Пневмопочта на железной дороге. Как это работает

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Москва 2012г.

ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ

Государственное образовательное учреждение

Профессионального образования

Московский технический университет связи и информатики

Кафедра защиты информации и техники почтовой связи

РЕФЕРАТ

Пневматическая почта

по дисциплине «Технические средства автоматизации»

Студент Павлов М.С.

Группа АП0851

Аннотация

История пневматической почты

На грани фантастики

Наше время

Пневматические транспортирующие установки

АВМ пневматическая

Преимущества пневматики

Пневматический привод

Пневмоприводы с поступательным движением

Принцип действия пневматических машин

Типовая схема пневмопривода

Достоинства пневмопривода

Недостатки пневмопривода

Список используемой литературы

Аннотация

пневмопочта транспорт воздух корреспонденция

Пневмопочта -- очень популярное, изобретение эпохи раннего капитализма с характерным городским пейзажем и контрастным социальным расслоением. Так же фигурирует субкультуре стимпанка, так и в связанной с ним литературе. Как понятно из названия, пневмопочта представляет собой транспорт для перемещения потоком воздуха по системе трубопроводов специальных капсул с корреспонденцией и небольшими предметами. Обычно она действует в пределах одного здания или, что встречается не столь часто, -- одного города.

История пневматической почты

Основные принципы пневматики были изложены Героном Александрийским. Этот великий инженер в первом столетии в своем трактате «Пневматика» (РнехмбфйкЬ) описал принципы и составляющие компоненты, которые до сих пор лежат в основе пневмотранспорта.

Пневматическая почта как средство почтовой связи была предложена в 1667 году французским физиком Дени Папеном.

Первое упоминание о похожей системе транспорта встречается еще в 1792 году. Тогда на 50-метровой колокольне Венского Собора Святого Стефана была размещена труба по которой сжатым воздухом передавалось письменное сообщение о замеченном городском пожаре.

Рисунок 1. Капсула-патрон, для передачи почтовых сообщений

Само же изобретение пневматической почты связывается с именем изобретателя почтовой марки -- Роуландом Хиллом. В 1836 году он предложил проект перемещения почтовых сообщений через систему подземных труб. Идея была интересной, но воплощена в жизнь она была несколько позже -- в 1854 году в Лондоне. Линия протяженностью 200м соединяла здание фондовой биржи с городским телеграфом. Еще через 8 лет была запущена линия между лондонским вокзалом Истон и почтамтом Кемпден. Надо заметить, что технология была довольно несовершенной, линии постоянно ломались и их вскоре прикрыли. Но это было только началом -- так или иначе проект показал себя с очень хорошей стороны. Все же столь оперативная доставки сообщений была очень привлекательной, и в 1862 год проект был усовершенствован, и в эксплуатацию введены еще несколько линий. Скорость пересылки сообщений по тем временам была едва ли не революционной -- расстояние в 300м патрон с сообщением преодолевал за 10 секунд. Потягаться с такой скорость телеграф, конечно, мог, но оригинал документа или, допустим, несколько монет по нему не перешлешь, да и его использование было далеко не всегда удобно. Так что нет ничего удивительного, что вслед за Англией изобретение начали перенимать и другие страны.

Рисунок 2. Фотография устройства с помощью которого осуществлялась передача пневмопочты

В 1875 году в Берлине сеть пневмопочты соединила 15 почтовых отделений, максимальная длина участка составляла 12 километров (контейнер преодолевал этот участок за 35 минут).

В Париже размах был еще большим -- она объединила все отделения почты и телеграфа, а суммарная длинна линий передачи составляла около 500 км. Были выпущены даже специальные карточки с оплаченным ответом:

Рисунок 3. Карточка для отправки сообщения пневматической почтой с оплаченным ответом, Франция

Немалую популярность пневмопочта приобрела в Штатах. В 1892 году в Филадельфии построили первую линию пневмопочты. Опять же -- между зданиями биржи и главного почтамта. Впрочем, ничего удивительного -- для биржи оперативный обмен информации был особенно важен. На доставку каждого патрона из главного почтамта на биржу (расстояние 0,5 англ. мили) затрачивалась 1 минута, а на обратный путь -- 65 секунд. Здесь же еще одна сеть соединяла главный почтамт со станцией Пенсильванской железной дороги. Здесь расстояние в 1 милю преодолевалось за 1 минуту 25 секунд. Вскоре пневмопочта для доставки писем появились в Бостоне и в Нью-Йорке. Трубы диаметром 8 дюймов подведены к столам для штемпелевания и сортировки писем. Патроны вмещали 600 писем. Широко разветвленная сеть пневмопочты, созданная в Нью-Йорке, соединяла главный почтамт и почтовые отделения. Протяженность наибольшего участка составляла 5600 метров, которые почта проходила за 7 минут. Ежедневно по трубам пересылали до 3 тонн корреспонденции.

Рис. 4. Пневмопочта в издательской конторе, Америка

Существовала пневмопочта в Италии, во Франции и в Австрии и, да, даже в России. У нас она использовалась на некоторых почтамтах Москвы и Санкт-Петербурга, но действовала только внутри самого здания.

На грани фантастики

Кроме прямого назначения предлагались и совершенно фантастические варианты использования такого способа пересылки. Так в 1867 году на Американской Научной Выставке в Нью Йорке был продемонстрирован прототип пневматического метро -- по трубе 32,6 м в длинной, 1,8 м в диаметре сжатым воздухом перемещался своеобразный «вагон», вмещающий 12 пассажиров. Два года спустя В Нью Йорке такой проект был действительно воплощен в жизнь -- линия длинной 95 метров была построена под Бродвеем. Правда просуществовала она всего несколько месяцев и вскоре была закрыта.

Примерно так это выглядело:

Рисунок 5. Метро на основе технологии пневмопочты

Подобных проектов, также как и проектов пневматических лифтов существовало огромное множество, но большинство из них были признаны экономически невыгодными и их разработка была заброшена.

Но вместе с тем, благодаря им, для людей пневмопочта стала чем-то вроде символа прогресса, и, разумеется, они полагали, что она будет использоваться и развиваться дальше. Жюль Верн в своем «Париже в 20 веке» (1863 год) описывает пневматические поезда, маршруты которых пересекают океаны. А в «Двадцатом веке» (1882) Альберта Робида такие поезда полностью вытеснили привычный железнодорожный транспорт. И подобных примеров можно привести еще огромное множество.

Да еще стоит вспомнить о том, что, за счет того, что пневмопочта применялась зачастую в крупных корпорациях, помимо прогресса, она стала ассоциироваться с бюрократией. И очень часто с помощью нее демонстрирует бумажную неразбериху, царившую в таких корпорациях.

Наше время

Так же, как и большинство стимпанковских технологий, пневмопочта в наше время почти мертва. К 50-м годам XX столетия ее практически полностью вытеснили современные средства обмена информацией. Нет, она используется и сейчас, но исключительно как средство передачи документов в пределах зданий крупных корпораций. К примеру в банках, где требуется пересылка оригиналов документов или в крупных лабораториях для доставки проб на анализ.

Рисунок 6. Современный терминал пневматического трубопровода

Осталось только одно место в мире, где сохранилась муниципальная пневматическая система доставки почты -- Прага, где почтовое отделение функционирует уже 1889 года. Под этим городом проложено 55 километров труб, по которым ежемесячно проходит в сумме около 35000 пакетов. Всего в сеть объеденное 46 предприятий: банки, газеты. телеграф, почтовые отделения, крупные корпорации.

Рис.7 Почтамт в Праге - терминал пневмопочты

Выгоды использования пневматической почты очевидны: почтовые автомобили в часы пик могут двигаться по Праге со скоростью меньше 20 км/ч. Капсулы «летят» по трубам гораздо быстрее, причем в любое время суток. Ко всему прочему, электричество, потребляемое пневматическими установками, обходится куда дешевле, чем топливо автомобилей.

Пневматические транспортирующие установки

Пневматические транспортирующие установки -- транспортирующие машины, предназначенные для перемещения грузов при помощи потока воздуха.

В зависимости от того, каким способом создаётся поток воздуха, пневматические транспортирующие установки разделяют на два типа:

установки нагнетательного типа --когда поток воздуха создаётся компрессорами, нагнетающими воздух под давлением 0,4-0,7 МПа;

установки всасываяющего типа -- когда поток воздуха создаётся вакуум-насосом, всасывающим воздух за счёт разрежения 0,01-0,04 МПа.

Пневматические транспортирующие установки позволяют транспортировать многие типы сыпучих грузов, для которых не пригодны гидравлические транспортирующие установки: цемент, гипс, алебастр и др. Они применяются, например, на механизированных складах вяжущих материалов на заводах железобетонных изделий. Одним из наиболее известных примеров использования пневматических транспортирующих установок является система транспортирования документов в Государственной библиотеке имени Ленина.

Пневматические транспортирующие установки позволяют полностью автоматизировать процесс транспортирования и избежать потерь транспортируемых грузов, однако они требуют для своей работы большого расхода электроэнергии и воздуха.

Рис.8. Схема приёмно отправочной станции в библиотеке имени В.И. Ленина

1. Тройник

2. Сигнальная лампа

3. Электромонтажная плата

4. Кнопочный номеронабиратель

5. Датчик отправления

6. Устройство блокирования занятой линии

8. Устройство для блокирования неправильно отправляемого патрона

9. Датчик прибытия

10. Проходной клапан

АВМ пневматическая

Аналоговая вычислительная машина, в которой переменные представлены в виде величин давления воздуха (газа) в различных точках специально построенной сети. Элементами такой АВМ являются дроссели, емкости и мембраны. Дроссели играют роль сопротивлений, могут быть постоянными, переменными, нелинейными и регулируемыми. Пневматические емкости представляют из себя глухие или проточные камеры, давление в которых вследствие сжимаемости воздуха растет по мере их наполнения. Мембраны используются для преобразования давления воздуха. В состав пневматической АВМ могут входить усилители, сумматоры, интеграторы, функциональные преобразователи и множительные устройства, которые соединяются между собой при помощи штуцеров и шлангов. Пневматические АВМ уступают в быстродействии электронным. В среднем подвижные элементы такой АВМ имеют время срабатывания около десятой доли миллисекунды, следовательно они могут пропускать частоты порядка 10 кГц. Такие АВМ отличаются значительными погрешностями, поэтому применяются там, где нельзя применять другие типы вычислительных машин: во взрывоопасных средах, в средах с высокими температурами, в автоматических системах химического производства. Из-за низкой стоимости и высокой надежности такие АВМ также применяют в металлургии, теплоэнергетике, газовой промышленности и т. п.

В 1960-х годах разрабатывались для получения средства дискретных вычислений с высокой радиационной стойкостью. Были разработаны элементы, выполняющие основные логические операции и элементы памяти без механических подвижных элементов.

Такие элементы очень долговечны, поскольку в них практически отсутствуют подвижные части, и, как следствие, нечему ломаться. В случае засорения каналов логические матрицы легко разбираются и промываются. Работает пневмокомпьютер от промышленной пневмосети. Логические матрицы легко штампуются на термопласт-автоматах из пластика. Для особых случаев матрица может быть изготовлена из тугоплавкой керамики, отлита из чугуна или другого сплава.

Сейчас пневмокомпьютеры используются в отраслях промышленности, где требуется повышенная вибрационная стойкость, работоспособность в очень широком диапазоне температур или требуется управление пневматическими силовыми устройствами. В последнем случае устраняется необходимость в преобразователях электрического сигнала в перемещение (электро-пневмопреобразователь + позиционер). Это -- роботы и автоматика, работающие в металлургии, в горнорудной промышленности. Известны случаи управления элементами авиационных двигателей, автоматикой ракетных систем, силовыми приводами вертолетов и самолетов.

Существует также целая категория производств, агрегатов и установок, где применение электричества, даже самых низких напряжений, очень нежелательно. Это химия органических соединений, нефтеперегонные заводы, подземная добыча угля и руды. Они до сих пор широко используют пневматическую автоматику.

Преимущества пневматики

1. Экологическая чистота

a. Результатом любой утечки из пневматической системы, использующей воздух, будет тот же атмосферный воздух.

2. Доступность

a. Атмосферный воздух всегда доступен на Земле

3. Надёжность

a. Пневматические системы обычно имеют долгие сроки службы и требуют меньшего обслуживания, чем гидравлика.

4. Хранение

a. Сжатый газ можно долго хранить в баллонах, позволяя использовать пневматику без электроэнергии.

5. Безопасность

a. Меньшая пожароопасность по сравнению с гидравликой на масле.

b. Пневматические машины из-за лучшей сжимаемости воздуха лучше защищены от перегрузок, чем гидравлика.

6. Технологичность

a. Пневматический механизм не требует дополнительного отвода. Отработанный воздух можно выпустить в атмосферу. Компрессор тоже может брать воздух непосредственно из атмосферы.

b. Пневматические машины легко разработать на базе обычных цилиндров и поршней.

c. Пневматические машины легко изготовить, поскольку пневматика обычно не требует деталей высокой точности.

7. Удельные показатели

a. Пневматическая система легче, чем гидравлика, при таких же давлениях.

b. Удельная мощность, передаваемая по одинаковым трубам, у пневматики выше, чем у гидросистем, а потери меньше.

c. У пневмоприводов выше скорость, чем у гидравлических.

Пневматический привод

Пневматический привод (пневмопривод) -- совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством энергии сжатого воздуха. Обязательными элементами пневмопривода являются компрессор (генератор пневматической энергии) и пневмодвигатель.

Рисунок 9. Поворотный пневмоцилиндр

Пневмопривод, подобно гидроприводу, представляет собой своего рода «пневматическую вставку» между приводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.).

Основное назначение пневмопривода, как и механической передачи, -- преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).

В общих чертах, передача энергии в пневмоприводе происходит следующим образом:

Приводной двигатель передаёт вращающий момент на вал компрессора, который сообщает энергию рабочему газу.

Рабочий газ после специальной подготовки по пневмолиниям через регулирующую аппаратуру поступает в пневмодвигатель, где пневматическая энергия преобразуется в механическую.

После этого рабочий газ выбрасывается в окружающую среду, в отличие от гидропривода, в котором рабочая жидкость по гидролиниям возвращается либо в гидробак, либо непосредственно к насосу.

В зависимости от характера движения выходного звена пневмодвигателя (вала пневмомотора или штока пневмоцилиндра), и соответственно, характера движения рабочего органа пневмопривод может быть вращательным или поступательным. Пневмоприводы с поступательным движением получили наибольшее распространение в технике.

Пневмоприводы с поступательным движением

По характеру воздействия на рабочий орган пневмоприводы с поступательным движением бывают:

· двухпозиционные, перемещающие рабочий орган между двумя крайними положениями;

· многопозиционные, перемещающие рабочий орган в различные положения.

По принципу действия пневматические приводы с поступательным движением бывают:

· одностороннего действия, возврат привода в исходное положение осуществляется механической пружиной;

· двухстороннего действия, перемещающие рабочий орган привода осуществляется сжатым воздухом.

По конструктивному исполнению пневмоприводы с поступательным движением делятся на:

· поршневые, представляющие собой цилиндр, в котором под воздействием сжатого воздуха либо пружины перемещается поршень (возможны два варианта исполнения: в односторонних поршневых пневмоприводах рабочий ход осуществляется за счёт сжатого воздуха, а холостой за счёт пружины; в двухсторонних -- и рабочий, и холостой ходы осуществляются за счёт сжатого воздуха);

· мембранные, представляющие собой герметичную камеру, разделённую мембраной на две полости; в данном случае цилиндр соединён с жёстким центром мембраны, на всю площадь которой и производит действие сжатый воздух (также, как и поршневые, выполняются в двух видах -- одно- либо двухстороннем).

Так же есть:

· Сильфонные - применяются реже. Практически всегда одностороннего действия: усилие возврата может создаваться как упругостью самого сильфон, так и с использованием дополнительной пружины.

· В особых случаях (когда требуется повышенное быстродействие) применяют специальный тип пневмоприводов -- вибрационный пневмопривод релейного типа.

Одно из применений пневматических приводов является использование их в качестве силовых приводов на пневматических тренажерах.

Принцип действия пневматических машин

Многие пневматические машины имеют свои конструктивные аналоги среди объёмных гидравлических машин. В частности, широко применяются аксиально-поршневые пневмомоторы и компрессоры, шестерённые и пластинчатые пневмомоторы, пневмоцилиндры

Типовая схема пневмопривода

Воздух в пневмосистему поступает через воздухозаборник.

Фильтр осуществляет очистку воздуха в целях предупреждения повреждения элементов привода и уменьшения их износа.

Компрессор осуществляет сжатие воздуха.

Поскольку, согласно закону Шарля, сжатый в компрессоре воздух имеет высокую температуру, то перед подачей воздуха потребителям (как правило, пневмодвигателям) воздух охлаждают в теплообменнике (в холодильнике).

Чтобы предотвратить обледенение пневмодвигателей вследствие расширения в них воздуха, а также для уменьшения корозии деталей, в пневмосистеме устанавливают влагоотделитель.

Воздухосборник служит для создания запаса сжатого воздуха, а также для сглаживания пульсаций давления в пневмосистеме. Эти пульсации обусловлены принципом работы объёмных компрессоров (например, поршневых), подающих воздух в систему порциями.

В маслораспылителе в сжатый воздух добавляется смазка, благодаря чему уменьшается трение между подвижными деталями пневмопривода и предотвращает их заклинивание.

В пневмоприводе обязательно устанавливается редукционный клапан, обеспечивающий подачу к пневмодвигателям сжатого воздуха при постоянном давлении.

Рисунок 10. Типовая схема пневмопривода

1. воздухозаборник;

2. фильтр;

3. компрессор;

4. теплообменник (холодильник);

5. влагоотделитель;

6. воздухосборник (ресивер);

7. предохранительный клапан;

8. Дроссель;

9. маслораспылитель;

10. редукционный клапан;

11. дроссель;

12. распределитель;

13. пневмомотор;

И манометр - М

Распределитель управляет движением выходных звеньев пневмодвигателя.

В пневмодвигателе (пневмомоторе или пневмоцилиндре) энергия сжатого воздуха преобразуется в механическую энергию.

Достоинства пневмопривода

1. в отличие от гидропривода -- отсутствие необходимости возвращать рабочее тело (воздух) назад к компрессору;

2. меньший вес рабочего тела по сравнению с гидроприводом (актуально для ракетостроения);

3. меньший вес исполнительных устройств по сравнению с электрическими;

4. возможность упростить систему за счет использования в качестве источника энергии баллона со сжатым газом, такие системы иногда используют вместо пиропатронов, есть системы, где давление в баллоне достигает 500 МПа;

5. простота и экономичность, обусловленные дешевизной рабочего газа;

6. быстрота срабатывания и большие частоты вращения пневмомоторов (до нескольких десятков тысяч оборотов в минуту);

7. пожаробезопасность и нейтральность рабочей среды, обеспечивающая возможность применения пневмопривода в шахтах и на химических производствах;

8. в сравнении с гидроприводом -- способность передавать пневматическую энергию на большие расстояния (до нескольких километров), что позволяет использовать пневмопривод в качестве магистрального в шахтах и на рудниках;

9. в отличие от гидропривода, пневмопривод менее чувствителен к изменению температуры окружающей среды вследствие меньшей зависимости КПД от утечек рабочей среды (рабочего газа), поэтому изменение зазоров между деталями пневмооборудования и вязкости рабочей среды не оказывают серьёзного влияния на рабочие параметры пневмопривода; это делает пневмопривод удобным для использования в горячих цехах металлургических предприятий.

Недостатки пневмопривода

2. нагревание и охлаждение рабочего газа в процессе сжатия в компрессорах и расширения в пневмомоторах; этот недостаток обусловлен законами термодинамики, и приводит к следующим проблемам:

3. возможность обмерзания пневмосистем;

4. конденсация водяных паров из рабочего газа, и в связи с этим необходимость его осушения;

5. высокая стоимость пневматической энергии по сравнению с электрической (примерно в 3-4 раза), что важно, например, при использовании пневмопривода в шахтах;

6. ещё более низкий КПД, чем у гидропривода;

7. низкие точность срабатывания и плавность хода;

8. возможность взрывного разрыва трубопроводов или производственного травматизма, из-за чего в промышленном пневмоприводе применяются небольшие давления рабочего газа (обычно давление в пневмосистемах не превышает 1 МПа, хотя известны пневмосистемы с рабочим давлением до 7 МПа -- например, на атомных электростанциях), и, как следствие, усилия на рабочих органах значительно мемньшие в сравнении с гидроприводом). Там, где такой проблемы нет (на ракетах и самолетах) или размеры систем небольшие, давления могут достигать 20 МПа и даже выше.

9. для регулирования величины поворота штока привода необходимо использование дорогостоящих устройств -- позиционеров.

Список используемой литературы

1. http://en.wikipedia.org/

2. http://ru.wikipedia.org/

3. http://steampunker.ru

Размещено на Allbest.ru

...

Подобные документы

    Специфика создания справочно-правовых систем, обзор их рынка в России. Преимущества использования справочно-правовой системы "КонсультантПлюс", достоинства, примеры решения поисковых задач с ее помощью, преимущества использования для разных специалистов.

    научная работа , добавлен 08.06.2010

    Простейшая GPSS-модель, имитирующая работу СМО с однородным потоком заявок и позволяющая получить представление об операторах GPSS World. Стандартный отчет, формируемый автоматически по завершении моделирования и содержащий результаты моделирования.

    лабораторная работа , добавлен 17.09.2014

    Общее описание системы автоматизации контроля дорожным движением на перекрестке. Установка кабельной коммуникации, смотровых устройств. Выбор трубопроводов и их прокладка. Правила безопасности труда при строительстве телефонной кабельной канализации.

    курсовая работа , добавлен 20.08.2015

    Топологии компьютерных сетей. Организация взаимодействия компьютеров. Классификация компьютерных сетей по территориальной распространенности. Услуги службы голосовая "почта". Характеристика системы Видеотекс. Недостатки и достоинства одноранговых сетей.

    презентация , добавлен 12.09.2014

    Сущность и история развития РУП "Белпочта". Услуги, предоставляемые подразделениями связи. Роль средств коммуникации в экономическом развитии страны. Почтовая связь как неотъемлемая часть производственной и социальной инфраструктуры Республики Беларусь.

    реферат , добавлен 17.05.2016

    Задачи и основные параметры радиолокационной станции системы управления воздушным движением. Особенности функциональных узлов РЛС "Скала-М". Потенциально опасные и вредоносные производственные факторы, организация рабочих мест диспетчерской службы.

    курсовая работа , добавлен 05.03.2011

    Конструкция и принцип действия датчиков перемещения различных типов: емкостных, оптических, индуктивных, вихретоковых, ультразвуковых, магниторезистивных, магнитострикционных, потенциометрических, на основе эффекта Холла. Области использования приборов.

    реферат , добавлен 06.06.2015

    Проектирование бесконтактного аппарата на примере электромагнитного датчика линейного перемещения. Расчет обмоток и сердечника, конструирование датчиков на основе линейно регулируемых дифференциальных трансформаторов, исследование их рабочих режимов.

    курсовая работа , добавлен 11.06.2015

    Звукозапись как процесс сохранения воздушных колебаний в заданном звуковом диапазоне на носителе с помощью специальных приборов. История попыток создания аппаратов, воспроизводящих звуки. Механические музыкальные инструменты, воспроизводящие мелодии.

    реферат , добавлен 10.06.2014

    Конструкция преобразователя тока блока питания системы кондиционирования воздуха. Система распределения питания. Методы подавления помех в системе распределения питания при проектировании многослойных печатных плат. Описание модернизированной платы.

Что такое пневмопочта?

Пневматическая почта, пневмопочта (от греч. pneumatikos — воздушный) — система перемещения различных грузов под действием сжатого или наоборот, разреженного воздуха. Закрытые пассивные капсулы (контейнеры) перемещаются по системе трубопроводов, перенося внутри себя не тяжёлые грузы, документы.

Используется в организациях с необходимостью пересылки оригиналов документов, например, в банках, складах и библиотеках, наличных денег в супермаркетах и кассах банков, анализов, историй болезней, рентгеновских снимков в лечебных учреждениях, а так же проб и образцов на промышленных предприятиях (в заводские лаборатории или отделы по контролю качества).

История возникновения систем пневматической почты (СПП) имеет свое начало в XIX веке. Уже тогда люди впервые задумались о возможности пересылки почтовых отправлений с большой скоростью и без участия курьерской службы.

Системы пневмопочты позволяют:

  • обеспечить надежность и безопасность пересылки платежных документов (и, при необходимости, денег);
  • оптимизировать работу сотрудников за счет более оперативной пересылки документов;
  • обеспечить современный уровень обслуживания клиентов;
  • создать более комфортные условия при обслуживании клиентов;
  • улучшить условия работы персонала.

Как работает пневмопочта:

Система пневматической почты (СПП ) состоит из следующих основных элементов: компрессора, центрального контроллера, стабилизированного источника питания, блока управления компрессором, магистрального трубопровода, маршрутных стрелок и рабочих станций с пультами управления.

Основное оборудование СПП устанавливается, как правило, за подвесным потолком, за исключением центрального контроллера и станций с пультами управления.

Компрессор двунаправленного действия создает, в зависимости от команд, поступающих с центрального контроллера, давление или разрежение в системе, определяя тем самым направление движения капсулы.

Установленный в системе байпас с системой клапанов осуществляет плавное торможение капсулы в зоне компрессора.

Центральный контроллер с помощью заложенной в энергонезависимой памяти программы полностью управляет работой всей СПП.

Автоматические маршрутные стрелки устанавливают соединение отдельных участков магистрального трубопровода, определяя путь, по которому движется капсула во время фаз нагнетания или разрежения.

Рабочие станции позволяют загружать или извлекать капсулы из СПП.

Любая пересылка в СПП состоит из нескольких фаз:

  • загрузка капсулы в станцию отправителя.
  • движение капсулы от станции отправителя в сторону компрессора (разрежение).
  • движение капсулы от компрессора до станции получателя (давление).
  • прием капсулы на станции получателя и извлечение ее.

Для отправки капсулы пользователь набирает на клавиатуре адрес станции-получателя, вставляет капсулу в приемное отверстие станции. Далее центральный контроллер определяет путь от станции отправителя до компрессора и устанавливает маршрутные стрелки в нужное положение.

Если стрелки не смогут по каким-либо причинам занять заданного центральным контроллером положения, на дисплее контроллера и пультах пользователей появляется сообщение об ошибке и система переходит в режим диагностики и инициализации.

Если стрелки заняли свое положение, центральный контроллер дает команду компрессору на создание разрежения в системе. Капсула начинает свое движение к компрессору. Прохождение капсулы через стрелки фиксируется оптическими датчиками. После прохождения капсулой последней на своем пути стрелки, компрессор отключается и капсула плавно тормозится в байпасе.

Далее центральный контроллер определяет путь движения капсулы от компрессора до станции назначения и устанавливает маршрутные стрелки в соответствующее положение. Компрессор получает команду на создание давления в системе и капсула начинает движение от компрессора к станции получателя. При прохождении капсулой последнего оптического датчика компрессор отключается и капсула плавно тормозится с помощью системы воздушных клапанов в рабочей станции.

После прихода капсулы на рабочую станцию система переходит в режим готовности для следующей пересылки.

Перемещение механизмов и прохождение капсулы в маршрутных стрелках контролируется с помощью специальных датчиков, что исключает "зажим" капсулы в стрелке.

В случае, если по каким-либо причинам капсула за установленное время не попадет в станцию получателя, все станции в системе блокируются и осуществить передачу становится невозможно. Центральный контроллер переводит систему в режим диагностики и производит "продувку" системы. В режиме продувки системы компрессор последовательно производит "всасывание" с каждой рабочей станции имеющихся в системе капсул до байпаса (компрессора), а затем отправляет "найденные" капсулы на станцию «сброса». На этот случай в системе назначена специальная станция сброса.

После извлечения всех капсул из системы центральный контроллер переводит ее в режим готовности.

Современные системы пневмопочты:

Развитие электронных технологий, возникновение новых полимерных материалов дали толчок созданию систем пневматической почты нового типа. Эти системы отличаются высокой степенью надежности и широчайшими функциональными возможностями.

Применение микропроцессоров для управления пневмопочтой позволяет создавать системы, соединяющие между собой несколько сотен пользователей.

Современное программное обеспечение, работающее под управлением операционной системы MS Windows, позволяет оперативно перенастроить систему, произвести статистический анализ и полностью контролировать все текущие операции.

Применение программируемых микрочипов, устанавливаемых в капсулы, позволяют совершенно точно определять местонахождение капсулы с заданным кодом. Выдача полученных капсул может осуществляться по предъявлению оператором специальной магнитной карты.

Пневматическая почта нашла широкое применение в различных областях человеческой деятельности: банки, торговые организации, промышленные предприятия, медицинские учреждения и т.п.

Сколько стоит пневмопочта?

На стоимость системы влияет ряд количественных и качественных характеристик. В первую очередь - это разветвленность системы, типы станций, характеристики помещения. Самой «бюджетной» системой принято считать систему «точка-точка» при протяженности 100 м, двусторонняя система стоит примерно 2500-3000 Евро. Более сложные системы, как правило, требуют индивидуального расчета.

(от греч. pneumatikós - воздушный)

вид пневматического транспорта (См. Пневматический транспорт) для перемещения документов и мелких предметов потоком воздуха по трубопроводам. П. п. используют для пересылки документов на предприятиях связи, в библиотеках, банках и др. учреждениях, историй болезни и лекарств в больницах, деталей и инструментов, проб (например, горячего металла) в экспресс-лаборатории на промышленных предприятиях и т. д. Первая действующая установка П. п. с протяжённостью трубопроводов 100 м была построена на Лондонском телеграфе в 1853.

Основные элементы установок П. п.: трубопроводы, транспортные контейнеры, приёмно-отправительные устройства и воздуходувки (См. Воздуходувка). Транспортные контейнеры - патроны или капсулы с вложенными в них предметами - с помощью приёмно-отправительного устройства закладываются в трубопровод и под действием перепада давления, создаваемого воздуходувкой, движутся от станции отправления к станции назначения, где изымаются из него. Различают П. п. внутреннюю, функционирующую внутри здания, и внешнюю, связывающую предприятия и учреждения в городе. Трубопроводы внутренней П. п. обычно выполняют из тонкостенных цельнотянутых труб внутренним диаметром 50-120 мм. Их общая длина достигает нескольких сотен м. Наименьший радиус кривизны трубопровода Пневматическая почта1 м. Материал труб - латунь, дюралюминий, сталь, а с начала 60-х гг. 20 в. - часто также полихлорвинил. Для перемещения документов и предметов стандартной формы без упаковки в патроны иногда пользуются трубопроводами прямоугольного сечения (например, 10×70 мм ). В установках внешней П. п. используют, как правило, стальные, пластмассовые или асбестоцементные трубы диаметром 65-1000 мм, прокладываемые в грунте. Их длина между соседними станциями достигает нескольких км, а общая длина - нескольких сотен км (например, в Париже - 600 км ).

Патрон представляет собой короткий отрезок трубы, диаметр которой примерно на 25% меньше внутреннего диаметра трубопровода (рис. 1 ). На его внешней поверхности располагаются 2 (реже 1) уплотнительные головки из фетра или кожи. Средняя скорость движения патрона с вложениями массой до 1-2 кг составляет 6-20 м/сек (в отдельных установках до 45 м/сек ). Производительность установок П. п. - до 2,4 тыс. патронов в час.

Приёмно-отправительное устройство в простейшем исполнении представляет собой разрыв или продольный вырез в трубопроводе, закрываемый вручную подвижной гильзой (рис. 2 ). В однотрубных реверсивных установках П. п. приёмно-отправительные станции выполняют в виде герметичного ящика, внутри которого трубопровод имеет продольный вырез. Патрон принимается автоматически с помощью клина, выдвигаемого электромагнитом (рис. 3 ).

Для воздухоснабжения установок П. п. используют воздуходувки и вентиляторы, создающие в трубопроводах или разрежение, или избыточное давление воздуха. Давление регулируется при помощи заслонок и дроссельных клапанов.

Применяют линейные, радиальные и кольцевые схемы соединения станций П. п. (рис. 4 ). При малых грузопотоках (до 100 патронов в час) несколько станций соединяют одним трубопроводом - линией двухстороннего действия (рис. 4 , а). В движении на такой линии может находиться только 1 патрон. В однотрубных установках внешней П. п. для увеличения их производительности применяют разъезды, которые располагают как в середине участка линии между двумя станциями, так и на станциях. При такой конструкции на участке могут двигаться одновременно несколько патронов. Двухтрубная линия (рис. 4 , б) обеспечивает независимое движение нескольких патронов в обоих направлениях. Несколько (от 2 до 6) линий могут подключаться к одному узлу - распределительному центру с ручным или автоматическим управлением, в котором производится перегрузка и сортировка патронов (рис. 4 , в). По кольцевой схеме (рис. 4 , г) патроны пересылаются между любыми станциями без перегрузок. При двухтрубной линии и кольцевой схеме приёмные станции оборудуют стрелками (на ответвлениях линии, рис. 5 ). Управление стрелками осуществляется при помощи т. н. несущей памяти - системы контактных или магнитных колец на гильзе патрона или централизованно, например при помощи телефонных искателей.

Перспективным направлением развития П. п. является применение труб большого диаметра (450 мм в ФРГ, 600 мм во Франции, 1020 мм в СССР) и контейнеров на колёсах, соединённых в поезда (по 5-6 контейнеров в каждом), что позволяет транспортировать грузы общей массой Пневматическая почта 10 т со скоростью 40-60 км/ч.

Лит.: Руденко Н., Говоров Ф., Пневмотранспорт документов и мелких предметов в патронах (пневмопочта), М., 1963; Контейнерный трубопроводный пневмотранспорт промышленных грузов, М., 1972; Heck G., Frerichs I., Eske W., Die Groβrohrepost, Bd 1-2, Baden-Baden, 1965-69.

И. А. Ламм, Г. А. Птицын.

В системах административного управления информация пере­дается как путем транспортировки документов курьером или с по­мощью пневматической почты, так и с использованием систем автоматизированной передачи информации по каналам связи.

Пневмопочта - это простой и эффективный способ ускорить передачу оригиналов документов и одновременно освободить пер­сонал от ненужного, а иногда и нежелательного хождения. Таким образом, пневмопочта является дополнением к электронным сред­ствам передачи информации, а применение специальных развет-вителей - стрелок - позволяет создавать систему любой конфи­гурации и формы. Изобретенная в 1835 г. в Австрии и первоначаль­но построенная в Англии (1853 г.) и Германии (1865 г.) пневмопочта достаточно широко применяется в офисной, архивной деятельнос­ти, в библиотеках и прочем.

Ручная и механизированная транспортировки документов яв­ляются весьма распространенными способами передачи информа­ции в офисах. Однако скорость передачи и объем доставляемой ин­формации не всегда могут удовлетворить пользователя. Поэтому для оперативной передачи электронных документов используют средства и системы автоматизированной передачи информации по техническим каналам связи.

Системы пневматической почты предназначены для «живой» пересылки различных предметов и ценностей (оригиналов доку­ментов, наличных денег, ценностей и прочего) как внутри здания, так и между зданиями, для чего прокладка трубопровода может вестись под землей или снаружи на специальной подвеске. Внутри здания трубопровод прокладывается над подвесными потолками. Транспортировка между передающими и приемными устройства­ми (станциями) происходит по трубопроводу в герметичных капсу­лах со скоростью 5-8 м/с.

Несмотря на широкое применение средств электронной переда­чи информации, оборот оригинальных документов сохраняется. Не каждая организация имеет возможность полностью перейти на электронный документооборот. Это связано с проблемами как тех­нического, юридического, так и психологического характера.

Основные технические характеристики системы пневматиче­ской почты:

Система вакуумно-нагнетательного типа (компрессор);

Диаметр трубы: от 60 до 200 мм (стандартный - 110 мм);

Материал транспортирующей трубы - поливинилхлорид (ПВХ);

Длина транспортирующей капсулы (патрона) от 22 до 34 см;

Вес транспортируемого груза до 10 кг;

Практически бесшумная работа системы;

Скорость движения капсулы до 45 м/с;

Возможность дополнительного оснащения средствами безо­пасности («электронные ключи», регистрация и т. д.);

Возможность расширения уже имеющейся системы;


Возможность подключения принтера или ПК для полного контроля за передачей информации;

Простота обслуживания.

Когда капсула оказывается в трубе, необходимо, чтобы она дос­тигла нужного пункта назначения.

Наиболее простая конфигурация пневмопроводной сети линей­ная - терминалы приема и отправки соединены напрямую. Для автоматического возврата капсулы можно проложить вторую ли­нию трубопровода, что не вполне целесообразно.

Радиальная схема транспортировки. Ее, как правило, использу­ют при пересылке отправлений из нескольких исходящих терми­налов на одну приемную станцию.

Более сложный способ организации линии - кольцевой, когда вдоль трубопровода, замкнутого в кольцо, расположено несколько приемо-передающих терминалов. Здесь необходима система Адре­сации.

Если станций немного, информацию об адресе может нести сам патрон. При большом числе станций для адресации на станциях отправки ставят пульты с кнопочными номеронабирателями. Каж­дая станция имеет свой код, и в момент отправки патрона станция приема уже готова к его приходу.

Наиболее сложно организованы системы пневмопочты с ответв­лениями. Патроны движутся, как поезда, изменяя маршрут на стрелках. В современных системах пневмопочты роль диспетчеров выполняют микропроцессоры. Они следят за тем, чтобы коррес­понденция попала по нужному адресу, управляют работой стрелок и выбирают оптимальный маршрут следования. Существуют как трех-, так и шестипозиционные стрелки, которые позволяют суще­ственно упростить монтаж и обслуживание. Специальная програм­ма следит за абсолютно мягким приходом капсулы, адаптируясь к весу пересылаемых в них предметов.

С помощью компактного специализированного контроллера и принтера можно вести контроль за пересылкой капсул с указанием времени пересылки, имен пользователей, адресов пересылки в ре­жиме реального времени. Более сложный контроллер позволяет управлять пятью независимыми линиями пневмопочты, работаю­щими одновременно для увеличения общей производительности си­стемы.

Применение специальных материалов на основе тефлона позво­ляет обходиться без смазки, замены деталей на протяжении многих лет. Специальное программное обеспечение точно определит место в системе, в котором необходимо произвести техническое обслужи­вание.


СРЕДСТВА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

5.1. Общая характеристика средств вычислительной техники

Средства вычислительной техники возникли и развивались в ответ на потребности человеческого общества в счете сначала в торговле, а затем в религиозной и научной деятельности. Они прошли свой собственный путь развития от простейших счетных приспособлений (кучек однотипных предметов) до сложнейших компьютерных комплексов нашего времени. При этом основным побудительным фактором их прогресса являлись все возрастав­шие потребности выполнения вычислительных работ, обработки числовой информации. Лишь в исторически недалеком прошлом (30-40 лет назад) вычислительная техника стала использоваться для решения задач обработки текстовой информации, а впослед­ствии - информации других форм ее представления (видео и аудио). Это привело к широкому использованию средств компью­терной техники в самых разнообразных сферах человеческой дея­тельности.

Существуют различные классификации компьютерной техники:

По этапам развития (по поколениям);

Условиям эксплуатации;

Производительности;

Потребительским свойствам.

Классификация по этапам развития (по поколениям) отражает эволюцию вычислительной техники с точки зрения используемой элементной базы и архитектуры ЭВМ:

первое поколение (1950-е гг.) - ЭВМ на электронных вакуум­ных лампах;

второе поколение (1960-е гг.) - ЭВМ на дискретных полупро­водниковых приборах (транзисторах);

третье поколение (1970-е гг.) - ЭВМ на полупроводниковых ин­тегральных схемах с малой и средней степенью интеграции (от со­тен до тысяч транзисторов в одном конструктиве);

четвертое поколение (1980-е гг.) - ЭВМ на больших и сверх­больших интегральных схемах (от десятков тысяч до миллионов транзисторов в одном конструктиве);

пятое поколение (1990-е гг.) - ЭВМ со многими десятками па­раллельно работающих микропроцессоров или на сверхсложных микропроцессорах с параллельно-векторной структурой, одновре­менно выполняющих десятки последовательных команд;

шестое и последующие поколения - оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой (распреде­ленной сетью большого числа несложных микропроцессоров, мо­делирующей архитектуру нейронных биологических систем).

По условиям эксплуатации компьютеры делятся на два типа:

Универсальные;

Специальные.

Универсальные предназначены для решения широкого класса задач при нормальных условиях эксплуатации.

Специальные компьютеры служат для решения более узкого класса задач или даже одной задачи, требующей многократного решения, и функционируют в особых условиях эксплуатации. Ма­шинные ресурсы специальных компьютеров часто ограничены. Однако их узкая ориентация позволяет реализовать заданный класс задач наиболее эффективно. Специальные компьютеры управляют технологическими установками, работают в операционных или ма­шинах скорой помощи, на ракетах, самолетах и вертолетах, вблизи высоковольтных линий передач или в зоне действия радаров, ра­диопередатчиков, в неотапливаемых помещениях, под водой на глубине, в условиях пыли, грязи, вибраций, взрывоопасных газов и т. п.

По производительности и характеру использования компью­теры можно условно подразделить:

На микрокомпьютеры;

Мини-компьютеры;

Мэйнфреймы (универсальные компьютеры);

Суперкомпьютеры.

В классе микрокомпьютеров выделяют микроконтроллеры и персональные компьютеры.

Микроконтроллер - это основанное на микропроцессоре спе­циализированное устройство, встраиваемое в систему управления или технологическую линию.

Персональные компьютеры представляют собой вычислитель­ные системы, все ресурсы которых полностью направлены на обес­печение деятельности одного рабочего места. Это наиболее много­численный класс средств вычислительной техники, в составе которого можно выделить персональные компьютеры IBM PC и совмес­тимые с ними, а также персональные компьютеры Macintosh фир­мы Apple. Интенсивное развитие современных информационных технологий связано именно с широким распространением с начала 1980-х гг. персональных компьютеров, сочетающих относительную дешевизну с достаточно широкими для непрофессионального поль­зователя возможностями.

Мини-компьютерами и супермини-компьютерами называют­ся машины, конструктивно выполненные в одной стойке, т. е. зани­мающие объем порядка половины кубометра. Данные ЭВМ истори­чески предшествовали микрокомпьютерам, по своим техническим и эксплуатационным характеристикам уступают современным микрокомпьютерам и в настоящее время не производятся.

Мэйнфреймы (main frame), иногда называемые корпоративны­ми компьютерами, представляют собой вычислительные системы, обеспечивающие совместную деятельность многих работников в рам­ках одной организации, одного проекта, одной сферы информаци­онной деятельности при использовании одних и тех же информа­ционно-вычислительных ресурсов. Это многопользовательские вычислительные системы, имеющие центральный блок с большой вычислительной мощностью и значительными информационными ресурсами, к которому подсоединяется большое количество рабо­чих мест с минимальной оснащенностью (видеотерминал, клавиа­тура, устройство позиционирования типа «мышь» и, возможно, устройство печати).

В принципе, в качестве рабочих мест, подсоединенных к цент­ральному блоку корпоративного компьютера, могут быть исполь­зованы и персональные компьютеры. Область использования корпоративных компьютеров - реализация информационных технологий обеспечения управленческой деятельности в крупных финансовых и производственных организациях, организация раз­личных информационных систем, обслуживающих большое коли­чество пользователей в рамках одной функции (биржевые и бан­ковские системы, бронирование и продажа билетов для оказания транспортных услуг населению и т. п.).

Суперкомпьютеры представляют собой вычислительные систе­мы с предельными характеристиками вычислительной мощности и информационных ресурсов. Основная характеристика здесь была и есть производительность, которая всегда неограниченно требуется в особо мощных и ответственных приложениях. Это очень мощные компьютеры с производительностью свыше 100 MFLOPS (милли­онов операций над числами с плавающей точкой в секунду).

Борьба между производителями суперкомпьютеров идет за пер­вую позицию в рейтинге Тор 500 (упорядоченный список 500 наиболее производительных ЭВМ, составляемый два раза в год), т. е. за абсолютный рекорд производительности. Достигнутая производи­тельность уже давно перешагнула за миллиард операций в секун­ду - гигафлопные компьютеры. Разрабатываются и создаются компьютеры, выполняющие уже триллионы (!) операций в секун­ду, - терафлопные компьютеры.

Область применения суперкомпьютеров - задачи метеороло­гии, физики элементарных частиц, моделирования ядерных взры­вов (в условиях запрета натурных испытаний), сбора и обработки данных, поступающих с места ведения военных действий. Пред­стоящая задача - фолдинг белков. Это расчет наиболее вероятных конфигураций молекул белков. Например, молекула гемоглобина, состоящая из четырех единиц по 150 аминокислот, может иметь минимум 10 150 состояний. Понятно, что масштабы офисной дея­тельности не предполагают использование ЭВМ этого класса.

Что мы предлагаем

Группа компаний «Юнайт» осуществляем поставку, монтаж и техническое обслуживание систем пневмопочты и обучение персонала. Каждая система, установленная нами, отвечает специфическим требованиям Заказчика.

Как работает система пневмопочты

Для отправки капсулы пользователь набирает на клавиатуре адрес станции-получателя, вставляет капсулу в приемное отверстие станции. Далее центральный контроллер определяет путь от станции отправителя до компрессора и устанавливает маршрутные стрелки в нужное положение.

Если стрелки не смогут по каким-либо причинам занять заданного центральным контроллером положения, на дисплее контроллера и пультах пользователей появляется сообщение об ошибке и система переходит в режим диагностики и инициализации.

Если стрелки заняли свое положение, центральный контроллер дает команду компрессору на создание разрежения в системе. Капсула начинает свое движение к компрессору. Прохождение капсулы через стрелки фиксируется оптическими датчиками. После прохождения капсулой последней на своем пути стрелки, компрессор отключается и капсула плавно тормозится в байпасе.

Далее центральный контроллер определяет путь движения капсулы от компрессора до станции назначения и устанавливает маршрутные стрелки в соответствующее положение. Компрессор получает команду на создание давления в системе и капсула начинает движение от компрессора к станции получателя. При прохождении капсулой последнего оптического датчика компрессор отключается и капсула плавно тормозится с помощью системы воздушных клапанов в рабочей станции.

После прихода капсулы на рабочую станцию система переходит в режим готовности для следующей пересылки.

Перемещение механизмов и прохождение капсулы в маршрутных стрелках контролируется с помощью специальных датчиков, что исключает "зажим" капсулы в стрелке.

В случае если по каким-либо причинам капсула за установленное время не попадет в станцию получателя, все станции в системе блокируются и осуществить передачу становится невозможно. Центральный контроллер переводит систему в режим диагностики и производит "продувку" системы. В режиме продувки системы компрессор последовательно производит "всасывание" с каждой рабочей станции имеющихся в системе капсул до байпаса (компрессора), а затем отправляет "найденные" капсулы на станцию "сброса". На этот случай в системе назначена специальная станция сброса.

После извлечения всех капсул из системы центральный контроллер переводит ее в режим готовности.

Виды пневмопочты по количеству станций

Системы пневматической почты условно можно разделить на односторонние и двусторонние. В односторонних системах капсулы передаются только в одну сторону, на одну принимающую станции. В двусторонних системах имеется возможность передачи капсул с любой станции на любую.

Типы двусторонних систем

    с двумя приемо-передающими станциями ("точка-точка");

    более чем с двумя приемо-передающими станциями ("многоточечные").

Устройство системы пневмопочты Sumetzberger

    Компрессор двунаправленного действия создает, в зависимости от команд, поступающих с центрального контроллера, давление или разрежение в системе, определяя тем самым направление движения капсулы.

    Установленный в системе байпас с системой клапанов осуществляет плавное торможение капсулы в зоне компрессора.

    Центральный контроллер с помощью заложенной в энергонезависимой памяти программы полностью управляет работой всей Системы пневмопочты (СПП).

    Автоматические маршрутные стрелки устанавливают соединение отдельных участков магистрального трубопровода, определяя путь, по которому движется капсула во время фаз нагнетания или разрежения.

    Рабочие станции позволяют загружать или извлекать капсулы из СПП.

Основное оборудование СПП устанавливается, как правило, за подвесным потолком, за исключением центрального контроллера и станций с пультами управления.

Компрессорные установки

Работа пневматической почты основана на создании давления воздуха и разряжения в магистральном трубопроводе. Для этих целей применяют компрессорные установки двух типов:

    однофазные ~220В.

    трехфазные ~380В.

Оба типа компрессорных установок позволяют создавать и давлении и разряжение.

Магистральный трубопровод

Магистральный трубопровод соединяет рабочие станции между собой. Магистральный трубопровод состоит из следующих основных частей:

    трубы;

    "закругления" трубопровода;

    соединительные муфты.

Для правильной работы пневмопочты необходимо обеспечить точное соответствие диаметров трубопровода типу выбираемых капсул. Чем длиннее капсула, тем тоньше она должна быть. Наиболее распространенной в России и наиболее дешевой является система пневмопочты с диаметром трубопровода 110 мм. Возможно изготовление оборудования специальных размеров под заказ. Следует иметь ввиду, что нестандартные размеры трубопровода приводят к значительному удорожанию системы и увеличению сроков поставки.

Маршрутные стрелки

В зависимости от положения внутреннего механизма маршрутная стрелка соединяет участок трубопровода (вход) с одним из трех других участков трубопровода (выходы). Таким образом, образуется непрерывная линия трубопровода, по которой движется капсула от одной станции до другой.

К стрелке могут подключатся как конечные приемо-передающие станции, так и другие стрелки. С помощью стрелок создаются "древовидные" системы пневмопочты практически любой сложности.

Маршрутные стрелки могут устанавливаться в помещении в любом месте, в любом положении. Как правило, стрелки размещаются за подвесным потолком. В этом случае необходимо предусмотреть возможность их дальнейшего обслуживания.

Центральный контроллер

Центральный контроллер (ЦК) управляет всеми установленными в системе устройствами. ЦК следит за работой системы и отображает на дисплее ее текущий статус, отправляющую и принимающую в данный момент станции.

ЦК программируется специфическая для каждой системы информация. Встроенная программа запуска полностью автоматически инициализирует систему после сбоев электропитания или ошибках в работе, извлекая из системы оставшиеся в ней капсулы.

Встроенная тестовая программа позволяет вручную управлять и тестировать каждый компонент системы.

ЦК позволяет подключить компьютер с установленным на нем специализированным программным обеспечением. Программное обеспечение ведет оперативный учет и контроль за состоянием системы. Компьютер может быть размещен в любом помещении на расстоянии до 100 м от центрального контроллера

ЦК позволяет подсоединить напрямую к нему принтер, который в реальном времени будет распечатывать всю необходимую регистрационную информацию о всех пересылках и возможных сбоях системы. При этом указывается точное время и дата происходящих событий.
Центральный компьютер смонтирован в оцинкованном металлическом корпусе, что является необходимой защитой от действия статического электричества, в избытке образующегося при работе пневмопочты.

Центральный контроллер может быть смонтирован в любом удобном месте. Необходимо обеспечить доступ к контроллеру обслуживающего персонала.

ЦК можно подключить к телефонной линии через модем и специальное устройство - преобразователь интерфейсов. В этом случае возможно дистанционное программирование, настройка и диагностика системы из офиса нашей компании. Доступ к центральному контроллеру по телефонной линии позволяет оперативно настраивать и устранять возможные неисправности системы в любой точке России без дорогостоящего выезда специалиста.

Рабочие станции

Рабочие станции используются для установки капсул в трубопровод, отправки их, приема и извлечения капсул из трубопровода.

Условно рабочие станции можно разделить на три группы:

    неавтоматические станции;

    автоматические станции;

    станции, встроенные в стол.

Пульты управления приемно-передающих станций

Для управления приемо-передающими станциями применяют пульты двух типов:

    с фиксированными адресатами;

    с возможностью выбора адресата.

Сигнальные устройства

Если станция используется несколькими операторами, всегда желательно знать какому из них предназначалась полученная капсула. Для этих целей к пультам управления подключаются дополнительные сигнальные устройства. Каждому оператору присваивается своя мелодия, которая звучит при приходе для него капсулы. Сигнальные устройства могут устанавливаться на рабочем месте каждого оператора.

Капсулы

Для пересылки по системе пневмопочты используются капсулы, в которые вкладывается груз.

Капсулы изготавливаются из ударопрочного пластика и имеют различную конструкцию в зависимости от груза, который предполагается в них передавать. Капсула имеет вид полого цилиндра с меньшим диаметром, чем трубопровод. К цилиндру прикрепляются уплотнительные манжеты, диаметр которых равен внутреннему диаметру трубопровода. Такая конструкция позволяет капсуле проводить через повороты трубопровода без застревания.

Размеры капсулы зависят от диаметра трубопровода и радиуса его поворота. Наиболее распространенными являются капсулы для трубопровода диаметром 110 мм типа NW 110.

Стоимость и монтаж систем пневматической почты

Несмотря на универсальность оборудования, каждый проект системы пневматической почты носит индивидуальный характер.

Состав пневмопочты, а соответственно и стоимость комплекта оборудования, стоимость работ зависит от различных факторов:

    задач, которые ставит Заказчик перед системой;

    пространственного расположения рабочих станций приемки-передачи;

    протяженности и конфигурации трассы магистрального трубопровода;

    месторасположения объекта и степени сложности монтажа.

Точную стоимость договора на установку пневмопочты можно определить после проведения "трассировки" специалистами ГК «Юнайт» на предполагаемом месте установки системы.

Мы разрабатываем наиболее экономичный и удобный вариант компоновки пневмопочты с учетом всех пожеланий Заказчика.

Если у Вас возник вопрос по системам пневмопочты , мы будем рады на него ответить и дать нужный совет.

Статьи по теме: