3 тактовая частота процессора. Тактовая частота процессора - это залог быстродействия компьютера

CPU – central processing unit, или центральное обрабатывающее устройство. Представляет собой интегральную схему, которая выполняет машинные инструкции. Внешне современный ЦП выглядит как небольшой блок размером около 4-5 см с контактами-ножками на нижней части. Хоть и принято называть этот блок , сама интегральная схема находится внутри этого корпуса и представляет собой кристалл кремния, на который с помощью литографии наносятся электронные компоненты.

Верхняя часть корпуса ЦП служит для отвода тепла, которое образуется в результате работы миллиарда транзисторов. На нижней части расположены контакты, которые нужны для соединения чипа с материнской платой с помощью сокета - определённого разъёма. ЦП - самая производительная часть компьютера.

Тактовая частота как важный параметр работы процессора, и на что она влияет

Производительность процессора принято оценивать по его тактовой частоте. Это количество операций или тактов, которые может произвести ЦП за секунду. По сути, время, за которое процессор обрабатывает информацию. Вся загвоздка заключается в том, что разные архитектуры и устройство ЦП могут выполнять операции за различное количество тактов. То есть, одному ЦП для определённой задачи может понадобиться один такт, а другому - 4. Таким образом, первый может оказаться более эффективным со значением в 200 МГц, против второго с показателем в 600 МГц.

То есть тактовая частота, по сути, не даёт полного определения производительности процессора, что обычно позиционируется многими именно так. Но мы привыкли оценивать её из-за более-менее устоявшихся норм. Например, для современных моделей актуальный разбег в цифрах составляет от 2,5 до 3,7 ГГц, а нередко и выше. Естественно, что чем больше значение, тем лучше. Однако это не означает, что на рынке не существует процессора с меньшей частотой, но работающего гораздо эффективней.

Принцип действия генератора тактовой частоты

Все компоненты ПК работают с разной скоростью. Например, системная шина может быть 100 МГц, ЦП − 2,8 ГГц, а оперативная память - 800 МГц. Базовый показатель для системы задаёт генератор тактовых импульсов.

Чаще всего в современных компьютерах используется программируемая микросхема генерации, которая определяет значение для каждого компонента в отдельности. Принцип действия простейшего генератора тактовых импульсов заключается в вырабатывании электрических импульсов с определённым временным интервалом. Самый наглядный пример использования генератора - электронные часы. С помощью подсчёта тактов формируются секунды, из них − уже минуты и затем часы. О том, что такое Гигагерцы, Мегагерцы и т.д., мы расскажем чуть позже.

Как скорость работы компьютера и ноутбука зависит от тактовой частоты

Частота работы процессора отвечает за количество тактов, которое может выполнить компьютер в одну секунду, что, в свою очередь, отражает производительность. Однако не стоит забывать о том, что разные архитектуры используют различное количество тактов для решения одной задачи. То есть, «меряться показателями» актуально в рамках хотя бы одного класса процессоров.

На что влияет тактовая частота одноядерного процессора в компьютере и ноутбуке

Одноядерные ЦП уже редко где можно встретить в природе. Но для примера их использовать можно. Одно ядро процессора содержит в своём составе как минимум входящее в него арифметико-логическое устройство, набор регистров, пару уровней кэша и сопроцессор.

Частота, с которой все эти компоненты выполняют свои задачи, напрямую влияет на общую производительность ЦП. Но, опять же, при относительно схожей архитектуре и механизме выполнения команд.

На что влияет количество ядер в ноутбуке

Показатели ядер ЦП не складывается. То есть если 4 ядра работают на 2 ГГц, то это не значит, что их общее значение равно 8 ГГц. Потому что задачи в многоядерных архитектурах выполняются параллельно. То есть, определённый набор команд раздаётся ядрам по частям, а после выполнения каждой формируется общий ответ.

Таким образом, определённая задача может быть выполнена быстрее. Вся проблема заключается в том, что не все программные обеспечения умеют работать с несколькими потоками одновременно. То есть, до сих пор большинство приложений, по сути, задействует всего лишь одно ядро. Существуют, конечно, механизмы на уровне операционной системы, которые могут распараллеливать задачи на разные ядра, например, одно приложение загружает одно ядро, другое - второе и т.д. Но на это также требуются ресурсы системы. Но, в общем, оптимизированные программы и игры показывают гораздо большую производительность в многоядерных системах.

В чём измеряется тактовая частота процессора

Единица измерения Герц обычно показывает количество выполнения периодических процессов за одну секунду. Это и стало идеальным решением для того, в каких единицах будет измеряться тактовая частота процессора. Теперь работа всех чипов стала измеряться в Герцах. Ну, сейчас уже − ГГц. Гига - это такая приставка, показывающая, что здесь содержится 1000000000 Герц. За всю историю ПК приставки часто менялись - КГц, затем МГц, и сейчас наиболее актуальна ГГц. В спецификациях ЦП можно встретить и английские аббревиатуры - MHz или GHz. Обозначают такие приставки то же, что и в кириллице.

Как узнать частоту процессора своего компьютера

Для операционной системы Windows существует несколько простых способов, как штатных, так и с помощью сторонних программ. Самый простой и очевидный - щёлкнуть правой кнопкой по значку «Мой компьютер» и зайти в его свойства. Рядом с именем ЦП и его характеристиками будет указана и его частота.

Из сторонних решений можно использовать небольшую, но известную программку CPU-Z. Её лишь нужно скачать, установить и запустить. В главном окне она покажет текущую тактовую частоту. Кроме этих данных, она отображает и много другой полезной информации.

Программа CPU-Z

Какими способами можно увеличить производительность

Для того чтобы , существуют два основных способа: увеличить множитель и частоту системной шины. Множитель - это коэффициент, показывающий отношение базовой частоты процессора к базовому показателю системной шины.

Он устанавливается заводом изготовителем и в конечном устройстве может быть либо заблокирован для изменений, либо разблокирован. Если возможность изменить множитель есть, то значит, можно увеличить и частоту работы процессора, без внесения изменений в работу других компонентов. Но на практике такой подход не даёт эффективного прироста, так как остальные просто не успевают за ЦП. Изменение показателя системной шины приведёт к увеличению значений всех компонентов: процессора, оперативной памяти, северного и южного мостов. Это наиболее простой и эффективный способ разгона компьютера.

Разогнать ПК в целом можно и с помощью повышения напряжения, которое увеличит скорость работы транзисторов ЦП, а вместе с этим и его частоту. Но такой способ довольно сложный и опасный для новичков. Используют его в основном опытные в разгоне и электронике люди.

Разные названия одного параметра

Здравствуйте, дорогие читатели. В предыдущей статье рассказывал о том, где описано самое основное. В этом посте расскажу о такой характеристике как базовая частота процессора, про которую вы тоже должны знать, тем самым добавив информации, которая может вам пригодиться при выборе.

Объяснение и пример его работы

Технически звучит это так: Базовая или номинальная частота (это одно и тоже) — это показатель при котором компьютерный микропроцессор выполняет минимальное количество тактов.

Это означает что, когда компьютер выполняет какое-то количество задач и ему не требуется использовать все свои мощности для их выполнения, он работает на номинальных тактах. Примерные задачи: поддержание работы операционной системы, просмотр фото, прослушивание музыки, редактирование текста.

В чем измеряется?

Эта характеристика измеряется в мегагерцах (1200 МГц) или гигагерцах (1.2 ГГц). Этот параметр присутствует как у производителя Intel, так и у AMD. Также его можно встретить в описании к товару или в характеристиках.

Еще на многих сайтах в описании вы можете встретить термин «рабочая или постоянная» — это тоже самое. Вот всевозможные варианты названий, которые есть на сайтах:
Если все понятно, как это работает, то можете себя проверить. Представьте, что у вас есть CPU c базовой частотностью 2 Ghz. Для того чтобы посмотреть видео или послушать музыку микропроцессору нужно задействовать к примеру 2400 Mhz своей мощности, а для просмотра фото ему потребуется 1,7 ГГц. Вопрос с загадкой, какую частотность будет использовать камень для просмотра фото?

Ваш вариант ответа если хотите, можете оставить в комментариях. Давайте поступим так, после 15 оставленных комментариев, напишу правильный ответ, договорились? Думаю, «ДА». Поехали дальше.

На что влиять этот показатель?

  • На энергопотребление
  • На выделяемую температуру

В современных CPU энергопотребление мелкими шагами становится меньше и меньше, за счет новых техпроцессов, потоков и много другого. Несмотря на это нужно понимать, чем выше производительность, тем больше нужно энергии, а там, где высокое энергопотребление всегда есть высокая выделяемая температура.

В следующей статье расскажу вам о том, что все-таки важнее, . Интересная информация, обязательно прочитайте.

  • Pentium G4600 - постоянная 3,6 ГГц
  • Core i3 8100 - рабочая 3.6 Ghz
  • Pentium Gold G5400 - номинальная 3700 МГц

А да и еще, кому интересно — в этом интернет-магазинчике сейчас есть бесплатная доставка. Ну это так, небольшое отступление.

На этом у меня все. Комментируйте, высказывайте свои мысли, пишите и . Выбор за вами. Спасибо за ваше внимание. Пока пока.

* всегда актуальные вопросы, на что стоит обращать внимание при выборе процессора, чтобы не ошибиться.

Наша цель в данной статье — описать все факторы влияющие на производительность процессора и другие эксплуатационные характеристики.

Наверняка ни для кого не секрет, что процессор – является главной вычислительной единицей компьютера. Можно даже сказать – самая главная часть компьютера.

Именно он занимается обработкой практически всех процессов и задач, которые происходят в компьютере.

Будь то — просмотр видео, музыка, интернет сёрфинг, запись и чтение в памяти, обработка 3D и видео, игр. И многого другого.

Поэтому к выбору Ц ентрального П роцессора, стоит отнестись очень тщательно. Может получиться ситуация, что вы решили поставить мощную видеокарту и не соответствующий её уровню процессор. В этом случае процессор, не будет раскрывать потенциал видеокарты, что будет тормозить её работу. Процессор будет полностью загружен и буквально кипеть, а видеокарта будет ожидать своей очереди, работая на 60-70% от своих возможностей.

Именно поэтому, при выборе сбалансированного компьютера, не стоит пренебрегать процессором в пользу мощной видеокарты. Мощности процессора должно быть достаточно для раскрытия потенциала видеокарты, иначе это просто выброшенные деньги.

Intel vs. AMD

*догонялки навсегда

Корпорация Intel , располагает огромными человеческими ресурсами, и почти неисчерпаемыми финансами. Многие инновации в полупроводниковой индустрии и новые технологии идут именно из этой компании. Процессоры и разработки Intel , в среднем на 1-1,5 года опережают наработки инженеров AMD . Но как известно, за возможность обладать самыми современными технологиями – приходится платить.

Ценовая политика процессоров Intel , основывается как на количестве ядер , количестве кэша , но и на «свежести» архитектуры , производительности на такт ватт , техпроцесса чипа . Значение кэш-памяти, «тонкости техпроцесса» и другие важные характеристики процессора рассмотрим ниже. За обладание такими технологии как и свободного множителя частоты, тоже придётся выложить дополнительную сумму.

Компания AMD , в отличии от компании Intel , стремится к доступности своих процессоров для конечного потребителя и к грамотной ценовой политике.

Можно даже сказать, что AMD – «Народная марка ». В её ценниках вы найдёте то, что вам нужно по очень привлекательной цене. Обычно через год, после появления новой технологии у компании Intel , появляется аналог технологии от AMD . Если вы не гонитесь за самой высокой производительностью и больше обращаете внимание на ценник, чем на наличие передовых технологий, то продукция компании AMD – именно для вас.

Ценовая политика AMD , больше основывается на количестве ядер и совсем немного — на количестве кэш памяти, наличии архитектурных улучшений. В некоторых случаях, за возможность обладать кэш памятью третьего уровня, придётся немного доплатить (Phenom имеет кэш память 3 уровня, Athlon довольствуется только ограниченной, 2 уровня). Но иногда AMD «балует» своих фанатов возможность разблокировать более дешёвые процессоры, до более дорогих. Разблокировать можно ядра или кэш-память. Улучшить Athlon до Phenom . Такое возможно благодаря модульной архитектуре и при недостатке некоторых более дешёвых моделей, AMD просто отключает некоторые блоки на кристалле более дорогих (программно).

Ядра – остаются практически неизменными, отличается только их количество (справедливо для процессоров 2006-2011 годов). За счёт модульности своих процессоров, компания отлично справляется со сбытом отбракованных чипов, которые при отключении некоторых блоков, становятся процессором из менее производительной линейки.

Компания много лет работала над совершенно новой архитектурой под кодовым именем Bulldozer , но на момент выхода в 2011 году, новые процессоры показали не самую лучшую производительность. AMD грешила на операционные системы, что они не понимают архитектурных особенностей сдвоенных ядер и «другой многопоточности».

Со слов представителей компании, следует ждать особых исправлений и заплаток, чтобы ощутить всю производительность данных процессоров. Однако в начале 2012 года, представители компании отложили выход обновления для поддержки архитектуры Bulldozer на вторую половину года.

Частота процессора, количество ядер, многопоточность.

Во времена Pentium 4 и до него – частота процессора , была главным фактором производительности процессора при выборе процессора.

Это не удивительно, ведь архитектуры процессоров — специально разрабатывались для достижения высокой частоты, особенно сильно это отразилось как раз в процессоре Pentium 4 на архитектуре NetBurst . Высокая частота, была не эффективна при том длинном конвейере, что был использован в архитектуре. Даже Athlon XP частотой 2Ггц , по уровню производительности был выше чем Pentium 4 c 2,4Ггц . Так что, это был чистой воды маркетинг. После этой ошибки, компания Intel осознала свои ошибки и вернулась на сторону добра начала работать не над частотной составляющей, а над производительностью на такт. От архитектуры NetBurst пришлось отказаться.

Что же нам даёт многоядерность ?

Четырёх-ядерный процессор с частотой 2,4 Ггц , в много-поточных приложениях, теоретически будет примерным эквивалентом, одноядерного процессора с частотой 9,6Ггц или 2-х ядерному процессору с частотой 4,8 Ггц . Но это только теоретически . Практически же, два двухъядерных процессора в двух сокетной материнской плате, будут быстрее одного 4-ядерного, на той же частоте функционирования. Ограничения по скорости шины и задержки памяти дают о себе знать.

* при условии одинаковых архитектур и количества кэш памяти

Многоядерность, даёт возможность выполнять инструкции и вычисления по частям. К примеру нужно выполнить три арифметических действия. Первые два выполняются на каждом из ядер процессора и результаты складываются в кэш-память, где с ними может быть выполнено следующее действие любым из свободных ядер. Система очень гибкая, но без должной оптимизации может и не работать. Потому очень важна оптимизация под многоядерность для архитектуры процессоров в среде ОС.

Приложения, которые «любят» и используют многопоточность: архиваторы , плееры и кодировщики видео , антивирусы , программы дефрагментаторы , графические редакторы , браузеры , Flash .

Так же, к «любителям» многопоточности, можно отнести такие операционные системы как Windows 7 и Windows Vista , а так же многие ОС , основанные на ядре Linux , которые работают заметно быстрее при наличии многоядерного процессора.

Большинству игр , бывает вполне достаточно 2-х ядерного процессора на высокой частоте. Сейчас однако, выходит всё больше игр «заточенных» под многопоточность. Взять хотя бы такие SandBox игры, как GTA 4 или Prototype , в которые на 2-х ядерном процессоре с частотой ниже 2,6 Ггц – комфортно себя не чувствуешь, фреймрейт проваливается ниже 30 кадров в секунду. Хотя в данном случае, скорее всего причиной таких казусов является «слабая» оптимизация игр, недостаток времени или «не прямые» руки тех, кто переносил игры с консолей на PC .

При покупке нового процессора для игр, сейчас стоит обращать внимание на процессоры с 4-мя и более ядрами. Но всё же, не стоит пренебрегать 2-х ядерными процессорами из «верхней категории». В некоторых играх, данные процессоры чувствуют себя порой лучше, чем некоторые многоядерные.

Кэш память процессора.

– это выделенная область кристалла процессора, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами.

Она работает на очень высокой тактовой частоте (обычно на частоте самого процессора), имеет очень высокую пропускную способность и процессорные ядра работают с ней напрямую (L1 ).

Из-за её нехватки , процессор может простаивать в трудоёмких задачах, ожидая пока в кэш поступят новые данные для обработки. Так же кэш-память служит для записи часто повторяющихся данных, которые при необходимости могут быть быстро восстановлены без лишних вычислений, не заставляя процессор тратить время на них снова.

Производительности, так же добавляет факт, если кэш память объединённая, и все ядра равноправно могут использовать данные из неё. Это даёт дополнительные возможности для многопоточной оптимизации.

Такой приём, сейчас используется для кэш памяти 3-го уровня . У процессоров Intel существовали процессоры с объединённой кэш памятью 2-го уровня (C2D E 7*** , E 8*** ), благодаря которым и появился данный способ увеличить многопоточную производительность.

При разгоне процессора, кэш память может стать слабым местом, не давая разогнать процессор больше, чем её предельная частота функционирования без ошибок. Однако плюсом является то, что она будет работать на той же частоте, что и разогнанный процессор.

В общем, чем больше кэш памяти, тем быстрее процессор. В каких именно приложениях?

Во всех приложениях, где используется множество числовых данных с плавающей запятой, инструкций и потоков, кэш память активно используется. Кэш память очень любят архиваторы , кодировщики видео , антивирусы и графические редакторы и т.д.

Благоприятно к большому количеству кэш-памяти относятся игры . Особенно стратегии, авто-симуляторы, RPG, SandBox и все игры, где есть много мелких деталей, частиц, элементов геометрии, потоков информации и физических эффектов.

Кэш память играет очень немалую роль в раскрытии потенциала систем с 2-мя и более видеокартами. Ведь какая то доля нагрузки, ложится на взаимодействие ядер процессора как между собой, так и для работы с потоками нескольких видео-чипов. Именно в этом случае важна организация кэш — памяти, и очень полезна кэш память 3-го уровня большого объёма.

Кэш память, всегда оснащается защитой от возможных ошибок (ECC ), при обнаружении которых, ведётся их исправление. Это очень важно, ведь маленькая ошибочка в кэш памяти, при обработке может превратиться в гигантскую, сплошную ошибку, от которой «ляжет» вся система.

Фирменные технологии.

(гипер-поточность, HT )–

впервые технология была применена в процессорах Pentium 4 , но работала не всегда корректно и зачастую больше тормозила процессор, чем ускоряла. Причиной был слишком длинный конвейер и не доведённая до ума система предсказания ветвлений. Применяется компанией Intel , аналогов технологии пока нет, если не считать аналогом то? что реализовали инженеры компании AMD в архитектуре Bulldozer .

Принцип системы таков, что на каждое физическое ядро, создаётся по два вычислительных потока , вместо одного. То есть, если у вас 4-х ядерный процессор с HT (Core i 7 ), то виртуальных потоков у вас 8 .

Прирост производительности достигается за счёт того, что в конвейер могут поступать данные уже в его середине, а не обязательно сначала. Если какие то блоки процессора, способные выполнить это действие простаивают, они получают задачу к выполнению. Прирост производительности не такой как у настоящих физических ядер, но сопоставимый(~50-75%, в зависимости от рода приложения). Довольно редко бывает, что в некоторых приложениях, HT отрицательно влияет на производительность. Связано это с плохой оптимизацией приложений под данную технологию, невозможность понять, что присутствуют потоки «виртуальные» и отсутствие ограничителей для нагрузки потоков равномерно.

Turbo Boost – очень полезная технология, которая увеличивает частоту функционирования наиболее используемых ядер процессора, в зависимости от уровня их загруженности. Очень полезна тогда, когда приложение не умеет использовать все 4 ядра, и загружает только одно или два, при этом их частота работы повышается, что частично компенсирует производительность. Аналогом данной технологии у компании AMD , является технология Turbo Core .

, 3 dnow ! инструкции . Предназначены для ускорения работы процессора в мультимедиа вычислениях (видео, музыка, 2D/3D графика и т.д.), а так же ускоряют работу таких программ как архиваторы, программы для работы с изображениями и видео (при поддержке инструкций данными программами).

3dnow ! – довольно старая технология AMD , которая содержит дополнительные инструкции по обработке мультимедиа контента, помимо SSE первой версии .

*А именно возможность потоковой обработки вещественных чисел одинарной точности.

Наличие самой новой версии – является большим плюсом, процессор начинает более эффективно выполнять определённые задачи при должной оптимизации ПО. Процессоры AMD носят похожие названия, но немного другие.

* Пример — SSE 4.1(Intel) — SSE 4A(AMD).

К тому же, данные наборы инструкций не идентичны. Это аналоги, в которых есть небольшие отличия.

Cool’n’Quiet, SpeedStep, CoolCore, Enchanced Half State(C1E) и т . д .

Данные технологии, при низкой нагрузке уменьшают частоту процессора, посредством уменьшения множителя и напряжения на ядре, отключения части КЭШа и т.д. Это позволяет процессору гораздо меньше греться и потреблять меньше энергии, меньше шуметь. Если понадобится мощность, то процессор вернётся в обычное состояние за доли секунды. На стандартных настройках Bios практически всегда включены, при желании их можно отключить, для уменьшения возможных «фризов» при переключении в 3D играх.

Некоторые из этих технологий, управляют скоростью вращения вентиляторов в системе. К примеру, если процессор не нуждается в усиленном отводе тепла и не нагружен, скорость вентилятора процессора уменьшается (AMD Cool’n’Quiet, Intel Speed Step ).

Intel Virtualization Technology и AMD Virtualization .

Эти аппаратные технологии позволяют с помощью специальных программ запускать несколько операционных систем сразу, без какой либо сильной потери в производительности. Так же, её используют для правильной работы серверов, ведь зачастую, на них установлена далеко не одна ОС.

Execute Disable Bit и No eXecute Bit технология, призванная защитить компьютер от вирусных атак и программных ошибок, которые могут вызвать крах системы посредством переполнения буфера .

Intel 64 , AMD 64 , EM 64 T – данная технология позволяет процессору работать как в ОС с 32-х битной архитектурой, так и в ОС с 64-х битной. Система 64 bit – с точки зрения выгоды, для рядового пользователя отличается тем, что в данной системе можно использовать более 3.25Гб оперативной памяти. В 32-х битных системах, использовать бо льший объём оперативной памяти не представляется возможным, из-за ограниченного объёма адресуемой памяти* .

Большинство приложений с 32-х bit архитектурой, можно запустить на системе с 64-х битной ОС.

* Что же поделать, если в далёком 1985 году, никто и подумать не мог о таких гигантских, по меркам того времени, объёмах оперативной памяти.

Дополнительно.

Пара слов о .

На этот пункт стоит обратить пристальное внимание. Чем тоньше техпроцесс, тем меньше процессор потребляет энергии и как следствие — меньше греется. И кроме всего прочего — имеет более высокий запас прочности для разгона.

Чем более тонкий техпроцесс, тем больше можно «завернуть» в чип (и не только) и увеличить возможности процессора. Тепловыделение и энергопотребление при этом тоже уменьшается пропорционально, благодаря меньшим потерям по току и уменьшению площади ядра. Можно заметить тенденцию, что с каждым новым поколением той же архитектуры на новом техпроцессе, растёт и энергопотребление, но это не так. Просто производители идут в сторону ещё большей производительности и перешагивают за черту тепловыделения прошлого поколения процессоров из-за увеличения числа транзисторов, которое не пропорционально уменьшению техпроцесса.

Встроенное в процессор .

Если вам не нужно встроенное видео ядро, то не стоит покупать процессор с ним. Вы получите только худший отвод тепла, лишний нагрев (не всегда), худший разгонный потенциал (не всегда), и переплаченные деньги.

К тому же те ядра, что встроены в процессор, годятся только для загрузки ОС, интернет сёрфинга и просмотра видео (и то не любого качества).

Тенденции на рынке все же меняются и возможность купить производительный процессор от Intel без видео ядра выпадает всё реже. Политика принудительного навязывание встроенного видео ядра, появилась с процессоров Intel под кодовым названием Sandy Bridge , основное новшество которых и было встроенное ядро на том же техпроцессе. Видео-ядро, находится совместно с процессором на одном кристалле , и не такое простое как в предыдущих поколениях процессоров Intel . Для тех кто его не использует, есть минусы в виде некоторой переплаты за процессор, смещённость источника нагрева относительно центра тепло — распределительной крышки. Однако есть и плюсы. Отключенное видео ядро, можно использовать для очень быстрой кодировки видео с помощью технологии Quick Sync вкупе со специальным, поддерживающим данную технологию ПО. В будущем, Intel обещает расширить горизонты использования встроенного видео ядра для параллельных вычислений.

Сокеты для процессоров. Сроки жизни платформ .


Intel ведёт грубую политику для своих платформ. Срок жизни каждой (срок начала и конца продаж процессоров для неё), обычно не превышает 1.5 — 2 года. К тому же, у компании есть несколько параллельно развивающихся платформ.

Компания AMD , ведёт противоположную политику совместимости. На её платформу на AM 3 , будут подходить все процессоры будущих поколений, поддерживающие DDR3 . Даже при выходе платформы на AM 3+ и более поздних, отдельно будут выпускаться либо новые процессоры под AM 3 , либо новые процессоры будут совместимы со старыми материнскими платами, и можно будет сделать безболезненный для кошелька апгрейд, поменяв только процессор (без смены мат.платы, ОЗУ и т.д.) и прошив материнской платы. Единственные нюансы несовместимости могут быть при смене типа , так как будет требоваться другой контроллёр памяти, встроенный в процессор. Так что совместимость ограниченная и поддерживается далеко не всеми материнскими платами. Но в целом, экономному пользователю или тем, кто не привык менять платформу полностью каждые 2 года — выбор производителя процессора понятен — это AMD .

Охлаждение процессора.

В стандартной комплектации, с процессором идёт BOX -овый кулер, который будет просто справляться со своей задачей. Представляет он из себя кусок алюминия с не очень высокой площадью рассеивания. Эффективные кулеры на тепловых трубках и закреплёнными на них пластинами, имеют конструкцию, предназначенную для высокоэффективного рассеивания тепла. Если вы не хотите слышать лишний шум от работы вентилятора, то вам стоит приобрести альтернативный, более эффективный кулер с тепловыми трубками, либо систему жидкостного охлаждения замкнутого или не замкнутого типа. Такие системы охлаждения, дополнительно дадут возможность разгона для процессора.

Заключение.

Все важные аспекты, влияющие на производительность и эксплуатационные характеристики процессора, были рассмотрены. Повторим, на что следует обращать внимание:

  • Выбрать производителя
  • Архитектура процессора
  • Техпроцесс
  • Частота процессора
  • Количество ядер процессора
  • Размер и тип кэш-памяти процессора
  • Поддержка технологий и инструкций
  • Качественное охлаждение

Надеемся, данный материал поможет вам разобраться и определиться в выборе соответствующего вашим ожиданиям процессора.

Многие владельцы компьютеров с современными процессорами замечают, что тактовая частота их процессора изменяется со временем. Иногда частота скачет до максимального значения, характерного для данной модели (например, до 3000 МГц), а иногда опускается до 1500 или даже 800 МГц. Наблюдая за подобными скачками, пользователи задаются вопросом, почему это происходит и как зафиксировать тактовую частоту на максимальном значении.

Если вы наблюдаете скачки тактовой частоты процессора во время простоя компьютера, то это вполне нормальное явление. Это работает механизм энергосбережения. В отсутствие нагрузки система понижает множитель процессора, что приводит к снижению тактовой частоты процессора. Обычно тактовая частота снижается до 1500 или 800 МГц, после чего компьютер работает на такой частоте до тех пор, пока на процессор не появится заметная нагрузка. С появлением нагрузки тактовая частота обратно прыгает до своих штатных значений.

Внизу показаны скриншоты из программы CPU-Z. Там видно, как частота процессора Intel Core i5 2310 скачет между значениями 1600 МГц и 3100 МГц.

Также в программе CPU-Z можно наблюдать как меняется множитель процессора.

Снижение тактовой частоты позволяет снизить потребление энергии процессором, что в свою очередь заметно снижает общее потребление энергии компьютером, ведь процессор является одним из самых прожорливых компонентов современного компьютера.

Кроме непосредственно экономии электроэнергии, такое поведение системы позволяет снизить температуру процессора, что в свою очередь позволяет снизить обороты вентиляторов и уменьшить уровень шума, который производится компьютером.

При желании, пользователь может зафиксировать тактовую частоту процессора на максимальном значении. Для этого нужно отредактировать используемую в операционной системе схему электропитания. Например, в Windows для этого нужно зайти в «Панель управления\Оборудование и звук\Электропитание» и кликнуть по ссылке «Настройка схемы электропитания», которая находится напротив активной схемы.

Таким образом вы попадете в дополнительные настройки схемы электропитания. Здесь нужно открыть раздел «Управление питанием процессора» и в поле «Минимальное состояние процессора» указать значение в 100 процентов.

После применения настроек процессор начнет работать на своей максимальной тактовой частоте.

Скачки тактовой частоты процессора под нагрузкой

Под нагрузкой тактовая частота также может меняться. В этом случае, это результат работы технологии Turbo Boost. Данная технология предназначена для автоматического разгона процессора до частот выше штатных. Активность такого авто-разгона зависит от нагрузки на процессор. При однопоточной нагрузке Turbo Boost тактовые частоты поднимаются заметно выше, чем при многопоточной, это может приводить к небольшим скачкам тактовой частоты процессора. Например, для процессора Core i5-2500 под нагрузкой Turbo Boost может изменять тактовую частоту в пределах от 3700 МГц (при нагрузке на одно ядро), до 3400 МГц (при нагрузке на все 4 ядра).

Если же вы наблюдаете значительные скачки частоты процессора под нагрузкой, например, скачки на 1000 МГц или больше, то это может быть признаком неисправности компьютера. В этом случае стоит проверить . При перегреве процессора может начаться так называемый «троттлинг». Это снижение тактовой частоты с целью снижения температуры процессора.

Нужно отметить, что троттлинг процессора может появляться не только в результате перегрева самого процессора, но и при перегреве его цепей питания. Такое может случится, например, при разгоне процессора на бюджетной материнской плате.

Процессор (ЦП или CPU) это центральное звено практически каждого современного устройства. Он способен одновременно осуществлять любые вычисления и выполнять команды различных программ. Главным образом, от ЦП зависит, насколько быстр и производителен будет компьютер или ноутбук. Именно его выбор придает дальнейшее направление процессу подбора остальных комплектующих.

Выбрать процессор для компьютера или ноутбука дело не сложное. Сначала нужно определиться с целями, ради которых он приобретается. После, нужно разобраться в основных параметрах его центрального «мозга».

Типы сокетов процессоров AMD, Intel и частота системной шины

Сокет – это процессорный разъем для подключения к материнской плате (см. фото). Сегодня большинство материнских плат изготовляют либо для CPU марки Intel, либо для AMD. Важно знать, что ЦП этих марок не являются взаимозаменяемыми – их сокеты отличаются как по форме, так и электрически.

По типу разъема они делятся на классы. Каждый такой класс состоит из моделей с сокетами одинаковой формы. В этом случае имеется возможность вставлять их в одну и ту же материнскую плату. Главное, чтобы ее чипсет обладал соответствующей поддержкой.

Также, при покупке ЦП, например, с разъемом LGA1155, материнскую плату нужно приобретать с аналогичным сокетом. Со временем новые разъемы стали иметь все большее количество контактов, что приводило к постоянному увеличению частоты шины - скорость общения ЦП с материнской платой. Таким образом, чем современнее тип сокета, тем частота шины выше. Она так же, как и тактовая частота, измеряется в герцах. Чем выше это значение, тем быстрее осуществляется процесс обмена информацией. Лучше всего выбирать CPU с частотой шины от 1,6 ГГц и выше.

На момент написания статьи, у Intel самым популярным является сокет LGA1155. Для более мощных серверов с ЦП Core i7 или Xeon выполнен разъем LGA1366. Последней же разработкой стал сокет LGA2011. Он используется в некоторых CPU Ivy Bridge. Хотя цена на подобные ЦП падает, но материнские платы с таким разъемом очень дороги. Нет никакой необходимости переплачивать за небольшое увеличение производительности.

У AMD имеются совместимые сокеты серии «+». Например, самые ходовые разъемы AM3+ подходят и для АМ3. Это позволяет расширить возможности усовершенствования CPU. Сокеты FM1 и FM2 были разработаны для ЦП AMD Fusion, которые обладают мощнейшей встроенной графикой, отличное решение для тех, кто не имеет желания тратить денежные средства на дискретную видеокарту.

Тактовая частота процессора: выбираем для игр и повседневных задач

Тактовой частотой называется общее количество действий, которое способен выполнить центральный процессор за одну секунду. Эта характеристика измеряется в герцах (Гц). Например, тактовая частота в 1,8 ГГц за секунду это выполнение 1 миллиард 800 миллионов операций. Чем выше этот показатель, тем быстрее работает CPU. Поэтому, следует выбирать ЦП с более высокой тактовой частотой.

Для запуска офисных приложений, комфортного просмотра видео в разрешении Full HD и прослушивания музыки вполне достаточно мощности двухъядерного ЦП частотой около 1500-2000 МГц. Для современных игр и мультимедийных задач уже потребуется тактовая частота от 2000-2500 МГц - 4-6 или 8-ядерный (согласно требованиям программ).

Обратите внимание, современные модели от Intel оснащаются фирменной технологией Turbo Boost. Это автоматическое повышение номинальной частоты по запросу операционной системы (см. фото).

Кэш-память процессора: выбираем нужный объем

Кэш-память - это сверхбыстрая память ЦП, в которую загружаются данные исполняемой программы. Чем объем кэша больше, тем быстрее эти данные будут обрабатываться.

В настоящее время имеются 3 уровня кэш-памяти:
L1 – самая быстрая память, потому что имеет наименьший размер (8-128 Кб);
L2 – медленнее, чем L1, но размером больше (128-12288 Кб);
L3 – самая медленная память. Она обладает наибольшим размером либо может совсем отсутствовать (0-16384 Кб). Последнее возможно для специально выполненных процессоров или определенных серверов.

При выборе ЦП кэш-память L3 нужно рассчитать таким образом, чтобы на каждое ядро приходился объем не менее 1 Мб. Следует учитывать тот факт, что в характеристиках ее указывают полностью на весь процессор. Исходя из этого, не стоит приобретать 4-х ядерный CPU с кэш-памятью 3-го уровня менее 4 Мб.

Количество ядер процессора: больше не всегда лучше

Ядром (Core) называется небольшого размера кристалл, выполненный из кремния. Площадь его составляет приблизительно 1 квадратный сантиметр. В нем находится ЦП реализованный при помощи мельчайших логических элементов. На данный момент тактовую частоту CPU поднять выше уже нельзя, т. к. ее значение достигло максимальной величины. Поэтому производители перешли на увеличение числа ядер.

Преимущество многоядерности особенно ярко проявляется при одновременном запуске ресурсоемких многозадачных программ, но только тех, которые это свойство поддерживают. Поэтому, если ЦП имеет 4 ядра, а запущенная программа разработана только под использование 2-х, остальные 2 будут не задействованы. В обратном случае, например оптимизированная под четыре ядра игра Ghost Recon демонстрируют уверенное превосходство над двухъядерным режимом (см. фото).

Поэтому при выборе ЦП для повседневных задач, важнее опираться не на число ядер, а на показатель его тактовой частоты и объема кэш-памяти. Однако при покупке компьютера или ноутбука для игр лучше приобрести современный четырехядерный вариант.

Разрядность процессора: 32 и 64 бита

Количество бит информации, обработанных ЦП в течение одного такта, характеризуется разрядностью. Она может иметь значение 8, 16, 32 и 64. В наше время все основные программы рассчитаны на разрядность 32-х или 64-х битной архитектуры.

При выборе компьютера или ноутбука следует учесть, что 32-х разрядные системы поддерживают оперативную память не более 3,75 Гб. 64-х битные позволяют передавать объемы оперативной памяти более 4 GB, что необходимо для современных приложений, где 4 GB уже минимум.

Графическое ядро процессора, тепловыделение и технологии

Помимо некоторого числа обычных ядер, ЦП может быть дополнительно оснащен ядром, обладающее возможностями графических вычислений. Это значительно уменьшает загруженность интегрированного графического процессора или дискретной видеокарты. Последние разработки моделей с графическим ядром вполне способны заменить бюджетные варианты видеокарт. Они поддерживают видео в режиме Full HD, а также игры малой мощности.

Для настольных компьютеров компания Intel выпустила подобные гибридные модели семейства Clarkdale, а для мобильных – Arrandale. Еще имеется более дешевый вариант – Lynnfield. Графическое решение компании в ЦП Sandy Bridge было довольно слабым. Оно значительно уступало аналогичным разработкам конкурентов – ARM или AMD Llano. Поэтому для новых CPU Ivy Bridge была изменена архитектура графического ядра, что позволило улучшить его производительность.

Тепловыделение, это параметр, определяющий, насколько сильно во время работы нагревается ЦП, называется тепловыделением (TDP). Его единицей измерения принято считать ватт. По значению тепловыделения можно подобрать соответствующую систему охлаждения. Например, если TDP ЦП составляет 75 Вт, то и кулер нужно выбирать такой же мощности, а лучше даже несколько выше.

Для ноутбуков и нетбуков тепловыделение не должно превышать 45 Вт, потому что у них отсутствует возможность использования громоздких систем охлаждения. Эта характеристика учитывается и в тех случаях, когда подбирается более бесшумная система, длительнее работающая от аккумуляторной батареи.

Если выбирать между одинаковыми моделями, имеющими разное тепловыделение, следует приобретать ту, у которой это значение меньше.

Комплект определенных команд, направленных на увеличение производительности ЦП, называется технологией. Например, технология SSE4 включает в себя 54 команды, улучшающие процесс работы с более серьезными программами. К таким можно отнести 3-х мерное моделирование, мощные игры, а также обработку аудио- и видеофайлов.

Если планируется использование вышеуказанных программ, то выбранный центральный CPU должен поддерживать подобные технологии.

В заключении: AMD и Intel - какой процессор лучше

Модели от Intel предпочтительнее AMD, поскольку с ними более корректно работают другие внутренние компоненты и некоторые приложения, хотя в целом Intel стоят дороже AMD. Объективно, для дорогих аппаратов более обоснован выбор системы на базе Intel, а AMD – хороший вариант для бюджетных решений.

Intel также выпускает и процессоры серии Atom с уменьшенным в два раза кэшем в сравнении с Core, но Atom имеет свои преимущества - это меньшее энергопотребление. По показаниям тестирования, при решении различных видов задач разные ЦП показывают разные результаты: одни быстрее работают в играх, другие – в мультимедийных приложениях. Поэтому и выбор делается исходя из нужд владельца.

Сотрудники простых офисов работают с легкими текстовыми и графическими редакторами, а также осуществляют небольшой серфинг в интернете. Для них достаточно остановить свой выбор на современных, к тому же не очень дорогих серий. К таким можно отнести модели Pentium Dual-Core от Intel или Phenom II X2 (AMD).

Для домашнего пользования, включающего современные игры и просмотра видео в высоком разрешении, потребуется более производительный 2-х ядерный ЦП с максимально высокой тактовой частотой. Это могут быть Core i3 5xx, 6xx (Intel) либо Phenom II X2 5xx (AMD).
При установке самых требовательных игрушек необходимо выбирать 4-х ядерный ЦП более высокой ценовой категории, например, Core i5 750 (Intel) или Phenom II X4 95x.

Если запускаются программы, предназначенные для профессиональных занятий 3D-графикой или медиа приложениями, от них требуется обработка очень большого объема данных. Для подобных целей рекомендуется подобрать модель как минимум уже с 6-ю ядрами. Здесь подойдут модели Core i7 8xx, 9xx (Intel) или Phenom II X6 (AMD).

Статьи по теме: