Разновидности файловых систем. Виды файловых систем

ОБЩЕЕ ОПИСАНИЕ ФАЙЛОВЫХ СИСТЕМ

В широком смысле понятие "файловая система" включает:

  • совокупность всех файлов на диске,
  • наборы служебных структур данных, используемых для управления файлами, такие как, например, каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске,
  • комплекс системных программных средств, реализующих управление файлами, в частности операции по созданию, уничтожению, чтению, записи, именованию файлов, установке атрибутов и уровней доступа, поиску и т.д.

Файловая система представляет многоуровневую структуру, на верхнем уровне которой располагается так называемый переключатель файловых систем (в Windows, такой переключатель называется устанавливаемым диспетчером файловой системы - installable filesystem manager, IFS). Он обеспечивает интерфейс между приложением и конкретной файловой системой, к которой обращается приложение. Переключатель файловых систем преобразует запросы к файлам в формат, воспринимаемый следующим уровнем - уровнем драйверов файловых систем. Для выполнения своих функций драйверы файловых систем обращаются к драйверам конкретных устройств хранения информации.

Файловая система FAT (File Allocation Table) была разработана Биллом Гейтсом и Марком МакДональдом в 1977 году и первоначально использовалась в операционной системе 86-DOS. Чтобы добиться переносимости программ из операционной системы CP/M в 86-DOS, в ней были сохранены ранее принятые ограничения на имена файлов. В дальнейшем 86-DOS была приобретена Microsoft и стала основой для ОС MS-DOS 1.0, выпущенной в августе 1981 года. FAT была предназначена для работы с гибкими дисками размером менее 1 Мбайта, и вначале не предусматривала поддержки жестких дисков. В настоящее время FAT поддерживает файлы и разделы размеров до 2 Гбайт.

В FAT применяются следующие соглашения по именам файлов:

    • имя должно начинаться с буквы или цифры и может содержать любой символ ASCII, за исключением пробела и символов "/\:;|=,^*?
    • Длина имени не превышает 8 символов, за ним следует точка и необязательное расширение длиной до 3 символов.
    • регистр символов в именах файлов не различается и не сохраняется.

Структура раздела FAT изображена на рисунке 2. В блоке параметров BIOS содержится необходимая BIOS информация о физических характеристиках жесткого диска. Файловая система FAT не может контролировать отдельно каждый сектор, поэтому она объединяет смежные сектора в кластеры (clusters ). Таким образом, уменьшается общее количество единиц хранения, за которыми должна следить файловая система.

Поскольку загрузочная запись слишком мала для хранения алгоритма поиска системных файлов на диске, то системные файлы должны находиться в определенном месте, чтобы загрузочная запись могла их найти. Фиксированное положение системных файлов в начале области данных накладывает жесткое ограничение на размеры корневого каталога и таблицы размещения файлов. Вследствие этого общее число файлов и подкаталогов в корневом каталоге на диске FAT ограничено 512.

Каждому файлу и подкаталогу в FAT соответствует 32-байтный элемент каталога (directory entry), содержащий имя файла, его атрибуты (архивный, скрытый, системный и “только для чтения”), дату и время создания (или внесения в него последних изменений), а также прочую информацию

Файловая система FAT всегда заполняет свободное место на диске последовательно от начала к концу. При создании нового файла или увеличении уже существующего она ищет самый первый свободный кластер в таблице размещения файлов. Если в процессе работы одни файлы были удалены, а другие изменились в размере, то появляющиеся в результате пустые кластеры будут рассеяны по диску

Высокопроизводительная файловая система HPFS (High Performance File System) была представлена фирмой IBM в 1989 году вместе с операционной системой OS/2 1.20. Файловая система HPFS также поддерживалась ОС Windows NT до версии 3.51 включительно. По производительности эта ФС существенно опережает FAT. HPFS позволяет использовать жесткие диски объемом до 2 Терабайт (первоначально до 4 Гбайт). Кроме того, она поддерживает разделы диска размером до 512 Гб и позволяет использовать имена файлов длиной до 255 символов (на каждый символ при этом отводится 2 байта). В HPFS по сравнению с FAT уменьшено время доступа к файлам в больших каталогах.

HPFS распределяет пространство на диске не кластерами как в FAT, а физическими секторами по 512 байт, что не позволяет ее использовать на жестких дисках, имеющих другой размер сектора. Эти секторы принято называть блоками. Чтобы уменьшить фрагментацию диска, при распределении пространства под файл HPFS стремится, по возможности, размещать файлы в последовательных смежных секторах. Фрагмент файла, располагающийся в смежных секторах, называется экстентом .

Для нумерации единиц распределения пространства диска HPFS использует 32 разряда, что дает 2 32 , или более 4 миллиардов номеров. Однако HPFS использует числа со знаком, что сокращает число возможных номеров блоков до 2 миллиардов. Помимо стандартных атрибутов файла, HPFS поддерживает расширенные атрибуты файла (Extended Attributes, EA), которые могут содержать до 64 Кб различных дополнительных сведений о файле.

В отличие от линейной структуры FAT, структура каталога в HPFS представляет собой сбалансированное дерево (так называемое B-дерево) с записями, расположенными в алфавитном порядке. Сбалансированное дерево состоит из корневого (root block) и оконечных блоков (leaf block). Блоки занимают 4 последовательных сектора и в среднем могут содержать 40 записей.

Файловая система VFAT (Virtual FAT), реализованная в Windows NT 3.5, Windows 95 (DOS 7.0), - это файловая система FAT, включающая поддержку длинных имен файлов (Long File Name, LFN) в кодировке UNICODE (каждый символ имени кодируется 2 байтами). VFAT использует ту же самую схему распределения дискового пространства, что и файловая система FAT, поэтому размер кластера определяется величиной раздела.

В VFAT ослаблены ограничения, устанавливаемые соглашениями по именам файлов FAT:

    • имя может быть длиной до 255 символов.
    • в имя можно включать несколько пробелов и точек, однако, текст после последней точки рассматривается как расширение.
    • регистр символов в именах не различается, но сохраняется.

Основной задачей при разработке VFAT была необходимость корректной работы старых программ, не поддерживающих длинные имена файлов. Как правило, прикладные программы для доступа к файлам используют функции ОС. Если у элемента каталога установить “нереальную” комбинацию битов атрибутов: “только для чтения”, “скрытый”, “системный”, “метка тома” – то любые файловые функции старых версий DOS и Windows не заметят такого элемента каталога. В итоге для каждого файла и подкаталога в VFAT хранится два имени: длинное и короткое в формате 8.3 для совместимости со старыми программами. Длинные имена (LFN) хранятся в специальных записях каталога, байт атрибутов, у которых равен 0Fh. Для любого файла или подкаталога непосредственно перед единственной записью каталога с его именем в формате 8.3 находится группа из одной или нескольких записей, представляющих длинное имя. Каждая такая запись содержит часть длинного имени файла не более 13 символов, из всех таких записей ОС составляет полное имя файла. Поскольку одно длинное имя файла может занимать до 21 записи, а корневой каталог FAT ограничен 512 записями, желательно ограничить использование длинных имен в корневом каталоге.

Короткое имя генерируется файловой системой автоматически в формате 8.3. Для создания коротких имен (псевдонимов) файлов используется следующий алгоритм:

  1. Из длинного имени удалить все символы не допустимые в именах FAT. Удалить точки в конце и начале имени. После этого удалить все точки, находящиеся внутри имени кроме последней.
  2. Обрезать строку, расположенную перед точкой, до 6 символов и добавить в ее конец "~1". Обрезать строку за точкой до 3 символов.
  3. Полученные буквы преобразовать в прописные. Если сгенерированное имя совпадает с уже существующим, то увеличить число в строке "~1".

Данный алгоритм зависит от версии операционной системы и в будущих версиях может меняться

Редактирование файлов программами, не поддерживающими длинные имена файлов, может приводить к потере длинных имен. Windows обнаруживает подобные элементы каталога, так как их контрольная сумма не соответствует больше тому, что записано в последующей записи каталога в формате 8.3. Однако такие записи не удаляются системой автоматически, они занимают дисковое пространство, до тех пор, пока вы не запустите программу ScanDisk, входящую в состав операционной системы. Большинство старых дисковых утилит воспримут записи, соответствующие длинным именам, как ошибки логической структуры диска. Попытки использовать данные утилиты, в лучшем случае приведет к потере длинных имен, а в худшем - к потере информации на диске.

В настоящее время появляются новые поколения жестких дисков, имеющие все бoльшие объемы дискового пространства, в то время как возможности FAT уже достигли своего предела (FAT может поддерживать разделы размером до 2 Гб).

FAT32 - усовершенствованная версия файловой системы VFAT, поддерживающая жесткие диски объемом до 2 терабайт. Впервые файловая система FAT32 была включена в состав ОС Windows 95 OSR 2. В FAT32 были расширены атрибуты файлов, позволяющие теперь хранить время и дату создания, модификации и последнего доступа к файлу или каталогу.

Из-за требования совместимости с ранее созданными программами структура FAT32 содержит минимальные изменения. Главные отличия от предыдущих версий FAT состоят в следующем. Блок начальной загрузки на разделах с FAT32 был увеличен до 2 секторов и включает в себя резервную копию загрузочного сектора, что позволяет системе быть более устойчивой к возможным сбоям на диске. Объем, занимаемый таблицей размещения файлов, увеличился, поскольку теперь каждая запись в ней занимает 32 байта, и общее число кластеров на разделе FAT32 больше, чем на разделах FAT. Соответственно, выросло и количество зарезервированных секторов.

Необходимо отметить, что официально Microsoft не поддерживает разделы FAT32 объемом менее 512 Мб. Однако в версии утилиты FDISK, поставляемой вместе с OSR2, имеется недокументированный флаг /FPRMT, позволяющий отформатировать под FAT32 разделы объемом менее 512 Мб. Microsoft также не поддерживает FAT32-разделы с размером кластера меньшим, чем 4 Кб. Размеры кластера, предлагаемые по умолчанию при форматировании FAT32 дисков, приведены в таблице 5. Параметр /Z утилиты FORMAT позволяет самостоятельно установить размер кластера на разделе FAT32: FORMAT <диск> /Z:n, где n – число секторов в кластере.

Корневой каталог в FAT32 больше не располагается в определенном месте, вместо этого в блоке BPB хранится указатель на начальный кластер корневого каталога. В результате снимается ранее существовавшее ограничение на число записей в корневом каталоге.

Кроме того, для учета свободных кластеров, в зарезервированной области на разделе FAT32 имеется сектор, содержащий число свободных кластеров и номер самого последнего использованного кластера. Это позволяет системе при выделении следующего кластера не перечитывать заново всю таблицу размещения файла.

В данный момент FAT32 поддерживается в следующих ОС: Windows 95 OSR2, Windows 98 и Windows NT 5.0.

NTFS (New Technology File System) - наиболее предпочтительная файловая система при работе с ОС Windows NT, поскольку она была специально разработана для данной системы. В состав Windows NT входит утилита convert, осуществляющая конвертирование томов с FAT и HPFS в тома NTFS. В NTFS значительно расширены возможности по управлению доступом к отдельным файлам и каталогам, введено большое число атрибутов, реализована отказоустойчивость, средства динамического сжатия файлов, поддержка требований стандарта POSIX. NTFS позволяет использовать имена файлов длиной до 255 символов, при этом она использует тот же алгоритм для генерации короткого имени, что и VFAT. NTFS обладает возможностью самостоятельного восстановления в случае сбоя ОС или оборудования, так что дисковый том остается доступным, а структура каталогов не нарушается.

Каждый файл на томе NTFS представлен записью в специальном файле – главной файловой таблице MFT (Master File Table ). NTFS резервирует первые 16 записей таблицы размером около 1 Мб для специальной информации. Первая запись таблицы описывает непосредственно саму главную файловую таблицу. За ней следует зеркальная запись MFT. Если первая запись MFT разрушена, NTFS считывает вторую запись, чтобы отыскать зеркальный файл MFT, первая запись которого идентична первой записи MFT. Местоположение сегментов данных MFT и зеркального файла MFT хранится в секторе начальной загрузки. Копия сектора начальной загрузки находится в логическом центре диска. Третья запись MFT содержит файл регистрации, применяемый для восстановления файлов. Семнадцатая и последующие записи главной файловой таблицы используются собственно файлами и каталогами на томе.

В журнале транзакций (log file) регистрируются все операции, влияющие на структуру тома, включая создание файла и любые команды, изменяющие структуру каталогов. Журнал транзакций применяется для восстановления тома NTFS после сбоя системы. Запись для корневого каталога содержит список файлов и каталогов, хранящихся в корневом каталоге.

Схема распределения пространства на томе хранится в файле битовой карты (bitmap file). Атрибут данных этого файла содержит битовую карту, каждый бит которой представляет один кластер тома и указывает, свободен ли данный кластер или занят некоторым файлом.

В загрузочном файле (boot file) хранится код начального загрузчика Windows NT.

NTFS также поддерживает файл плохих кластеров (bad cluster file) для регистрации поврежденных участков на томе и файл тома (volume file), содержащий имя тома, версию NTFS и бит, который устанавливается при повреждении тома. Наконец, имеется файл, содержащий таблицу определения атрибутов (attribute definition table), которая задает типы атрибутов, поддерживаемые на томе, и указывает можно ли их индексировать, восстанавливать операцией восстановления системы и т.д.

NTFS распределяет пространство кластерами и использует для их нумерации 64 разряда, что дает возможность иметь 2 64 кластеров, каждый размером до 64 Кбайт. Как и в FAT размер кластера может меняться, но необязательно возрастает пропорционально размеру диска. Размеры кластеров, устанавливаемые по умолчанию при форматировании раздела, приведены в табл. 6.

NTFS позволяет хранить файлы размером до 16 эксабайт (2 64 байт) и располагает встроенным средством уплотнения файлов в реальном времени. Сжатие является одним из атрибутов файла или каталога и подобно любому атрибуту может быть снято или установлено в любой момент (сжатие возможно на разделах с размером кластера не более 4 Кб). При уплотнении файла, в отличие от схем уплотнения используемых в FAT, применяется пофайловое уплотнение, таким образом, порча небольшого участка диска не приводит к потере информации в других файлах.

Для уменьшения фрагментации NTFS всегда пытается сохранить файлы в непрерывных блоках. Эта система использует структуру каталогов в виде B-дерева, аналогичную высокопроизводительной файловой системе HPFS, а не структуре со связанным списком применяемой в FAT. Благодаря этому поиск файлов в каталоге осуществляется быстрее, поскольку имена файлов хранятся сортированными в лексикографическом порядке.

NTFS была разработана как восстанавливаемая файловая система, использующая модель обработки транзакций. Каждая операция ввода-вывода, изменяющая файл на томе NTFS, рассматривается системой как транзакция и может выполняться как неделимый блок. При модификации файла пользователем сервис файла регистрации фиксирует всю информацию необходимую для повторения или отката транзакции. Если транзакция завершена успешно, производится модификация файла. Если нет, NTFS производит откат транзакции.

Несмотря на наличие защиты от несанкционированного доступа к данным NTFS не обеспечивает необходимую конфиденциальность хранимой информации. Для получения доступа к файлам достаточно загрузить компьютер в DOS с дискеты и воспользоваться каким-нибудь сторонним драйвером NTFS для этой системы.

Начиная с версии Windows NT 5.0 (новое название Windows 2000) Microsoft поддерживает новую файловую систему NTFS 5.0 . В новой версии NTFS были введены дополнительные атрибуты файлов; наряду с правом доступа введено понятие запрета доступа, позволяющее, например, при наследовании пользователем прав группы на какой-нибудь файл, запретить ему возможность изменять его содержимое. Новая система также позволяет:

  • вводить ограничения (квоты) на размер дискового пространства, предоставленного пользователям;
  • проецировать любой каталог (как на локальном, так и на удаленном компьютере) в подкаталог на локальном диске.

Интересной возможностью новой версии Windows NT является динамическое шифрование файлов и каталогов, повышающее надежность хранения информации. В состав Windows NT 5.0 входит файловая система с шифрованием (Encrypting File System, EFS ), использующая алгоритмы шифрования с общим ключом. Если для файла установлен атрибут шифрования, то при обращении пользовательской программы к файлу для записи или чтения происходит прозрачное для программы кодирование и декодирование файла.

UFS (Unix File System)

Так же, как Unix представляет не одну систему, а ряд совместимых, так же UFS - не одна система, а целый ряд. Информации о поддержке разными Unix"ами чужих UFS у меня пока нет; информацию по поводу поддержки чужих файловых систем для каждого конкретного Unix"а скорее всего можно найти в документации к программе " mount ".

Основным отличием UFS от других известных мне систем является выделение атрибутов файла в отдельном объекте файловой системе - inode; это позволяет иметь доступ к файлу (к набору данных, хранящихся в файле) более чем по одному имени (так называемый жесткий линк; см.ниже), а заодно повысить эффективность функционирования системы.

Классическая UFS Отводит на файл 16 байт - 14-буквенное имя файла и двухбайтный номер inode; современые UFS позволяют создавать длинные имена (до 255 символов), а имена файлов хранят не подряд, а более разумно - в двоичном дереве или hash-таблице, а номер inode может быть любым - четырехбайтным или восьмибайтным.

Сам блок inode содержит:

  • количество ссылок на файл - каждое имя, ссылающееся на файл, а также открытие файла увеличивают этот счетчик на единицу; файл стирается с высвобождением занятого места как только счетчик становится равным нулю (т.е. можно стереть открытый файл, а реально он сотрется когда его закроют);
  • размер файла;
  • дату и время создания, последнего изменения и последего чтения файла;
  • тип файла - в Unix это бывает:
    • обычный файл;
    • директория;
    • файл блочного устройства;
    • файл символьного (последовательного) устройства;
    • поименованный пайп (название происходит от символа " | ", называемого "pipe" - см.его значение в shell);
    • символьный линк (алиас);

обычный файл и директория встречаются во всех файловых системах; файлы устройств являются интерфейсами к драйверам этих устройств;

  • UID (идентификатор хозяина файла) и GID (идентификатор группы);
  • атрибуты доступа:
    • Unix использует атрибуты "Read", "Write" и "eXecute" для хозяина файла (owner), для одногрупника (group) и для остальных (other) - итого 9 бит; для директории эти атрибуты означают соответственно права на чтение списка файлов, на создание/удаление файлов и на обращение к файлам внутри директории;

важной особенностью является то, что права доступа для хозяина определяются атрибутами для него, права для одногрупника и остальных для хозяина игнорируются; аналогично для одногркпника не играют никакой роли права для остальных;

    • кроме них есть атрибуты SetUID и SetGID - для запускаемого файла (не интерпретируемого) эти атрибуты определяют запуск процесса под правами не запустившего их пользователя, а хозяина и/или группы файла соотвнтственно;
    • и еще есть один атрибут - для директории он запрещает стирание файлов, не принадлежащих стирающему;
  • расширенный ACL (Access Control List, Список Управления Доступом) или ссылку на ACL, если файловая система поддерживает ACL;
  • несколько (в классической UFS - 13) ссылок на кластеры файловой системы (раскладка приведена для классической UFS):
    • первые 10 указывают на первые 10 кластеров файла;
    • 11-й указывает на кластер, содержащий адреса следующих 128-ми кластеров файла (в классической UFS размер кластера - полкилобайта, а адрес кластера - четыре байта);
    • 12-й указывает на кластер, содержащий адреса 128-ми кластеров, в свою очередь содержащих адреса следующих 16`384-рех кластеров файла;
    • последний указывает на кластер, ... вобщем, здесь используется еще на один уровень больше, что позволяет адресовать еще 2`097`152 кластера файла;

итого получается 2`113`674 кластера по полкилобайта - чуть более гигабайта в файловой системе, способной работать с томами до двух терабайт (2 ^32 кластеров по полкилобайта).

В современных UFS многое изменено: можно задавать произвольный размер кластера и использовать 64-битные указатели, так что ограничени классической UFS давно преодолены. Основное преимущество такой адресации в том, что маленькие файлы, к которым часто обращаются, достижимы прямо из inode, и так же быстро происходит обращение к началу большого файла; обращение в середину и конец большого файла происходят медленнее, чем в начало, но я не представляю, как можно обеспечить бОльшую скорость, не налагая жесткого требования заведомой дефрагментированности файла или хотя бы таблицы размещения его кластеров.

Во многих UFS если после создания файла в кластер ничего не писалось (например, после открытия файла переместили указатель далеко-далеко и что-то туда записали), то под этот кластер не отводится место, а ссылке, которая должна на него указывать, присваивается 0 (это особенно актуально в свете использования hash-таблиц, которые обычно имеют внутри себя пустое пространство). То же самое делается если кластер оказывается заполнен нулями (незаполненное место считается залитым нулями, хотя полагаться на это программисту я бы не советовал). По-моему, неплохой способ экономии места.

Часть систем UFS реализованы как отказоустойчивые с журналированием, а часть по традиции обходится без этого - считается, что если на машине хранятся действительно важные данные, то эту машину можно обеспечить бесперебойным питанием и не подпускать к ней ламеров.

Сведений об устройстве файловой системы NetWare у мня нет - знаю лишь, что она какая-то своя, естественно, более эффективная, чем FAT, и имеет более сложные ACL, чем классический Unix с его "rwx" для owner, group и other.

Операционная система, которая является основой работы любой компьютерной техники, организует работу с электронными данными, следуя определенному алгоритму, в цепочке которого файловая система не является невостребованной. Что собой представляет вообще файловая система, и какие ее виды применимы в современное время и попытаемся изложить в этой статье.


Описание общих характеристик файловой системы

ФС — это, как уже указано выше, часть операционной системы, которая связана непосредственно с размещением, удалением, перемещением электронной информации на определенном носителе, а также безопасностью ее дальнейшего использования в будущем. Именно это ресурс также применим в случаях, когда требуется восстановление утерянной информации по причине программного сбоя, как такового. То есть это основной инструмент работы с электронными файлами.

Виды файловой системы

На каждом компьютерном устройстве применим особый тип ФС. Особо распространенные следующие ее типы:

— предназначенная для жестких дисков;
— предназначенная для магнитных лент;
— предназначенная для оптических носителей;
— виртуальная;
— сетевая.

Естественно, что основной логической единицей работы с электронными данными является файл, под которым подразумевается документ с систематизированной в нем информацией определенного характера, который имеет свое наименование, что облегчает работу пользователя с большим потоком электронных документов.
Итак, абсолютно вся, используемая операционкой инфа, трансформируется в файлы, независимо от того текст это или изображения, или звук, или видео, или фото. Помимо всего прочего драйвера и программные библиотеки, тоже имеют транскрипцию оных.

У каждой информационной единицы есть имя, определенное расширение, размер, свойственные характеристики, тип. А вот ФС – это их совокупность, а также принципы работы со всеми ними.

В зависимости от того какие свойственные особенности присущи системе, с такими данными она и будет эффективно работать. А это и есть предпосылкой классификации ее на типы и виды.

Взгляд на файловую систему с точки зрения программирования

Изучая понятие ФС, следует понимать, что это многоуровневая составляющая, на первом из которых преобладает трансформатор файловых систем, обеспечивающий эффективное взаимодействие между самой системой и определенным программным приложением. Именно он отвечает за преобразование запроса к электронным данным в определенный формат, который и распознается драйверами, что влечет за собой эффективную работу с файлами, то есть к ним открывается доступ.

У современных приложений, которые имеют стандарт работы клиент-сервер, требования к ФС очень высоки. Ведь современные системы просто обязаны обеспечивать самый эффективнейший доступ ко всем имеющимся типам электронных единиц, а также оказывать колоссальную поддержку носителей больших объемов, а также устанавливать защиту всех данных от нежелательного доступа иными пользователями, а также обеспечивать целостность информации, хранимой в электронном формате.

Ниже мы рассмотрим все существующие на сегодня ФС и их достоинства и недостатки.

ФС — FAT

Это самый древний тип файловой системы, который был разработан еще в далеком 1977 году. Она работала с операционкой ОС 86-DOS и не способна работать с жесткими носителями информации, и рассчитана на гибкие их типы и хранение информации до одного мегабайта. Если ограничение размера инфы сегодня не актуально, то иные показатели остались востребованными в неизменном виде.

Эта файловая система использовалась ведущей компанией разработчиком программных приложений – Майкрософт для такой операционки, как ОС MS-DOS 1.0.
Файлы этой системы имеют ряд характерных свойств:

— имя информационной единицы должно содержать в своем начале букву или цифру, а дальнейшее содержание наименование может включать различные символы клавиатуры компа;
— имя файла не должно превышать восьми символов, в конце имени ставится точка, после которой следует расширение из трех букв;
— для создания имени файла может использоваться любой регистр раскладки клавиатуры.

С самого начала разработки файловая система FAT была направлена на работу с операционкой ОС DOS, она не была заинтересована в сохранении данных о пользователе или владельце информации.

Благодаря всевозможным модификациям этой ФС, она стала самой востребованной в современное время и на ее основе работают самые инновационные операционные системы.

Именно данная файловая система способна сохранять файлы в неизменном виде, если компьютерная техника выключилась неверно в силу, например, отсутствия зарядки батареи или выключения света.

Во многих операционных системах, с которыми работает FAT, лежат определенные программные утилиты, корректирующие и проверяющие само дерево содержания ФС и файлы.

ФС — NTFS

С операционкой ОС Windows NT работает современная файловая система NTFS, в принципе на нее она и была нацелена. В ее составе действует утилита convert, которая отвечает за конвертацию томов с формата HPFS или FAT, в формат томов NTFS.

Она более модернизирована по сравнению с первым описанным выше вариантом. В этой версии расширены возможности касаемо непосредственного управления доступом ко всем информационным единицам. Здесь можно пользоваться множеством полезных атрибутов, динамическим сжатием файлов, отказоустойчивостью. Одним из преимуществ оной является и поддержка требований POSIX стандарта.

Эта файловая система позволяет создавать информационные файлы с именами длинной в 255 символов.

Если операционка, которая работает с данной файловой системой, дает сбой, то не нужно переживать за сохранность всех файлов. Они остаются в целостности и невредимости, поскольку этот тип файловой системы имеет свойство самовосстанавливаться.

Особенностью ФС NTFS является ее структура, которая представлена в виде определенной таблицы. Первые шестнадцать записей в реестре — это содержание самой файловой системы. Каждая отдельная электронная единица тоже имеет вид таблицы, которая содержит информацию о таблице, зеркальный файл в формате MFT, файл регистрации, используемый при необходимости восстановления информации и последующие данные – это информация о самом файле и его данные, которые были сохранены непосредственно на жестком диске.

Все выполняемые команды с файлами имеют свойство сохраняться, что помогает впоследствии восстанавливаться системе самостоятельно после сбоя операционной системы, с которой она работает.

ФС — EFS

Очень распространенной является файловая система EFS, которая считается шифрованной. Она работает с операционкой Windows. Эта система обуславливает сохранение файлов на жестком диске в зашифрованном виде. Это самая действенная защита всех файлов.
Шифрование устанавливается в свойствах файла с помощью галочки напротив вкладки, говорящей о возможности шифровки. Воспользовавшись этой функцией можно указывать, кому доступны для просмотра файлы, то есть, кому разрешено с ними работать.

ФС – RAW

Файловые элементы – это самые уязвимые единицы программирования. Ведь именно они и являются информацией, которая хранится на дисках компьютерной техники. Они могут повреждаться, удаляться, скрываться. В общем, работа пользователя только и нацелена на создание, сохранение и перемещение оных.
Операционная система не всегда показывает идеальные свойства своей работы и имеет характерность выходить из строя. Происходит это по многим причинам. Но сейчас не об этом.

Очень многие пользователи сталкиваются с уведомлением о том, что повреждена система RAW. Это действительно ФС или нет? Таким вопросом задаются многие. Оказывается, это не совсем так. Если объяснять на уровне языка программирования, то RAW – это ошибка, а именно логическая ошибка, которая внедрена уже в операционку Windows в целях обезопасить ее от выхода из строя. Если техника выдает какие-то сообщения по поводу RAW, значит нужно иметь в виду, что под угрозой структура файловой системы, которая работает неверно либо ей грозит постепенное разрушение.

Если такая проблема на лицо, то вы не сможете получить доступ ни к одному файлу в компе, а также он откажется выполнять и иные операционные команды.

ФС – UDF

Это файловая система для оптических дисков, котрая имеет свои особенности:

— наименования файлов не должны превышать 255 символов;
— именной регистр может быть как нижним, так и верхним.

Работает она с операционкой Windows XP.

ФС — EXFAT

И еще одна современная файловая система – EXFAT, которая является неким посредническим звеном между Windows и Linux, обеспечивающим эффективную трансформацию файлов из одной системы в иную, поскольку файлообменники у них разные. Используется она на переносных накопителях информации, таких как флешки.

Из выше написанного, можно сделать верный вывод. Каждая охарактеризованная ФС отличается своими особенностями, создает определенные форматы файлов. Вот почему иногда не получается получить доступ к каким-то файлам, значит они созданы совсем в иной файловой системе, которую ваша распознать не может.
Надеемся, что изложенная в этой статье информация поможет вам избежать многих проблем во время работы с информационными файлами. Теперь вы самостоятельно можете определить, с какой и ФС работает ОС вашего компьютера, и с какими данными вам приходится работать ежедневно в потоке их систематической оперативной обработки.

FAT32 : старая система Windows, применяемая на небольших съемных носителях. Используется на небольших устройствах хранения или для совместимости с цифровыми камерами, игровыми консолями, телевизионными приставками и другими устройствами, поддерживающими только FAT32.

NTFS : современные версии Windows начиная с Win XP — используют ее для своих разделов. Внешние носители форматируются посредством FAT32, большие внешние жесткие диски емкостью 1 ТБ форматируются посредством NTFS.

HFS+ : на компьютерах Macintosh применяют HFS + для своих внутренних разделов, а также для форматирования внешнего носителя с HFS+. Мас считывает и записывает файлы в FAT32, но по умолчанию считывает только NTFS. Для записи в формате NTFS Macintosh понадобится стороннее ПО.

Ext2 / Ext3 / Ext4 : встречаются в Линукс. Ext2 — это более старая ФС, в ней отсутствуют важные функции, такие как ведение журнала — если питание отключается или компьютер перезагружается при записи на диск ext2, данные могут быть потеряны. Ext3 добавляет функции надежности за счет скорости. Ext4 оказывается более современной, быстрой и стандартной системой для большинства дистрибутивов Линукс и работает быстрее. Win и Mac не поддерживают Ext2 / Ext3 / Ext4 — понадобится дополнительный инструмент для доступа к файлам. По этой причине часто идеально форматировать разделы Linux, как ext4 и оставлять съемные устройства, отформатированные посредством FAT32 или NTFS, если необходима совместимость с другими ОС. Linux считывает и записывает как в FAT32, так и в NTFS.

Btrfs : создана для Linux, находится в разработке. На данный момент она не является стандартным для большинства дистрибутивов Линукс, но вскоре Btrfs займет лидирующую позицию. Цель состоит в том, чтобы предоставить дополнительные функции, которые позволяют Линукс масштабироваться для большего объема хранилища.

Swap : в Linux «swap» не оказывается ФС. Раздел, отформатированный как «swap», используется только как пространство подкачки ОС — похоже на файл страницы в Windows, но для этого требуется выделенный раздел.

Файловые системы для внешних USB-носителей

Все внешние накопители также имеют свои файловые системы:

  • FAT — ФС разработана корпорацией Microsoft, является самой широко распространённой на картах памяти и usb-флешках. Используется в бытовых приборах, таких как: видеокамера, телевизор, DVD-плеер, музыкальный центр. Ограничением является то, что она имеет максимальный объем файла 4 Гб.
  • exFAT — создана Microsoft, расширенная версия FAT, используется для flash-устройств. Упразднены ограничения на размер файлов, объем разделов. Недостаток: не поддерживается большинством бытовых устройств и ранними версиями Win XP.
  • FFS2 — создана в 1990 году и запатентована компанией Майкрософт. Продолжила систему FFS1, одна из ранних ФС для flash-карт.
  • JFFS — лог-структурированная Linux система для NOR-usb-носителей.
  • JFFS2 — используется в устройствах flash-памяти. Последователь JFFS. Поддерживает устройства Nand, улучшена работоспособность. Трудности при работе с Flash-накопителями больших объемов.
  • LogFS — в стадии разработки, используется для Linux, заменяет JFFS2. Улучшена для быстрой компоновки флеш-накопителей большого объёма.
  • YAFFS — разработана для NAND-flash, возможно использование в NOR-флеш-дисках.

В настоящее время компьютерный рынок предлагает множество возможностей хранения огромного количества личной или корпоративной информации в цифровой форме. Устройства хранения включают в себя внутренние и внешние жесткие диски, флэш-накопители USB, карты памяти фото / видеокамер, сложные RAID-системы и т. д. Фактические документы, презентации, изображения, музыка, видео, базы данных, электронные сообщения хранятся в виде файлов, которые могут занимать много места.

В этой статье представлено подробное описание того, как информация хранится на устройстве хранения.

Любой компьютерный файл хранится в хранилище с заданной емкостью. Фактически, каждое хранилище представляет собой линейное пространство для чтения или считывания и записи цифровой информации. Каждый байт информации в хранилище имеет свое собственное смещение от начала хранения (адрес) и ссылается на этот адрес. Хранилище может быть представлено в виде сетки с набором пронумерованных ячеек (каждая ячейка представляет собой один байт). Любой файл, который сохраняется в хранилище, получает эти ячейки.

Как правило, в компьютерных хранилищах используется пара секторов и смещение в секторе для ссылки на любой байт информации в хранилище. Сектор представляет собой группу байтов (обычно 512 байт), минимальную адресуемую единицу физического хранилища. Например, 1040 байт на жестком диске будет упоминаться как сектор № 3 и смещение в секторе 16 байт ([сектор - 512] + [сектор - 512] + ). Эта схема применяется для оптимизации адресации хранилища и использования меньшего числа для ссылки на любую часть информации в хранилище.

Чтобы опустить вторую часть адреса (смещение в секторе), файлы обычно хранятся, начиная с начала сектора и занимая целые сектора (например, 10-байтовый файл занимает весь сектор, 512-байтовый файл также занимает весь сектор, в то же время 514-байтовый файл занимает два целых сектора).

Каждый файл хранится в «неиспользуемых» секторах и может быть прочитан по известному положению и размеру. Однако, как мы узнаем, какие сектора используются, а какие нет? Где хранятся размер, положение и имя файла? Эти ответы даются файловой системой.

В целом файловая система представляет собой структурированное представление данных и набор метаданных, описывающих сохраненные данные. Файловая система служит для хранения всего хранилища, а также является частью изолированного сегмента хранения - раздела диска. Обычно файловая система управляет блоками, а не секторами. Блоки файловой системы представляют собой группы секторов, которые оптимизируют адресацию хранилища. Современные файловые системы обычно используют размеры блоков от 1 до 128 секторов (512-65536 байт). Файлы обычно хранятся в начале блока и занимают целые блоки.

Огромные операции записи / удаления в файловой системе приводят к фрагментации файловой системы. Таким образом, файлы не сохраняются как целые единицы, а делятся на фрагменты. Например, хранилище целиком занимают файлы размером около 4 блоков (например, коллекция изображений). Пользователь хочет сохранить файл, который займет 8 блоков и, следовательно, удалит первый и последний файлы. Делая это, он очищает пространство на 8 блоков, однако первый сегмент близок к началу хранения, а второй - к концу хранилища. В этом случае файл с 8 блоками разбивается на две части (по 4 блока для каждой части) и занимает «дыры» свободного пространства. Информация об обоих фрагментах как части одного файла хранится в файловой системе.

В дополнение к файлам пользователя файловая система также содержит свои собственные параметры (например, размер блока), дескрипторы файлов (включая размер файла, местоположение файла, его фрагменты и т. д.), Имена файлов и иерархию каталогов. Он также может хранить информацию о безопасности, расширенные атрибуты и другие параметры.

Чтобы соответствовать различным требованиям, таким как производительность, стабильность и надежность хранилища, большое количество файловых систем разработано для обслуживания определенных пользовательских целей.

Файловые системы Windows

ОС Microsoft Windows использует две основные файловые системы: FAT, унаследованные от старой DOS с ее более поздним расширением FAT32 и широко используемыми файловыми системами NTFS. Недавно выпущенная файловая система ReFS была разработана Microsoft как файловая система нового поколения для серверов Windows 8, 10.

FAT (таблица распределения файлов) - один из простейших типов файловых систем. Он состоит из сектора дескриптора файловой системы (загрузочного сектора или суперблока), таблицы распределения блоков файловой системы (называемой таблицей распределения файлов) и простого пространства для хранения файлов и папок. Файлы в FAT хранятся в каталогах. Каждый каталог представляет собой массив из 32-байтных записей, каждый из которых определяет файлы или расширенные атрибуты файла (например, длинное имя файла). Запись файла присваивает первый блок файла. Любой следующий блок можно найти через таблицу распределения блоков, используя его как связанный список.

Таблица распределения блоков содержит массив дескрипторов блоков. Значение «ноль» указывает, что блок не используется, а значение отличное от нуля относится к следующему блоку файла или специальному значению для конца файла.

Числа в FAT12, FAT16, FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. Это означает, что FAT12 может использовать до 4096 различных ссылок на блоки, в то время как FAT16 и FAT32 могут использовать до 65536 и 4294967296 соответственно. Фактическое максимальное количество блоков еще меньше и зависит от реализации драйвера файловой системы.

FAT12 использовался для старых дискет. FAT16 (или просто FAT) и FAT32 широко используются для карт флэш-памяти и USB-флеш-накопителей. Система поддерживается мобильными телефонами, цифровыми камерами и другими портативными устройствами.

FAT или FAT32 - это файловая система, которая используется в Windows-совместимых внешних хранилищах или дисковых разделах с размером менее 2 ГБ (для FAT) или 32 ГБ (для FAT32). Windows не может создать файловую систему FAT32 более чем на 32 ГБ (однако Linux поддерживает FAT32 до 2 ТБ).

NTFS (новая технологическая файловая система) была представлена ​​в Windows NT и в настоящее время является основной файловой системой для Windows. Это файловая система по умолчанию для дисковых разделов и единственная файловая система, которая поддерживает разделы диска по 32 ГБ. Файловая система довольно расширяема и поддерживает многие свойства файла, включая контроль доступа, шифрование и т. д. Каждый файл в NTFS хранится в виде файлового дескриптора в таблице основных файлов и содержимом файла. Таблица главного файла содержит всю информацию о файле: размер, распределение, имя и т. д. В первом и последнем секторах файловой системы содержатся параметры файловой системы (загрузочная запись или суперблок). Эта файловая система использует 48 и 64-битные значения для ссылок на файлы, тем самым поддерживая дисковые хранилища с большой емкостью.

ReFS (Resilient File System) - последняя разработка Microsoft, доступная в настоящее время для серверов Windows 8 и 10. Архитектура файловой системы абсолютно отличается от других файловых систем Windows и в основном организована в виде B + -tree. ReFS обладает высокой устойчивостью к отказам из-за новых функций, включенных в систему, а именно, Copy-on-Write (CoW): никакие метаданные не изменяются без копирования; данные записываются на новое дисковое пространство, а не поверх существующих данных. При любых модификациях файлов новая копия метаданных хранится в свободном пространстве для хранения, а затем система создает ссылку из старых метаданных в более новую. Таким образом, система хранит значительное количество старых резервных копий в разных местах, обеспечивая легкое восстановление файлов, если это место для хранения не перезаписано.

Для получения информации о восстановлении данных из этих файловых систем посетите страницу «Шансы для восстановления ».

Файловые системы MacOS

Операционная система Apple MacOS применяет две файловые системы: HFS +, расширение к своей собственной файловой системе HFS, используемой на старых компьютерах Macintosh, и недавно выпущенную APFS.

Файловая система HFS + работает под управлением продуктов Apple, включая компьютеры Mac, iPod, а также продукты Apple X Server. В расширенных серверных продуктах также используется файловая система Apple Xsan, кластерная файловая система, созданная из файловых систем StorNext или CentraVision.

Эта файловая система хранит файлы и папки и информацию Finder о просмотре каталогов, положениях окна и т. д.

Файловые системы Linux

ОС Linux с открытым исходным кодом нацелена на внедрение, тестирование и использование различных концепций файловых систем.

Самые популярные файловые системы Linux:

  • Ext2, Ext3, Ext4 - «родная» файловая система Linux. Эта файловая система подпадает под активные разработки и улучшения. Файловая система Ext3 - это просто расширение Ext2, которое использует операции записи транзакций с журналом. Ext4 является дополнительной расширенной разработкой Ext3, с поддержкой оптимизированной информации о распределении файлов (экстентов) и расширенных атрибутов файлов. Эта файловая система часто используется как «корневая» файловая система для большинства установок Linux.
  • ReiserFS - альтернативная файловая система Linux для хранения огромного количества небольших файлов. Она имеет хорошие возможности поиска файлов и позволяет компактно распределять файлы, сохраняя хвосты файлов или небольшие файлы вместе с метаданными, чтобы не использовать большие блоки файловой системы для той же цели.
  • XFS - файловая система, созданная компанией SGI и первоначально использовавшаяся для серверов IRIX компании. Теперь спецификации XFS реализованы в Linux. Файловая система XFS имеет отличную производительность и широко используется для хранения файлов.
  • JFS - файловая система, разработанная IBM для мощных вычислительных систем компании. JFS1 обычно обозначает JFS, JFS2 - вторая версия. В настоящее время эта файловая система является с открытым исходным кодом и реализована в большинстве современных версий Linux.

Концепция «жесткой связи », используемая в таких операционных системах, делает большинство файловых систем Linux одинаковыми, поскольку имя файла не рассматривается как атрибут файла и скорее определяется как псевдоним для файла в определенном каталоге. Объект файла можно связать со многими местоположениями, даже размножаться из одного и того же каталога под разными именами. Это может привести к серьезным и даже непреодолимым трудностям при восстановлении имен файлов после удаления файлов или повреждения файловой системы.

Для получения информации о восстановлении данных из этих файловых систем посетите страницу « ».

Файловые системы BSD, Solaris, Unix

Наиболее распространенной файловой системой для этих операционных систем является UFS (Unix File System), также часто называемая FFS (Fast File System).

В настоящее время UFS (в разных версиях) поддерживается всеми операционными системами семейства Unix и является основной файловой системой ОС BSD и операционной системы Sun Solaris. Современные компьютерные технологии, как правило, реализуют замены для UFS в разных операционных системах (ZFS для Solaris, JFS и производных файловых систем для Unix и т. д.).

Для получения информации о восстановлении данных из этих файловых систем посетите страницу « ».

Кластерные файловые системы

Кластерные файловые системы используются в компьютерных кластерных системах. Эти файловые системы поддерживают распределенное хранилище.

Распределенные файловые системы включают:

  • ZFS - «Zettabyte File System» - новая файловая система, разработанная для распределенных хранилищ Sun Solaris OS.
  • Apple Xsan - эволюция компании Apple в CentraVision и более поздних файловых системах StorNext.
  • VMFS - «Файловая система виртуальных машин», разработанная компанией VMware для своего VMware ESX Server.
  • GFS - Red Hat Linux «Глобальная файловая система».
  • JFS1 - оригинальный (устаревший) дизайн файловой системы IBM JFS, используемой в старых системах хранения AIX.

Общие свойства этих файловых систем включают поддержку распределенных хранилищ, расширяемость и модульность.

Для получения дополнительной информации о восстановлении данных из этих файловых систем посетите страницу « ».

Общее. В теории информатики определены следующие три основных типа структур данных – линейная, табличная, иерархическая. Пример книга: последовательность листов – линейная структура. Части, разделы, главы, параграфы – иерархия. Оглавление – таблица – связывает – иерархическую с линейной. У структурированных данных появляется новый атрибут - Адрес. И так:

      Линейные структуры (списки, вектора). Обычные списки. Адрес каждого элемента однозначно определяется его номером. Если все элементы списка имеют равную длину – вектора данных.

      Табличные структуры (таблицы, матрицы). Отличие таблицы от списка – каждый элемент – определяется адресом, состоящим не из одного, а нескольких параметров. Самый распространенный пример – матрица - адрес – два параметра – номер строки и номер столбца. Многомерные таблицы.

      Иерархические структуры. Используются для представления нерегулярных данных. Адрес – определяется маршрутом – от вершины дерева. Файловая система – компьютера. (Маршрут может превысить – величину данных, дихотомия – всегда два разветвления – влево и вправо).

Упорядочение структур данных. Основной способ – сортировка. ! При добавлении нового элемента в упорядоченную структуру – возможно изменения адреса у существующих. Для иерархических структур – индексация – каждому элементу уникальный номер – который далее используется в сортировке и поиске.

    Основные элементы файловой системы

Историческим первым шагом в области хранения и управления данными стало использование систем управления файлами.

Файл - это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Три параметра:

    последовательность произвольного числа байтов,

    уникальное собственное имя (фактически – адрес).

    данные одного типа – тип файла.

Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла.

Первая, в современном понимании, развитая файловая система была разработана фирмой IBM для ее серии 360 (1965-1966 годы). Но в нынешних системах она практически не применяется. Использовала списочные структуры данных (ЕС- том, раздел, файл).

Большинство из Вас знакомо с файловыми системами современных ОС. Это прежде всего MS DOS, Windows, а некоторые с построением файловой системы для различных вариантов UNIX.

Структура файлов. Файл представляет совокупность блоков данных, размещенных на внешнем носителе. Для произведения обмена с магнитным диском на уровне аппаратуры нужно указать номер цилиндра, номер поверхности, номер блока на соответствующей дорожке и число байтов, которое нужно записать или прочитать от начала этого блока. Поэтому во всех файловых системах явно или неявно выделяется некоторый базовый уровень, обеспечивающий работу с файлами, представляющими набор прямо адресуемых в адресном пространстве блоков.

Именование файлов. Все современные файловые системы поддерживают многоуровневое именование файлов за счет поддержания во внешней памяти дополнительных файлов со специальной структурой - каталогов. Каждый каталог содержит имена каталогов и/или файлов, содержащихся в данном каталоге. Таким образом, полное имя файла состоит из списка имен каталогов плюс имя файла в каталоге, непосредственно содержащем данный файл. Разница между способами именования файлов в разных файловых системах состоит в том, с чего начинается эта цепочка имен. (Unix, DOS-Windows)

Защита файлов. Системы управления файлами должны обеспечивать авторизацию доступа к файлам. В общем виде подход состоит в том, что по отношению к каждому зарегистрированному пользователю данной вычислительной системы для каждого существующего файла указываются действия, которые разрешены или запрещены данному пользователю. Существовали попытки реализовать этот подход в полном объеме. Но это вызывало слишком большие накладные расходы как по хранению избыточной информации, так и по использованию этой информации для контроля правомочности доступа. Поэтому в большинстве современных систем управления файлами применяется подход к защите файлов, впервые реализованный в ОС UNIX (1974). В этой системе каждому зарегистрированному пользователю соответствует пара целочисленных идентификаторов: идентификатор группы, к которой относится этот пользователь, и его собственный идентификатор в группе. Соответственно, при каждом файле хранится полный идентификатор пользователя, который создал этот файл, и отмечается, какие действия с файлом может производить он сам, какие действия с файлом доступны для других пользователей той же группы, и что могут делать с файлом пользователи других групп. Эта информация очень компактна, при проверке требуется небольшое количество действий, и этот способ контроля доступа удовлетворителен в большинстве случаев.

Режим многопользовательского доступа. Если операционная система поддерживает многопользовательский режим вполне реальна ситуация, когда два или более пользователей одновременно пытаются работать с одним и тем же файлом. Если все эти пользователи собираются только читать файл, ничего страшного не произойдет. Но если хотя бы один из них будет изменять файл, для корректной работы этой группы требуется взаимная синхронизация. Исторически в файловых системах применялся следующий подход. В операции открытия файла (первой и обязательной операции, с которой должен начинаться сеанс работы с файлом) помимо прочих параметров указывался режим работы (чтение или изменение). + имеется специальные процедуры синхронизации действий пользователей. Нельзя по записям!

    Журналирование в файловых системах. Общие принципы.

Запуск проверки системы (fsck) на больших файловых системах может занять много времени, что очень плохо, учитывая сегодняшние высоко скоростные системы. Причиной, по которой целостность отсутствует в файловой системе, может являться не корректное размонтирование, например в момент прекращения работы на диск велась запись. Приложения могли обновлять данные, содержащиеся в файлах и система могла обновлять мета-данные файловой системы, которые являются «данными о данных файловой системы», иными словами, информация о том какие блоки связаны с какими файлами, какие файлы размещены в каких директориях и тому подобное. Ошибки (отсутствие целостности) в файлах данных – это плохо, но куда хуже ошибки в мета-данных файловой системы, что может привести к потерям файлов и другим серьезным проблемам.

Для минимизации проблем связанных с целостностью и минимизации времени перезапуска системы, журналируемая файловая система хранит список изменений, которые она будут проводить с файловой системой перед фактической записью изменений. Эти записи хранятся в отдельной части файловой системы, называемой «журналом» или «логом». Как только эти записи журнала (лога) безопасно записаны, журналируемая файловая система вносит эти изменения в файловую систему и затем удаляет эти записи из «лога» (журнала регистраций). Записи журнала организованы в наборы связанных изменений файловой системы, что очень похоже на то, как изменения добавляемые в базу данных организованны в транзакции.

Журналируемая файловая система увеличивает вероятность целостности, потому что записи в лог-файл ведутся до проведения изменений файловой системы, и потому что файловая система хранит эти записи до тех пор, пока они не будут целиком и безопасно применены к файловой системе. При перезагрузке компьютера, который использует журналируемую файловую систему, программа монтирования может гарантировать целостность файловой системы простой проверкой лог-файла на наличие ожидаемых, но не произведенных изменений и записью их в файловую систему. В большинстве случаев, системе не нужно проводить проверку целостности файловой системы, а это означает, что компьютер использующий журналируемую файловую систему будет доступен для работы практически сразу после перезагрузки. Соответственно шансы потери данных в связи с проблемами в файловой системе значительно снижаются.

Классический вид журналируемой файловой системы это хранение в журнале (логе) изменений метаданных файловой системы и хранение изменений всех данных файловой системы, включая изменения самих файлов.

    Файловая система MS-DOS (FAT)

Файловая система MS-DOS представляет собой древовидную файловую систему для небольших дисков и простых структур каталогов, в корне которой находится корневой каталог, а листьями являются файлы и другие каталоги, возможно пустые. Размещение файлов под управлением этой файловой системы происходит по кластерам, размер которых может колебаться от 4 КБ до 64 КБ кратно 4, без использования свойства смежности смешанным способом выделения дисковой памяти. Например, на рисунке показано три файла. Файл File1.txt является достаточно большим: он задействует три следующих друг за другом блока. Небольшой файл File3.txt использует пространство только одного размещаемого блока. Третий файл File2.txt. является большим фрагментированным файлом. В каждом случае точка входа указывает на первый распределяемый блок, принадлежащий файлу. Если файл использует несколько распределяемых блоков, то предшествующий блок указывает на следующий в цепочке. Значение FFF отождествляется с концом последовательности.

Дисковый раздел FAT

Для эффективного доступа к файлам используется таблица размещения файлов – File Allocation Table, которая размещается в начале раздела (или логического диска). Именно от названия таблицы размещения и происходит название этой файловой системы – FAT. В целях защиты раздела на нем хранятся две копии FAT, на тот случай, если одна из них окажется поврежденной. Кроме того, таблицы размещения файлов должны размещаться по строго фиксированным адресам, чтобы файлы, необходимые для запуска системы, были размещены корректно.

Таблица размещения файлов состоит из 16-разрядных элементов и содержит следующую информацию о каждом кластере логического диска:

    кластер не используется;

    кластер используется файлом;

    плохой кластер;

    последний кластер файла;.

Так как каждому кластеру должен быть присвоен уникальный 16-разрядный номер, то следовательно, FAT поддерживает максимально 216, или 65 536 кластеров на одном логическом диске (да еще некоторую часть кластеров резервирует для своих нужд). Таким образом получаем предельный размер диска, обслуживаемого MS-DOS, в 4 ГБ. Размер кластера можно увеличить или уменьшить в зависимости от размера диска. Однако, когда размер диска превышает некоторую величину, кластеры становятся слишком большого размера что ведет к внутренней дефрагментации диска. Кроме информации о файлах, в таблице размещения файлов может быть помещена информация и о каталогах. При этом каталоги рассматриваются как специальные файлы с 32-байтовыми элементами для каждого файла, содержащегося в этом каталоге. Корневой каталог имеет фиксированный размер – 512 записей для жесткого диска, а для дискет этот размер определяется объемом дискеты. Кроме того, корневой каталог расположен сразу же после второй копии FAT, поскольку в нем находятся файлы, необходимые загрузчику MS-DOS.

При поиске файла на диске MS-DOS вынуждена просматривать структуру каталога, чтобы найти его. Например, чтобы запустить исполняемый файл С:\Program\NC4\nc.exe находит исполнимый файл, выполнив следующие действия:

    читает корневой каталог диска C: и ищет в нем каталог Program;

    читает начальный кластер Program и ищет в этом каталоге запись о вложенном каталоге NC4;

    читает начальный кластер вложенного каталога NC4 и ищет в нем запись о файле nc.exe;

    читает все кластеры файла nc.exe.

Такой способ поиска не является самым быстрым среди действующих файловых систем. Причем, чем больше глубина каталогов, тем медленнее будет происходить поиск. Для ускорения операции поиска следует придерживаться сбалансированной файловой структуры.

Достоинства FAT

    Является лучшим выбором для логических дисков небольшого размера, т.к. стартует с минимальными накладными расходами. На дисках, размер которых не превышает 500 МБ, она работает с приемлемыми характеристиками.

Недостатки FAT

    Поскольку размер записи о файле ограничен 32 байтами, а информация должна включать в себя и размер файла и дату, и атрибуты и т.д., то размер под название файла также ограничен и не может превышать 8+3 символа на каждый файл. Использование так называемых коротких имен файлов делает FAT менее привлекательной для использования по сравнению с другими файловыми системами.

    Использование FAT на дисках, объем которых превышает 500 МБ нерационально по причине дефрагментации диска.

    Файловая система FAT не обладает никакими средствами защиты и поддерживает минимальные возможности по обеспечению безопасности информации.

    Скорость выполнения операций в FAT происходит обратно пропорционально глубине вложенности каталогов и объему диска.

    Файловая система UNIX – систем (ext3)

Современная, мощная и бесплатная операционная система Linux предоставляет широкую территорию для разработки современных систем и пользовательского программного обеспечения. Некоторые из наиболее интересных разработок в недавних ядрах Linux это новые, высоко производительные технологии для управления хранением, размещением и обновлением данных на диске. Один из наиболее интересных механизмов – это файловая система ext3, которая интегрируется в ядро Linux начиная с версии 2.4.16, и уже доступна по умолчанию в Linux дистрибутивах от компаний Red Hat и SuSE.

Файловая система ext3 является журналируемой файловой системой, 100% совместимой со всеми утилитами созданными для создания, управления и тонкой настройки файловой системы ext2, которая используется в Linux системах несколько последних лет. Перед детальным описанием различий между файловыми системами ext2 и ext3, уточним терминологию файловых систем и хранения файлов.

На системном уровне, все данные на компьютере существуют как блоки данных на неком устройстве хранения, организованных с помощью специальных структур данных в разделы (логические наборы на устройстве хранения), которые в свою очередь организованы в файлы, директории и неиспользуемое (свободное) пространство.

Файловые системы созданы на разделах диска для упрощения хранения и организации данных в форме файлов и директорий. Linux, как Unix система, использует иерархическую файловую систему составленную из файлов и директорий, которые соответственно содержат либо файлы либо каталоги. Файлы и директории в файловой системе Linux становятся доступным пользователю путем их монтирования (команда «mount»), которая обычно является частью процесса загрузки системы. Список файловых систем доступных для использования хранится в файле /etc/fstab (FileSystem TABle). Список файловых систем не смонтированных в данные момент системой хранится в файле /etc/mtab (Mount TABle).

В момент монтирования файловой системы в процессе загрузки, бит в заголовке («чистый бит» / «clean bit») стирается, это означает что файловая система используется, и что структуры данных используемые для управления размещением и организации файлов и директорий, в данной файловой системы могут быть изменены.

Файловая система расценивается как целостная если все блоки данных в ней либо используются, либо свободны; каждый размещенный блок данных занят одним и только одним файлом или директорией; все файлы и директории могут быть доступны после обработки серии других директорий в файловой системе. Когда система Linux намеренно прекращает работу используя команды оператора, все файловые системы размонтируются. Размонтирование файловой системы в процессе завершения работы устанавливает «чистый бит» в заголовок файловой системы, указывая на то, что файловая система была размонтирована должным образом и, тем самым, может рассматриваться как целостная.

Года отладки и переработки файловой системы и использование улучшенных алгоритмов для записи данных на диск в большой степени уменьшили повреждение данных вызываемых приложениями или самим ядром Linux, но устранение повреждения и потери данных в связи с отключением питания и другими системными проблемами до сих пор является сложной задачей. В случае аварийной остановки или простого отключения Linux системы без использования стандартных процедур остановки работы «чистый бит» в заголовке файловой системы не устанавливается. При следующей загрузке системы, процесс монтировки обнаруживает, что система не маркирована как «чистая», и физически проверяет ее целостность использую Linux/Unix утилиту проверки файловой системы "fsck" (File System ChecK).

Существует несколько журналируемых файловых систем доступных для Linux. Наиболее известные из них: XFS, журналируемая файловая система разработанная Silicon Graphics, но сейчас выпущенная открытым кодом (open source); RaiserFS, журналируемая файловая система разработанная специально для Linux; JFS, журналируемая файловая система первоначально разработанная IBM, но сейчас выпущенная как открытый код; ext3 – файловая система разработанная доктором Стефаном Твиди (Stephan Tweedie) в Red Hat, и несколько других систем.

Файловая система ext3 – это журналируемая версия Linux файловой системы ext2. Файловая система ext3 имеет одно значительно преимущество перед другими журналируемыми файловыми системами – она полностью совместима с файловой системой ext2. Это делает возможным использование всех существующих приложений разработанных для манипуляции и настройки файловой системы ext2.

Файловая система ext3 поддерживается ядрами Linux версии 2.4.16 и более поздними, и должна быть активизирована использованием диалога конфигурации файловых систем (Filesystems Configuration) при сборке ядра. В Linux дистрибутивы, такие как Red Hat 7.2 и SuSE 7.3 уже включена встроенная поддержка файловой системы ext3. Вы можете использовать файловую систему ext3 только в том случае, когда поддержка ext3 встроена в ваше ядро и у вас есть последние версии утилит «mount» и «e2fsprogs».

В большинстве случаев перевод файловых систем из одного формата в другой влечет за собой резервное копирование всех содержащихся данных, переформатирование разделов или логических томов, содержащих файловую систему, и затем восстановление всех данных на эту файловую систему. В связи с совместимостью файловых систем ext2 и ext3, все эти действия можно не проводить, и перевод может быть сделать с помощью одной команды (запущенной с полномочиями root):

# /sbin/tune2fs -j <имя-раздела >

Например, перевод файловой системы ext2 расположенной на разделе /dev/hda5 в файловую систему ext3 может быть осуществлен с помощью следующей комманды:

# /sbin/tune2fs -j /dev/hda5

Опция "-j" команды "tune2fs" создает журнал ext3 на существующей ext2 файловой системе. После перевода файловой системы ext2 в ext3, вы так же должны внести изменения в записи файла /etc/fstab, для указания что теперь раздел является файловой системой "ext3". Так же вы можете использовать авто определение типа раздела (опция «auto»), но все же рекомендуется явно указывать тип файловой системы. Следующий пример файл /etc/fstab показывает изменения до и после перевода файловой системы для раздела /dev/hda5:

/dev/ hda5 /opt ext2 defaults 1 2

/dev/ hda5 /opt ext3 defaults 1 0

Последнее поле в /etc/fstab указывает этап в загрузке, во время которого целостность файловой системы должна быть проверена с помощью утилиты «fsck». При использовании файловой системы ext3, вы можете установить это значение в «0», как показано на предыдущем примере. Это означает что программа "fsck" никогда не будет проверять целостность файловой системе, в связи с тем что целостность файловой системы гарантируется путем отката в журнале.

Перевод корневой файловой системы в ext3 требует особого подхода, и лучше всего его проводить в режиме одного пользователя (single user mode) после создания RAM диска поддерживающего файловую систему ext3.

Кроме совместимости с утилитами файловой системы ext2 и простым переводом файловой системы из ext2 в ext3, файловая система ext3 так же предлагает несколько различных типов журнилирования.

Файловая система ext3 поддерживает три различных режима журналирования, которые могут быть активированы из файла /etc/fstab. Эти режимы журналирования следующие:

    Журнал / journal – запись всех изменений данных файловой системы и мета-данных. Наиболее медленный из всех трех режимов журналирования. Этот режим минимизирует шанс потери изменений файлов которые вы проводите в файловой системе.

    Последовательный / ordered – записываются изменения только мета-данных файловой системы, но записывает обновления данных файла на диск перед изменениями ассоциируемых мета-данных файловой системы. Этот режим журналирования ext3 установлен по умолчанию.

    Обратная запись / writeback – записываются только изменения мета-данных файловой системы, основан на стандартном процессе записи изменений данных файлов. Это наиболее быстрый метод журналирования.

Различия между этими режимами журналирования одновременно и едва заметны, и основательны. Использование режима «журнал» требует, что бы файловая система ext3 записывала каждое изменение файловой системы дважды – первый раз в журнал, а затем в саму файловую систему. Это может снизить общую производительность вашей файловой системы, но этот режим наиболее любим пользователями, потому что он минимизирует шанс потери изменения данных ваших файлов, так как и изменения мета - данных и изменения данный файлов записывается в журнал ext3 и может быть повторено при перезагрузке системы.

Используя «последовательный» режим, записываются только изменения мета - данных файловой системы, что понижает избыточность между записью в файловую систему и в журнал, именно в связи с эти метод более быстрый. Не смотря на то, что изменения данных файла не записываются в журнал, они должны быть сделаны до изменений ассоциируемых мета - данных файловой системы, которые проводит журналирующий ext3 демон, что может немного снизить производительность вашей системы. Использование этого метода журналирования гарантирует что файлы в файловой системе никогда не будет рассинхронизированы со связанными мета-данными файловой системы.

Метод «обратная запись» наиболее быстрый, чем остальные два журналируемых метода, так как хранятся данные только о изменениях мета-данных файловой системы, и нет ожидания изменения ассоциируемых данных файла при записи (перед обновлением таких вещей как размер файла и информация о директории). Так как обновление данных файла производиться асинхронно по отношению к журналируемым изменениям мета-данных файловой системы, файлы в файловой системе могут показывать ошибки в мета-данных, например ошибка в указании владельца блоков данных (обновление которых к моменту перезагрузки системы было не закончено). Это не фатально, но может помешать пользователю.

Указание журналируемого режима, используемого в ext3 файловой системе производиться в файле /etc/fstab для этой файловой системы. «Последовательный» режим используется по умолчанию, но вы можете указать различные режимы журналирования, путем изменения опций для требуемого раздела в файле /etc/fstab. Например, запись в /etc/fstab указывающая на использование режима журналирования «обратная запись» будет выглядеть следующим образом:

/dev/hda5 /opt ext3 data=writeback 1 0

    Файловая система семейства Windows NT (NTFS)

      Физическая структура NTFS

Начнем с общих фактов. Раздел NTFS, теоретически, может быть почти какого угодно размера. Предел, конечно, есть, но я даже не буду указывать его, так как его с запасом хватит на последующие сто лет развития вычислительной техники - при любых темпах роста. Как обстоит с этим дело на практике? Почти так же. Максимальный размер раздела NTFS в данный момент ограничен лишь размерами жестких дисков. NT4, правда, будет испытывать проблемы при попытке установки на раздел, если хоть какая-нибудь его часть отступает более чем на 8 Гб от физического начала диска, но эта проблема касается лишь загрузочного раздела.

Лирическое отступление. Метод инсталляции NT4.0 на пустой диск довольно оригинален и может навести на неправильные мысли о возможностях NTFS. Если вы укажете программе установки, что желаете отформатировать диск в NTFS, максимальный размер, который она вам предложит, будет всего 4 Гб. Почему так мало, если размер раздела NTFS на самом деле практически неограничен? Дело в том, что установочная секция просто не знает этой файловой системы:) Программа установки форматирует этот диск в обычный FAT, максимальный размер которого в NT составляет 4 Гбайт (с использованием не совсем стандартного огромного кластера 64 Кбайта), и на этот FAT устанавливает NT. А вот уже в процессе первой загрузки самой операционной системы (еще в установочной фазе) производится быстрое преобразование раздела в NTFS; так что пользователь ничего и не замечает, кроме странного "ограничения" на размер NTFS при установке. :)

      Структура раздела - общий взгляд

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего.

Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается... Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

      MFT и его структура

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности (они очень важны) хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, "зацепившись" за самую основу - за первый элемент MFT.

        Метафайлы

Первые 16 файлов NTFS (метафайлы) носят служебный характер. Каждый из них отвечает за какой-либо аспект работы системы. Преимущество настолько модульного подхода заключается в поразительной гибкости - например, на FAT-е физическое повреждение в самой области FAT фатально для функционирования всего диска, а NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT.

Метафайлы находятся корневом каталоге NTFS диска - они начинаются с символа имени "$", хотя получить какую-либо информацию о них стандартными средствами сложно. Любопытно, что и для этих файлов указан вполне реальный размер - можно узнать, например, сколько операционная система тратит на каталогизацию всего вашего диска, посмотрев размер файла $MFT. В следующей таблице приведены используемые в данный момент метафайлы и их назначение.

копия первых 16 записей MFT, размещенная посередине диска

файл поддержки журналирования (см. ниже)

служебная информация - метка тома, версия файловой системы, т.д.

список стандартных атрибутов файлов на томе

корневой каталог

карта свободного места тома

загрузочный сектор (если раздел загрузочный)

файл, в котором записаны права пользователей на использование дискового пространства (начал работать лишь в NT5)

файл - таблица соответствия заглавных и прописных букв в имен файлов на текущем томе. Нужен в основном потому, что в NTFS имена файлов записываются в Unicode, что составляет 65 тысяч различных символов, искать большие и малые эквиваленты которых очень нетривиально.

        Файлы и потоки

Итак, у системы есть файлы - и ничего кроме файлов. Что включает в себя это понятие на NTFS?

    Прежде всего, обязательный элемент - запись в MFT, ведь, как было сказано ранее, все файлы диска упоминаются в MFT. В этом месте хранится вся информация о файле, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов, и т.д. Если для информации не хватает одной записи MFT, то используются несколько, причем не обязательно подряд.

    Опциональный элемент - потоки данных файла. Может показаться странным определение "опциональный", но, тем не менее, ничего странного тут нет. Во-первых, файл может не иметь данных - в таком случае на него не расходуется свободное место самого диска. Во-вторых, файл может иметь не очень большой размер. Тогда идет в ход довольно удачное решение: данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего "физического" воплощения в основной файловой области - все данные такого файла хранятся в одном месте - в MFT.

Довольно интересно обстоит дело и с данными файла. Каждый файл на NTFS, в общем-то, имеет несколько абстрактное строение - у него нет как таковых данных, а есть потоки (streams). Один из потоков и носит привычный нам смысл - данные файла. Но большинство атрибутов файла - тоже потоки! Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а всё остальное опционально. Данная абстракция может использоваться для создания довольно удобных вещей - например, файлу можно "прилепить" еще один поток, записав в него любые данные - например, информацию об авторе и содержании файла, как это сделано в Windows 2000 (самая правая закладка в свойствах файла, просматриваемых из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами: наблюдаемый размер файла - это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длинны, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология прилепила в нему дополнительный поток (альтернативные данные) гигабайтового размера. Но на самом деле в текущий момент потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто имейте в виду, что файл на NTFS - это более глубокое и глобальное понятие, чем можно себе вообразить просто просматривая каталоги диска. Ну и напоследок: имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла - 255 символов.

      Каталоги

Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Внутренняя структура каталога представляет собой бинарное дерево. Вот что это означает: для поиска файла с данным именем в линейном каталоге, таком, например, как у FAT-а, операционной системе приходится просматривать все элементы каталога, пока она не найдет нужный. Бинарное же дерево располагает имена файлов таким образом, чтобы поиск файла осуществлялся более быстрым способом - с помощью получения двухзначных ответов на вопросы о положении файла. Вопрос, на который бинарное дерево способно дать ответ, таков: в какой группе, относительно данного элемента, находится искомое имя - выше или ниже? Мы начинаем с такого вопроса к среднему элементу, и каждый ответ сужает зону поиска в среднем в два раза. Файлы, скажем, просто отсортированы по алфавиту, и ответ на вопрос осуществляется очевидным способом - сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента.

Вывод - для поиска одного файла среди 1000, например, FAT придется осуществить в среднем 500 сравнений (наиболее вероятно, что файл будет найден на середине поиска), а системе на основе дерева - всего около 10-ти (2^10 = 1024). Экономия времени поиска налицо. Не стоит, однако думать, что в традиционных системах (FAT) всё так запущено: во-первых, поддержание списка файлов в виде бинарного дерева довольно трудоемко, а во-вторых - даже FAT в исполнении современной системы (Windows2000 или Windows98) использует сходную оптимизацию поиска. Это просто еще один факт в вашу копилку знаний. Хочется также развеять распространенное заблуждение (которое я сам разделял совсем еще недавно) о том, что добавлять файл в каталог в виде дерева труднее, чем в линейный каталог: это достаточно сравнимые по времени операции - дело в том, что для того, чтобы добавить файл в каталог, нужно сначала убедится, что файла с таким именем там еще нет:) - и вот тут-то в линейной системе у нас будут трудности с поиском файла, описанные выше, которые с лихвой компенсируют саму простоту добавления файла в каталог.

Какую информацию можно получить, просто прочитав файл каталога? Ровно то, что выдает команда dir. Для выполнения простейшей навигации по диску не нужно лазить в MFT за каждым файлом, надо лишь читать самую общую информацию о файлах из файлов каталогов. Главный каталог диска - корневой - ничем не отличается об обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

      Журналирование

NTFS - отказоустойчивая система, которая вполне может привести себя в корректное состояние при практически любых реальных сбоях. Любая современная файловая система основана на таком понятии, как транзакция - действие, совершаемое целиком и корректно или не совершаемое вообще. У NTFS просто не бывает промежуточных (ошибочных или некорректных) состояний - квант изменения данных не может быть поделен на до и после сбоя, принося разрушения и путаницу - он либо совершен, либо отменен.

Пример 1: осуществляется запись данных на диск. Вдруг выясняется, что в то место, куда мы только что решили записать очередную порцию данных, писать не удалось - физическое повреждение поверхности. Поведение NTFS в этом случае довольно логично: транзакция записи откатывается целиком - система осознает, что запись не произведена. Место помечается как сбойное, а данные записываются в другое место - начинается новая транзакция.

Пример 2: более сложный случай - идет запись данных на диск. Вдруг, бах - отключается питание и система перезагружается. На какой фазе остановилась запись, где есть данные, а где чушь? На помощь приходит другой механизм системы - журнал транзакций. Дело в том, что система, осознав свое желание писать на диск, пометила в метафайле $LogFile это свое состояние. При перезагрузке это файл изучается на предмет наличия незавершенных транзакций, которые были прерваны аварией и результат которых непредсказуем - все эти транзакции отменяются: место, в которое осуществлялась запись, помечается снова как свободное, индексы и элементы MFT приводятся в с состояние, в котором они были до сбоя, и система в целом остается стабильна. Ну а если ошибка произошла при записи в журнал? Тоже ничего страшного: транзакция либо еще и не начиналась (идет только попытка записать намерения её произвести), либо уже закончилась - то есть идет попытка записать, что транзакция на самом деле уже выполнена. В последнем случае при следующей загрузке система сама вполне разберется, что на самом деле всё и так записано корректно, и не обратит внимания на "незаконченную" транзакцию.

И все-таки помните, что журналирование - не абсолютная панацея, а лишь средство существенно сократить число ошибок и сбоев системы. Вряд ли рядовой пользователь NTFS хоть когда-нибудь заметит ошибку системы или вынужден будет запускать chkdsk - опыт показывает, что NTFS восстанавливается в полностью корректное состояние даже при сбоях в очень загруженные дисковой активностью моменты. Вы можете даже оптимизировать диск и в самый разгар этого процесса нажать reset - вероятность потерь данных даже в этом случае будет очень низка. Важно понимать, однако, что система восстановления NTFS гарантирует корректность файловой системы, а не ваших данных. Если вы производили запись на диск и получили аварию - ваши данные могут и не записаться. Чудес не бывает.

Файлы NTFS имеют один довольно полезный атрибут - "сжатый". Дело в том, что NTFS имеет встроенную поддержку сжатия дисков - то, для чего раньше приходилось использовать Stacker или DoubleSpace. Любой файл или каталог в индивидуальном порядке может хранится на диске в сжатом виде - этот процесс совершенно прозрачен для приложений. Сжатие файлов имеет очень высокую скорость и только одно большое отрицательное свойство - огромная виртуальная фрагментация сжатых файлов, которая, правда, никому особо не мешает. Сжатие осуществляется блоками по 16 кластеров и использует так называемые "виртуальные кластеры" - опять же предельно гибкое решение, позволяющее добиться интересных эффектов - например, половина файла может быть сжата, а половина - нет. Это достигается благодаря тому, что хранение информации о компрессированности определенных фрагментов очень похоже на обычную фрагментацию файлов: например, типичная запись физической раскладки для реального, несжатого, файла:

кластеры файла с 1 по 43-й хранятся в кластерах диска начиная с 400-го кластеры файла с 44 по 52-й хранятся в кластерах диска начиная с 8530-го...

Физическая раскладка типичного сжатого файла:

кластеры файла с 1 по 9-й хранятся в кластерах диска начиная с 400-го кластеры файла с 10 по 16-й нигде не хранятся кластеры файла с 17 по 18-й хранятся в кластерах диска начиная с 409-го кластеры файла с 19 по 36-й нигде не хранятся....

Видно, что сжатый файл имеет "виртуальные" кластеры, реальной информации в которых нет. Как только система видит такие виртуальные кластеры, она тут же понимает, что данные предыдущего блока, кратного 16-ти, должны быть разжаты, а получившиеся данные как раз заполнят виртуальные кластеры - вот, по сути, и весь алгоритм.

      Безопасность

NTFS содержит множество средств разграничения прав объектов - есть мнение, что это самая совершенная файловая система из всех ныне существующих. В теории это, без сомнения, так, но в текущих реализациях, к сожалению, система прав достаточно далека от идеала и представляет собой хоть и жесткий, но не всегда логичный набор характеристик. Права, назначаемые любому объекту и однозначно соблюдаемые системой, эволюционируют - крупные изменения и дополнения прав осуществлялись уже несколько раз и к Windows 2000 все-таки они пришли к достаточно разумному набору.

Права файловой системы NTFS неразрывно связаны с самой системой - то есть они, вообще говоря, необязательны к соблюдению другой системой, если ей дать физический доступ к диску. Для предотвращения физического доступа в Windows2000 (NT5) всё же ввели стандартную возможность - об этом см. ниже. Система прав в своем текущем состоянии достаточно сложна, и я сомневаюсь, что смогу сказать широкому читателю что-нибудь интересное и полезное ему в обычной жизни. Если вас интересует эта тема - вы найдете множество книг по сетевой архитектуре NT, в которых это описано более чем подробно.

На этом описание строение файловой системы можно закончить, осталось описать лишь некоторое количество просто практичных или оригинальных вещей.

Эта штука была в NTFS с незапамятных времен, но использовалась очень редко - и тем не менее: Hard Link - это когда один и тот же файл имеет два имени (несколько указателей файла-каталога или разных каталогов указывают на одну и ту же MFT запись). Допустим, один и тот же файл имеет имена 1.txt и 2.txt: если пользователь сотрет файл 1, останется файл 2. Если сотрет 2 - останется файл 1, то есть оба имени, с момента создания, совершенно равноправны. Файл физически стирается лишь тогда, когда будет удалено его последнее имя.

      Symbolic Links (NT5)

Гораздо более практичная возможность, позволяющая делать виртуальные каталоги - ровно так же, как и виртуальные диски командой subst в DOSе. Применения достаточно разнообразны: во-первых, упрощение системы каталогов. Если вам не нравится каталог Documents and settings\Administrator\Documents, вы можете прилинковать его в корневой каталог - система будет по прежнему общаться с каталогом с дремучим путем, а вы - с гораздо более коротким именем, полностью ему эквивалентным. Для создания таких связей можно воспользоваться программой junction (junction.zip(15 Kb), 36 кб), которую написал известный специалист Mark Russinovich (http://www.sysinternals.com). Программа работает только в NT5 (Windows 2000), как и сама возможность. Для удаления связи можно воспользоваться стандартной командой rd. ВНИМАНИЕ: Попытка удаления связи с помощью проводника или других файловых менеджеров, не понимающих виртуальную природу каталога (например, FAR), приведет к удалению данных, на которые ссылается ссылка! Будьте осторожны.

      Шифрование (NT5)

Полезная возможность для людей, которые беспокоятся за свои секреты - каждый файл или каталог может также быть зашифрован, что не даст возможность прочесть его другой инсталляцией NT. В сочетании со стандартным и практически непрошибаемым паролем на загрузку самой системы, эта возможность обеспечивает достаточную для большинства применений безопасность избранных вами важных данных.

Статьи по теме: