др. М.А. Бонч-Бруевич будучи руководителем Нижегородской радиолаборатории в течение 10 лет много сделал для развития отечественной радиоэлектроники. Нижегородская радиолаборатория получила мировую известность и была дважды (в 1922 и в 1928 гг.) награждена орденом Трудового Красного знамени за создание первых отечественных радиоламп. Например, в 1920 году была создана первая самая мощная в мире радиолампа для первого радиотелефонного передатчика в России. Тем не менее большое внимание радиолаборатория уделяла и разработке различных радиоприемников. В частности, в 1920-е годы большой популярностью пользовался детекторный приемник, разработанный сотрудником радиолаборатории С.И. Шапощниковым.

А другой сотрудник радиолаборатории О.В. Лосев разработал детекторный приемник с полупроводниковым усилителем, известный как «Кристадин Лосева». Изобретение Лосева стало мировой сенсацией. Лишь через много лет получило объяснение использование детектора в кристадине, который фактически явился прообразом современных туннельных диодов. А метод радиоприема с дополнительным полупроводниковым генератором, работающим на частоте принимаемого сигнала, был первым опытом синхронного детектирования, широко распространенного в настоящее время. Последним детекторным приемником промышленного изготовления можно считать «Комсомолец» .

После Великой Отечественной войны в нашей стране чувствовалась нехватка дешевых массовых радиоприемников. С целью создания образцов детекторных приемников, пригодных для массового производства отечественной промышленностью, в 1947 году Осоавиахим СССР объявил конкурс. В конкурсе приняли участие 31 конструктор из 14 предприятий и НИИ разных министерств. Первая премия была присуждена инженеру М.Р. Капланову (НИИ МПСС) за детекторный приемник, названный им «Комсомолец», который и был рекомендован к внедрению в производство на разных предприятиях страны (рис. 8).

Рис. 8. Детекторные приемники «Комсомолец » из Москвы, Ленинграда и Минска.

Интерес к детекторным приемникам сохранился и в наши дни. В хорошем смысле детекторный приемник можно назвать антикризисным приемником. Он не требует затрат на источники электропитания, так как в нем используется только энергия передающей радиостанции. С созданием в последнее время более совершенных радиоэлектронных микросхем теперь можно создать детекторный приемник с более высокой чувствительностью. Что же это за микросхемы? Речь идет о недавно созданных MOSFETEPA Dsarrays с электрически-программируемой пороговой архитектурой (Electrically-Programmable Analog Devices EPADs ). Данные устройства обладают уникальными свойствами по потребляемой мощности (нВт), работают со сверхнизкими питающими напряжениями (меньше 0,5 В). Приведем впечатляющие характеристики уже выпускаемой микросхемы ALD110900. Один каскад усилителя: V+ = 0,5V; 1+ = 1,9 ?А; Pd = 960 nW; Gain = 24. Два каскада усиления: V+ = 0,5 V; 1+ = 2,8 ?А; Pd = 1,4 ?W, Gain = 52. Используя такую микросхему, удается собрать современный высокочувствительный детекторный приемник (рис. 9).

Рис. 9. Современный детекторный приемник

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Сообщение ТАСС «О первом в мире полете человека в космическое пространство» «12 апреля 1961 года в Советском Союзе выведен на орбиту вокруг Земли первый в мире космический корабль-спутник «Восток» с человеком на борту.Пилотом-космонавтом космического корабля-спутника

Из книги Чудо-оружие Российской империи [с иллюстрациями] автора Широкорад Александр Борисович

Раздел I. Забытое оружие

Из книги Что нас ждет, когда закончится нефть, изменится климат, и разразятся другие катастрофы автора Кунстлер Джеймс Говард

Из книги Мир Авиации 1999 01 автора Автор неизвестен

Из книги Грузовые автомобили. Колеса автора Мельников Илья

Изобретение колеса Современные автомобили в том виде, в котором мы привыкли их видеть, сконструированы несколько десятков лет назад, история их изобретения насчитывает несколько сотен лет, а история изобретения колесных повозок несколько тысячелетий.А до этого прошли

Из книги Об изобретательстве понятным языком и на интересных примерах автора Соколов Дмитрий Юрьевич

Глава 1 Что такое изобретение, и зачем они нужны Jus utendi et abutendi. Право пользования по своему усмотрению. (Римское право) Условия патентоспособности изобретения описаны в ст. 1350 четвертой части Гражданского кодекса РФ. Я не буду повторять эту статью, а постараюсь ее «на

Из книги Источники питания и зарядные устройства автора

Глава 11 Подготовка материалов заявки на изобретение Mutatis mutandis. Измени то, что следует изменить. Формула изобретения, которую мы уже научились составлять в предыдущей главе, самая важная, но не единственная часть заявки на изобретения. Рассмотрим, как должны выглядеть и

Из книги Книга о якорях автора Скрягин Лев Николаевич

Из книги Что нас ждет, когда закончится нефть, изменится климат и разразятся другие катастрофы XXI века автора Кунстлер Джеймс Говард

Изобретение № 148337 Эксплуатируемые в настоящее время в нашей стране дноуглубительные несамоходные снаряды оборудованы тяжелыми однорогими якорями. Хотя проведенные Горьковским институтом инженеров водного транспорта исследования привели к появлению якоря

Из книги История зарождения воздухоплавания и авиации в России автора Веробьян Борис Сергеевич

Из книги История электротехники автора Коллектив авторов

Глава XII «Мертвая петля» и первый в мире воздушный таран Петра Нестерова Командующий воздушными силами России, великий князь – голова светлая, Александр Михайлович говорил: «парашют в авиации – вещь вредная, Так как летчики при малейшей опасности будут спасаться На

Из книги Автономное электроснабжение частного дома своими руками автора Кашкаров Андрей Петрович

3.2. ИЗОБРЕТЕНИЕ ТРАНСФОРМАТОРА Восьмидесятые годы XIX в. вошли в историю электротехники под названием периода «трансформаторных битв». Такое необычное название они получили потому, что изобретение трансформатора явилось одним из сильнейших аргументов в пользу

Из книги FAQ по трансгуманизму автора Бостром Ник

Из книги Россия - родина Радио. Исторические очерки автора Бартенев Владимир Григорьевич

Из книги автора

2. Историческая роль нашего соотечественника Александра Степановича Попова в изобретении радио Как уже отмечалось, радиотехника как область знаний и практической деятельности человека возникла в конце XIX века и за сто с лишним лет прошла огромный путь от первых опытов

Из книги автора

4. Рожанский Дмитрий Аполлинариевич - последователь А.С. Попова Дмитрий Аполлинариевич Рожанский по праву считается учеником изобретателя радио А.С. Попова. Он родился 1 сентября 1882 г. в Киеве . Осенью 1900 г. Дмитрий Аполлинариевич стал студентом физического отделения

РЕФЕРАТ ПО ФИЗИКЕ

Устройство и принцип работы радиоприёмника

А. С. Попова

Выполнила: ученица 11 «б» класса

Овчинникова Ю.

Проверил: учитель физики

Гаврилькова И. Ю.

Новый Оскол 2003 г.

ПЛАН:

1. Первый радиоприёмник Попова.

2. Совершенствование радио Поповым.

3. Современные радиоприёмники.

Первый радиоприёмник Попова.

После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.

И тут людям помогло радио (в переводе с латинского radio означает "излучать", оно имеет общий корень и с другими латинскими словами radius – "луч"). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

История радио начинается с первого в мире радиоприёмника, созданного в 1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор, которые, по его словам, "заменил недостающие человеку электромагнитные чувства" и реагировал на электромагнитные волны. Сначала приёмник мог "чувствовать" только атмосферные электрические разряды – молнии. А затем научился принимать и записывать на ленту телеграммы, переданные по радио. Своим изобретением Попов подвёл итог работы большого числа учёных ряда стран мира.

Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М. Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны впервые сумел получить и исследовать немецкий физик

Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как уже говорилось, прибор для обнаружения и регистрирования электрических колебаний – радиоприёмник.

25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов сделал доклад "Об отношении металлических порошков к электрическим колебаниям", в котором изложил основные идеи о своём чувствительном приборе для обнаружения и регистрации электромагнитных колебаний. Этот прибор назвали грозоотметчиком. Прибор содержит все основные части радиоприёмника искровой радиотелеграфии, включая антенну и заземление.

Грозоотметчик А. С. Попова.

Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 - 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.

Первый радиоприёмник А. С. Попова (1895г.)

Передатчиком служил искровой разрядник, возбуждавший электромагнитные колебания в антенне, которую Попов впервые в мире использовал для беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Схема радиоприёмника А. С. Попова, сделанная им самим: N – контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы батареи, М – контакт антенны.

Принцип действия передатчика и приёмника Попова можно продемонстрировать с помощью установки, в которой диполь с когерером замкнут на батарею через гальванометр.

В момент приёма электромагнитной волны сопротивление когерера уменьшается, а ток в цепи увеличивается настолько, что стрелка гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала опилки когерера следует встряхнуть, например, лёгким постукиванием карандаша. В приёмной станции Попова эту операцию выполнял автоматически молоточек электрического звонка.

Схема демонстрации принципа действия приёмника Попова: К – когерер, Б – батарея.

Совершенствование радио Поповым.

Много сил и времени посвятил Попов совершенствованию своего радиоприёмника. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона.

Через 5 лет после постройки первого приёмника начала действовать регулярная линия беспроводной связи на расстояние 40 километров. Благодаря программе, переданной по этой линии зимой 1900 г., ледокол "Ермак" снял со льдины рыбаков, которых шторм унёс в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX века.

Современные радиоприёмники.

Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

Схема простейшего радиоприёмника.

Современные радиоприёмники обнаруживают и извлекают передаваемую информацию. Достигая антенны приёмника, радиоволны пересекают её провод и возбуждают в ней очень слабые частоты. В антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков. Поэтому один из важнейших элементов радиоприёмника – избирательное устройство, которое из всех принятых сигналов может отображать нужный. Таким устройством является колебательный контур. Контур воспринимает сигналы того радиопередатчика, высокочастотные колебания которого совпадают с собственной частотой колебаний контура приёмника. Назначение других элементов радиоприёмника заключается в том, чтобы усилить принятые колебания, выделить из их колебания звуковой частоты, усилить их и преобразовать в сигналы информации.

Различают 2 типа радиоприёмников: приёмники прямого усиления, в которых высокочастотные колебания до детектора только усиливаются, и супергетеродинные, в которых принятые сигналы преобразуются в колебания некоторой промежуточной частоты, усиливаются и только после этого поступают на детектор.

-

Список литературы :

1) Зубков Б. В., Чумаков С. В. "Энциклопедический словарь юного техника", Москва, "Педагогика", 1988.

2) Орехов В. П. "Колебания и волны в курсе физики средней школы, Москва, "Просвещение", 1977.

3) Мякишев Г. Я., Буховцев Б.Б. "Физика 11", Москва, "Просвещение", 1993.

Устройство и принцип работы радиоприёмника

А. С. Попова

Выполнила: ученица 11 «б» класса

Овчинникова Ю.

Проверил: учитель физики

Гаврилькова И. Ю.

Новый Оскол 2003 г.

ПЛАН:

1. Первый радиоприёмник Попова.

2. Совершенствование радио Поповым.

3. Современные радиоприёмники.

Первый радиоприёмник Попова.

После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.

И тут людям помогло радио (в переводе с латинского radio означает "излучать", оно имеет общий корень и с другими латинскими словами radius – "луч"). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

История радио начинается с первого в мире радиоприёмника, созданного в 1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор, которые, по его словам, "заменил недостающие человеку электромагнитные чувства" и реагировал на электромагнитные волны. Сначала приёмник мог "чувствовать" только атмосферные электрические разряды – молнии. А затем научился принимать и записывать на ленту телеграммы, переданные по радио. Своим изобретением Попов подвёл итог работы большого числа учёных ряда стран мира.

Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М. Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны впервые сумел получить и исследовать немецкий физик

Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как уже говорилось, прибор для обнаружения и регистрирования электрических колебаний – радиоприёмник.

25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов сделал доклад "Об отношении металлических порошков к электрическим колебаниям", в котором изложил основные идеи о своём чувствительном приборе для обнаружения и регистрации электромагнитных колебаний. Этот прибор назвали грозоотметчиком. Прибор содержит все основные части радиоприёмника искровой радиотелеграфии, включая антенну и заземление.

Грозоотметчик А. С. Попова.

Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 - 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.

Первый радиоприёмник А. С. Попова (1895г.)

Передатчиком служил искровой разрядник, возбуждавший электромагнитные колебания в антенне, которую Попов впервые в мире использовал для беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Схема радиоприёмника А. С. Попова, сделанная им самим: N – контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы батареи, М – контакт антенны.

Принцип действия передатчика и приёмника Попова можно продемонстрировать с помощью установки, в которой диполь с когерером замкнут на батарею через гальванометр.

В момент приёма электромагнитной волны сопротивление когерера уменьшается, а ток в цепи увеличивается настолько, что стрелка гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала опилки когерера следует встряхнуть, например, лёгким постукиванием карандаша. В приёмной станции Попова эту операцию выполнял автоматически молоточек электрического звонка.

Схема демонстрации принципа действия приёмника Попова: К – когерер, Б – батарея.

Совершенствование радио Поповым.

Много сил и времени посвятил Попов совершенствованию своего радиоприёмника. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона.

Через 5 лет после постройки первого приёмника начала действовать регулярная линия беспроводной связи на расстояние 40 километров. Благодаря программе, переданной по этой линии зимой 1900 г., ледокол "Ермак" снял со льдины рыбаков, которых шторм унёс в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX века.

Современные радиоприёмники.

Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

Схема простейшего радиоприёмника.

Современные радиоприёмники обнаруживают и извлекают передаваемую информацию. Достигая антенны приёмника, радиоволны пересекают её провод и возбуждают в ней очень слабые частоты. В антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков. Поэтому один из важнейших элементов радиоприёмника – избирательное устройство, которое из всех принятых сигналов может отображать нужный. Таким устройством является колебательный контур. Контур воспринимает сигналы того радиопередатчика, высокочастотные колебания которого совпадают с собственной частотой колебаний контура приёмника. Назначение других элементов радиоприёмника заключается в том, чтобы усилить принятые колебания, выделить из их колебания звуковой частоты, усилить их и преобразовать в сигналы информации.

Различают 2 типа радиоприёмников: приёмники прямого усиления, в которых высокочастотные колебания до детектора только усиливаются, и супергетеродинные, в которых принятые сигналы преобразуются в колебания некоторой промежуточной частоты, усиливаются и только после этого поступают на детектор.

-

Список литературы :

1) Зубков Б. В., Чумаков С. В. "Энциклопедический словарь юного техника", Москва, "Педагогика", 1988.

2) Орехов В. П. "Колебания и волны в курсе физики средней школы, Москва, "Просвещение", 1977.

3) Мякишев Г. Я., Буховцев Б.Б. "Физика 11", Москва, "Просвещение", 1993.

Страница 1

Первый радиоприёмник Попова.

После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.

И тут людям помогло радио (в переводе с латинского radio означает "излучать", оно имеет общий корень и с другими латинскими словами radius – "луч"). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

История радио начинается с первого в мире радиоприёмника, созданного в 1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор, которые, по его словам, "заменил недостающие человеку электромагнитные чувства" и реагировал на электромагнитные волны. Сначала приёмник мог "чувствовать" только атмосферные электрические разряды – молнии. А затем научился принимать и записывать на ленту телеграммы, переданные по радио. Своим изобретением Попов подвёл итог работы большого числа учёных ряда стран мира.

Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М. Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны впервые сумел получить и исследовать немецкий физик

Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как уже говорилось, прибор для обнаружения и регистрирования электрических колебаний – радиоприёмник.

25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов сделал доклад "Об отношении металлических порошков к электрическим колебаниям", в котором изложил основные идеи о своём чувствительном приборе для обнаружения и регистрации электромагнитных колебаний. Этот прибор назвали грозоотметчиком. Прибор содержит все основные части радиоприёмника искровой радиотелеграфии, включая антенну и заземление.

Грозоотметчик А. С. Попова.

Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 - 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.

Первый радиоприёмник А. С. Попова (1895г.)

Передатчиком служил искровой разрядник, возбуждавший электромагнитные колебания в антенне, которую Попов впервые в мире использовал для беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Схема радиоприёмника А. С. Попова, сделанная им самим: N – контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы батареи, М – контакт антенны.

Принцип действия передатчика и приёмника Попова можно продемонстрировать с помощью установки, в которой диполь с когерером замкнут на батарею через гальванометр.

В момент приёма электромагнитной волны сопротивление когерера уменьшается, а ток в цепи увеличивается настолько, что стрелка гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала опилки когерера следует встряхнуть, например, лёгким постукиванием карандаша. В приёмной станции Попова эту операцию выполнял автоматически молоточек электрического звонка.

Схема демонстрации принципа действия приёмника Попова: К – когерер, Б – батарея.

Совершенствование радио Поповым.

Много сил и времени посвятил Попов совершенствованию своего радиоприёмника. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона.

И хотя современные радиотехнические приборы имеют мало общего с их прародителем, основные принципы действия до сих пор остаются неизменными. Точно так же, как и в приемнике Попова, современный прибор имеет антенну, которая улавливает приходящую волну. Именно эти входящие волны вызывают электромагнитные колебания, которые перераспределяются для управления источниками, снабжающими энергией последующие цепи. В настоящее время этот процесс регулируется с помощью .

Во многих странах Запада изобретателем радио считается Маркони, хотя называются и другие кандидатуры: в Германии создателем радио считают Герца, в США и ряде балканских стран - Николу Теслу, в Беларуси Я. О. Наркевича-Иодку.

Когерер – основа первого радиоприемника

В своем первом радиоприемнике А.С. Попов применил когерер – деталь, которая непосредственно реагировала на входящие электромагнитные волны. Действие когерера было основано на реакции металлического порошка на появляющийся электрический разряд, создаваемый входящей электромагнитной волной.

Данный прибор состоял из стеклянной трубки и двух электродов, в которую были помещены мельчайшие металлические опилки. В спокойном состоянии когерер имеет очень большое сопротивление, так как опилки не были сцеплены между собой. Но когда приходящая электромагнитная волна создавала в когерере высокочастотный переменный электрический ток, то между опилками проскакивали искры и они оказывались спаянными между собой. После этого сопротивление когерера резко уменьшалось. Значение сопротивления менялось в 100-200 раз и с показателя в 100 000 Ом опускалось до 500-1000 Ом.

Остальные элементы радио Попова

Чтобы наладить автоматический прием сигнала, необходимо было вернуть когерер в первоначальное состояние, то есть «расцепить» все опилки. Для этого Попов применял звонковое устройство. Звонок включался от замыкания в реле и когерер встряхивался. После этого металлические опилки снова становились рассыпчатыми и были готовы к приему следующего сигнала.

Для повышения эффективности работы своего изобретения Попов использовал высоко поднятый кусок проволоки, к которому присоединил один из выводов когерера, а другой его вывод заземлил. Таким образом, проводящая поверхность земли стала частью открытого колебательного контура, а проволока – первой антенной. Именно это дало возможность увеличить дальность приема сигнала.

Попову приписывают также изобретение антенны, хотя сам Попов писал, что употребление мачты на станции отправления и на станции приема для передачи сигналов с помощью электрических колебаний - заслуга Николы Теслы.

Великий и электротехник А.С. Попов первым смог увидеть и оценить всю значимость применения электромагнитных волн на практике, в отличие от его иностранных коллег, которые считали их лишь интересным физическим явлением.

Статьи по теме: