Что такое техпроцесс (нм) процессора? Как делают микропроцессоры.

Добрый день, уважаемые любители компьютерного железа. Сегодня мы поговорим о том, что такое техпроцесс в процессоре. На что влияет данная величина, как помогает при работе компьютера, за что отвечает и так далее.

Начать хотелось бы с того, что процессоры состоят из транзисторов. Под крышкой теплораспределителя находится сам кристалл ЦП на кремниевой подложке, в состав которого входит миллиарды миниатюрных транзисторов. О внутренностях CPU – .

Их габариты настолько крошечные, что измеряются в нанометрах. Отсюда и берет свое начало величина.

Возьмем к примеру компанию AMD и ее процессорные ядра семейства Bulldozer и Liano, выполненные по нормам 32 нм. На площади кристалла размером всего 315 мм2 размещено 1,2 млрд транзисторов. Если сравнивать с более старой технологией 45 нм, в которой на подложке 346 мм2 находилось «только» 900 млн транзисторов – прогресс очевиден.

Уменьшение, а точнее оптимизация техпроцесса дает следующие преимущества:

  • повышение итоговой производительности при идентичных характеристиках двух устройств (первый и второй процессор имеют, к примеру, 4 ядра мощностью 3 ГГц);
  • снижение энергопотребления;
  • возможность добавить дополнительные рабочие инструкции;
  • повышение частот;
  • увеличение количества ядер на одной подложке (они занимают меньше места);
  • снижение затрат на изготовление чипов (на одной кремниевой болванке помещается больше процессоров).
  • Увеличение кэш‐памяти процессора (больше места на кристалле для установки модуля)

Эволюция техпроцесса

Если покопаться в истории полупроводников 70‐х и 80‐х годов, то можно встретить устройства, разработанные по нормам техпроцесса 3 мкм. К такому технологическому прорыву впервые пришли компании Zilog в 1975 году и Intel в 1979 году соответственно.

Компании активно развивали технологии и совершенствовали литографическое оборудование.В начале‐середине 90‐х, прогресс достиг новых высот и на рынке стали появляться модели вроде Intel Pentium Pro и MMX, а также знаменитая «улитка» Pentium II.

Все изделия выполнялись по нормам процесса 0,35 мкм, т.е. 350 нм. Буквально через 10 лет технологии позволили сократить размер транзистора втрое, до 130 нм, и это был прорыв.Однако культовый период пришелся на 2004 год, когда инженеры начали осваивать для себя 65 нм. Тогда мир увидел знаменитые Pentium 4, Core 2 Duo, а также AMD Phenom X4 и Turion 64 x2. В это же время рынок наводнили чипы Falcon и Jasper для Xbox 360.

Текущий период разработки

Плавно подбираемся к современным разработкам и начнем со все еще актуального процесса 32 нм – эпоха Intel Sandy Bridge и AMD Bulldozer.

Синему лагерю удалось создать кристалл с частотой до 3,5 ГГц, на который можно поместить до 4 ядер и графический чип частотой до 1,35 ГГц. Также в чип встроили , PCI‐E контроллер версии 2.0, поддержку памяти DDR3. Все ядра получили по 256 КБ кэша L2 и до 8 МБ L3. И все это размещалось на подложке 216 мм2

Красные же умудрились разместить на подложке до 16 процессорных ядер частотой до 4 ГГц с поддержкой передовых на 2011 год инструкций x86, ввести поддержку Hyper Transport и оснастить чипы поддержкой DDR3.

Переход на 22 нм осуществил только Intel, добавив своим продуктам Ivy Bridge и Haswell вроде Core i5, i7 и Xeon более высокую производительность при сниженном энергопотреблении. Архитектура не претерпела значительных изменений.
Литография 14 нм подарила миру в 2017 году новый виток противостояния между AMD Ryzen и Intel Coffee Lake. В первом случае имеем совершенно новую архитектуру и признание во всем мире после многолетнего застоя. Во втором же – увеличение ядер на подложке в десктопном сегменте.

Дополнительно можно отметить снижение энергопотребления, добавление новых инструкций, снижение размера кремниевой пластины и повышение мощности в станах двух лагерей.Теперь ждем выход чипов, построенных по нормам 10 нм, который на данный момент доступен лишь в мобильном сегменте (Quallcomm Snapdragon 835/845, Apple A11 Bionic).

Зачем уменьшать техпроцесс?

Как я уже говорил выше, оптимизация литографии ведет к размещению большего числа транзисторов на подложке меньшего размера. Говоря простым языком, на одной площади можно расположить не 1, а 1,5 млрд транзисторов, что ведет к повышению производительности без увеличения тепловыделения.

Таким образом устанавливается больше ядер, вспомогательных компонентов и систем управления шинами.

Коэффициент умножения системной шины процессора также возрастает, а значит и его мощь растет.

На данный момент оптимальными процессорами, которые вобрали в себя самое лучшее из современных технологий, можно назвать Intel 8700k и AMD Ryzen 1800x. Есть конечно и более новый вариант от «красных» в лице Ryzen 2700 (12 нм), но его производительность немного скромнее.
Надеемся, вы поняли суть, которую я хотели донести до вас в этой статье. В следующих обзорах мы коснемся таких понятий как , охлаждение и прочих животрепещущих вопросов, которые требуют пояснения. Оставайтесь с нами и публикациями. Удачи!

Современные микропроцессоры - одни из сложнейших устройств, изготавливаемых человеком. Производство полупроводникового кристалла намного более ресурсоемко, чем, скажем, возведение многоэтажного дома или организация крупнейшего выставочного мероприятия. Однако благодаря массовому выпуску CPU в денежном эквиваленте мы этого не замечаем, да и редко кто задумывается обо всей грандиозности элементов, занимающих столь видное место внутри системного блока. Мы решили изучить детали производства процессоров и поведать о них в данном материале. Благо в Сети сегодня достаточно информации на эту тему, а специализированная подборка презентаций и слайдов корпорации Intel позволяет выполнить поставленную задачу максимально наглядно. Предприятия других гигантов полупроводниковой индустрии работают по тому же принципу, поэтому с уверенностью можно сказать, что все современные микросхемы проходят идентичный путь создания.

Первое, о чем стоит упомянуть, - строительный материал для процессоров. Кремний (англ. silicon) - второй после кислорода наиболее распространенный элемент на планете. Он является природным полупроводником и используется как основной материал для производства чипов всевозможных микросхем. Больше всего кремния содержится в обычном песке (особенно кварце) в виде диоксида кремния (SiO2).

Впрочем, кремний - не единственный материал. Самый близкий его родственник и заменитель - германий, однако в процессе совершенствования производства ученые выявляют хорошие полупроводниковые свойства у соединений других элементов и готовятся опробовать их на практике или уже это делают.

1 Кремний проходит многоступенчатый процесс очистки: сырье для микросхем не может содержать больше примесей, чем один чужеродный атом на миллиард.

2 Кремний расплавляют в специальной емкости и, опустив внутрь постоянно охлаждаемый вращающийся стержень, «наматывают» на него благодаря силам поверхностного натяжения вещество.

3 В итоге получаются продольные заготовки (монокристаллы) круглого сечения, каждая массой около 100 кг.

4 Заготовку нарезают на отдельные кремниевые диски - пластины, на которых будут расположены сотни микропроцессоров. Для этих целей используются станки с алмазными режущими дисками или проволочно-абразивные установки.

5 Подложки полируют до зеркального блеска, чтобы устранить все дефекты на поверхности. Следующий шаг - нанесение тончайшего фотополимерного слоя.

6 Обработанная подложка подвергается воздействию жесткого ультрафиолетового излучения. В фотополимерном слое происходит химическая реакция: свет, проходя через многочисленные трафареты, повторяет рисунки слоев CPU.

7 Реальный размер наносимого изображения в несколько раз меньше собственно трафарета.

8 Участки, «протравленные» излучением, вымываются. На кремниевой подложке получается рисунок, который затем подвергается закреплению.

9 Следующий этап изготовления одного слоя - ионизация, в процессе которой свободные от полимера участки кремния бомбардируются ионами.

10 В местах их попадания изменяются свойства электрической проводимости.

11 Оставшийся полимер удаляют, и транзистор почти готов. В изолирующих слоях делаются отверстия, которые благодаря химической реакции заполняются атомами меди, используемыми в качестве контактов.

12 Соединение транзисторов представляет собой многоуровневую разводку. Если взглянуть в микроскоп, на кристалле можно заметить множество металлических проводников и помещенных между ними атомов кремния или его современных заменителей.

13 Часть готовой подложки проходит первый тест на функциональность. На этом этапе на каждый из выбранных транзисторов подается ток, и автоматизированная система проверяет параметры работы полупроводника.

14 Подложка с помощью тончайших режущих кругов разрезается на отдельные части.

15 Годные кристаллы, полученные в результате данной операции, используются в производстве процессоров, а бракованные отправляются в отходы.

16 Отдельный кристалл, из которого будет сделан процессор, помещают между основанием (подложкой) CPU и теплорас-пределительной крышкой и «упаковывают».

17 В ходе окончательного тестирования готовые процессоры проверяются на соответствие требуемым параметрам и лишь затем сортируются. На основании полученных данных в них прошивается микрокод, позволяющий системе должным образом определить CPU.

18 Готовые устройства упаковываются и направляются на рынок.

Интересные факты о процессорах и их производстве

«Силиконовая долина» (Silicon Valley, США, Калифорния)

Получила свое название благодаря основному строительному элементу, использующемуся в производстве микрочипов.

«Почему пластины для производства процессоров круглые?» - наверняка спросите вы.

Для производства кремниевых кристаллов применяется технология, позволяющая получать только цилиндрические заготовки, которые затем режутся на части. До сих пор еще никому не удавалось изготовить квадратную пластину, лишенную дефектов.

Почему микрочипы квадратные?

Именно такая литография позволяет использовать площадь пластины с максимальной эффективностью.

Зачем процессорам столько ножек/контактов?

Помимо сигнальных линий каждый процессор для работы нуждается в стабильном питании. При энергопотреблении порядка 100-120 Вт и низком напряжении через контакты может протекать ток силой до 100 А. Значительная часть контактов CPU выделена именно под систему питания и дублируется.

Утилизация отходов производства

Раньше дефектные пластины, их остатки и бракованные микрочипы шли в отходы. На сегодняшний день ведутся разработки, позволяющие использовать их в качестве основы для производства солнечных батарей.

«Костюм кролика».

Такое название получил комбинезон белого цвета, который обязаны носить все рабочие производственных помещений. Делается это для поддержания максимальной чистоты и защиты от случайного попадания частиц пыли на производственные установки. «Костюм кролика» впервые был использован на фабриках по производству процессоров в 1973 году и с тех пор стал общепринятым стандартом.

99,9999%

Для производства процессоров пригоден только кремний высочайшей степени чистоты. Заготовки очищают спецхимией.

300 мм

Таков диаметр современных кремниевых пластин для производства процессоров.

1000 раз

Именно настолько чище воздух в помещениях фабрик для производства чипов, чем в операционной.

20 слоев

Процессорный кристалл очень тонкий (меньше миллиметра), но в нем умещаются более 20 слоев сложнейших структурных объединений транзисторов, которые выглядят как многоуровневые хайвеи.

2500

Именно столько кристаллов процессора Intel Atom (имеют наименьшую площадь среди cовременных CPU) размещаются на одной 300-миллиметровой пластине.

10 000 000 000 000 000 000

Сто квинтиллионов транзисторов в виде структурных элементов микрочипов отгружаются с фабрик каждый год. Это приблизительно в 100 раз больше, чем оценочное количество муравьев на планете.

A

Стоимость производства одного транзистора в процессоре сегодня равна цене печати одной буквы в газете.

В процессе подготовки статьи использовались материалы с официального веб-сайта корпорации Intel, www.intel.ua

Производство микросхем — весьма непростое дело, и закрытость этого рынка диктуется в первую очередь особенностями главенствующей в наши дни технологии фотолитографии. Микроскопические электронные схемы проецируются на кремниевую пластину через фотошаблоны, стоимость каждого из которых может достигать $200 000. А между тем для изготовления одного чипа требуется не меньше 50 таких масок. Добавьте к этому стоимость «проб и ошибок» при разработке новых моделей, и вы поймете, что производить процессоры могут только очень большие компании очень большими тиражами.

А что делать научным лабораториям и высокотехнологичным стартапам, которым необходимы нестандартные схемы? Как быть военным, для которых закупать процессоры у «вероятного противника» — мягко говоря, не комильфо?

Мы побывали на российском производственном участке голландской компании Mapper, благодаря которой изготовление микросхем может перестать быть уделом небожителей и превратится в занятие для простых смертных. Ну или почти простых. Здесь, на территории Технополиса «Москва» при финансовой поддержке корпорации «Роснано» производится ключевой компонент технологии Mapper — электронно-оптическая система.

Однако прежде чем разбираться в нюансах безмасочной литографии Mapper, стоит вспомнить основы обычной фотолитографии.

Неповоротливый свет

На современном процессоре Intel Core i7 может располагаться около 2 млрд транзисторов (в зависимости от модели), размер каждого из которых — 14 нм. В погоне за вычислительной мощностью производители ежегодно уменьшают размеры транзисторов и увеличивают их число. Вероятным технологическим пределом в этой гонке можно считать 5 нм: на таких расстояниях начинают проявляться квантовые эффекты, из-за которых электроны в соседних ячейках могут вести себя непредсказуемо.

Чтобы нанести на кремниевую пластину микроскопические полупроводниковые структуры, используют процесс, похожий на работу с фотоувеличителем. Разве что цель у него обратная — сделать изображение как можно меньше. Пластину (или защитную пленку) покрывают фоторезистом — полимерным фоточувствительным материалом, который меняет свои свойства при облучении светом. Требуемый рисунок чипа экспонируют на фоторезист через маску и собирающую линзу. Напечатанные пластины, как правило, в четыре раза меньше, чем маски.


Такие вещества, как кремний или германий, имеют по четыре электрона на внешнем энергетическом уровне. Они образуют красивые кристаллы, похожие на металл. Но, в отличие от металла, они не проводят электрический ток: все их электроны задействованы в мощных ковалентных связях и не могут двигаться. Однако все меняется, если добавить к ним немного донорной примеси из вещества с пятью электронами на внешнем уровне (фосфора или мышьяка). Четыре электрона вступают в связь с кремнием, а один остается свободным. Кремний с донорной примесью (n-типа) — неплохой проводник. Если добавить к кремнию акцепторную примесь из вещества с тремя электронами на внешнем уровне (бор, индий), аналогичным образом образуются «дырки», виртуальный аналог положительного заряда. В таком случае речь идет о полупроводнике p-типа. Соединив проводники p- и n-типа, мы получим диод — полупроводниковый прибор, пропускающий ток только в одном направлении. Комбинация p-n-p или n-p-n дает нам транзистор — через него ток протекает только в том случае, если на центральный проводник подается определенное напряжение.

Свои коррективы в этот процесс вносит дифракция света: луч, проходя через отверстия маски, немного преломляется, и вместо одной точки экспонируется серия концентрических кругов, как от брошенного в омут камня. К счастью, дифракция находится в обратной зависимости от длины волны, чем и пользуются инженеры, применяя свет ультрафиолетового диапазона с длиной волны 195 нм. Почему не еще меньше? Просто более короткая волна не будет преломляться собирающей линзой, лучи будут проходить насквозь, не фокусируясь. Увеличить собирающую способность линзы тоже нельзя — не позволит сферическая аберрация: каждый луч будет проходить оптическую ось в своей точке, нарушая фокусировку.

Максимальная ширина контура, которую можно отобразить с помощью фотолитографии, — 70 нм. Чипы с более высоким разрешением печатают в несколько приемов: наносят 70-нанометровые контуры, протравливают схему, а затем экспонируют следующую часть через новую маску.

Сейчас в разработке находится технология фотолитографии в глубоком ультрафиолете, с применением света с экстремальной длиной волны около 13,5 нм. Технология предполагает использование вакуума и многослойных зеркал с отражением на основе межслойной интерференции. Маска тоже будет не просвечивающим, а отражающим элементом. Зеркала лишены явления преломления, поэтому могут работать со светом любой длины волны. Но пока это лишь концепция, которую, возможно, станут применять в будущем.

Как сегодня делают процессоры


Идеально отполированную круглую кремниевую пластину диаметром 30 см покрывают тонким слоем фоторезиста. Равномерно распределить фоторезист помогает центробежная сила.


Будущая схема экспонируется на фоторезист через маску. Этот процесс повторяется многократно, потому что из одной пластины получается множество чипов.


Та часть фоторезиста, которая подверглась ультрафиолетовому излучению, становится растворимой и с легкостью удаляется с помощью химикатов.


Участки кремниевой пластины, не защищенные фоторезистом, подвергаются химическому травлению. На их месте образуются углубления.


На пластину вновь наносят слой фоторезиста. На этот раз с помощью экспонирования обнажают те участки, которые подвергнутся ионной бомбардировке.


Под воздействием электрического поля ионы примесей разгоняются до скоростей более 300 000 км/ч и проникают в кремний, придавая ему свойства полупроводника.


После удаления остатков фоторезиста на пластине остаются готовые транзисторы. Сверху наносят слой диэлектрика, в котором по все той же технологии протравливают отверстия под контакты.


Пластину помещают в раствор сульфата меди, и с помощью электролиза на нее наносят проводящий слой. Затем весь слой снимают шлифовкой, а контакты в отверстиях остаются.


Контакты соединяются многоэтажной сетью из металлических «проводов». Количество «этажей» может достигать 20, а общая схема проводников называется архитектурой процессора.


Только теперь пластину распиливают на множество отдельных чипов. Каждый «кристалл» тестируют и лишь затем устанавливают на плату с контактами и накрывают серебряной крышкой-радиатором.

13 000 телевизоров

Альтернативой фотолитографии считают электролитографию, когда экспонируют не светом, а электронами, и не фото-, а электрорезист. Электронный пучок легко фокусируется в точку минимального размера, вплоть до 1 нм. Технология напоминает электронно-лучевую трубку телевизора: сфокусированный поток электронов отклоняется управляющими катушками, рисуя изображение на кремниевой пластине.

До последнего времени эта технология не могла конкурировать с традиционным методом из-за низкой скорости. Чтобы электрорезист среагировал на облучение, он должен принять определенное количество электронов на единицу площади, поэтому один луч может экспонировать в лучшем случае 1 см2/ч. Это приемлемо для единичных заказов от лабораторий, однако неприменимо в промышленности.

К сожалению, решить проблему, увеличив энергию луча, невозможно: одноименные заряды отталкиваются, поэтому при увеличении тока пучок электронов становится шире. Зато можно увеличить количество лучей, экспонируя несколько зон одновременно. И если несколько — это 13 000, как в технологии Mapper, то, согласно расчетам, можно печатать уже десять полноценных чипов в час.


Конечно, объединить в одном устройстве 13 000 электронно-лучевых трубок было бы невозможно. В случае Mapper излучение из источника направляется на коллиматорную линзу, которая формирует широкий параллельный пучок электронов. На его пути встает апертурная матрица, которая превращает его в 13 000 отдельных лучей. Лучи проходят через матрицу бланкеров — кремниевую пластину с 13 000 отверстий. Около каждого из них располагается отклоняющий электрод. Если на него подается ток, электроны «промахиваются» мимо своего отверстия, и один из 13 000 лучей выключается.

Пройдя бланкеры, лучи направляются к матрице дефлекторов, каждый из которых может отклонять свой луч на пару микронов вправо или влево относительно движения пластины (так что Mapper все же напоминает 13 000 кинескопов). Наконец, каждый луч дополнительно фокусируется собственной микролинзой, после чего направляется к электрорезисту. На сегодняшний день технология Mapper прошла тестирование во французском научно-исследовательском институте микроэлектроники CEA-Leti и в компании TSMC, которая производит микропроцессоры для ведущих игроков рынка (в том числе и для Apple iPhone 6S). Ключевые компоненты системы, включая кремниевые электронные линзы, производятся на московском заводе.

Технология Mapper обещает новые перспективы не только исследовательским лабораториям и мелкосерийным (в том числе военным) производствам, но и крупным игрокам. В настоящее время для тестирования прототипов новых процессоров приходится изготавливать точно такие же фотошаблоны, как для массового производства. Возможность относительно быстрого прототипирования схем обещает не только снизить стоимость разработки, но и ускорить прогресс в этой области. Что в конечном счете на руку массовому потребителю электроники, то есть всем нам.

Технологический процесс , он же , а еще точнее технологический процесс полупроводникового производства.
Раньше технологические нормы изготовления волновала только производителей. Но как видно из хронологии событий производители уменьшают нормы производства практически каждый годов. А все от того, что производитель должен уменьшать нормы производства для снижения тепловыделения, а также для повышается производительности.
Поэтому технологический процесс производства становится довольно важным параметром при выборе процессора. Ведь чем меньше техпроцесс, тем меньше энергопотребление процессора (и как следствие не нужен мощный и шумный кулер), повышается быстродействие , увеличивается количество транзисторов на одинаковой площади.

  1. 90 нм — технологический процесс, соответствующий уровню технологии, достигнутому к 2002-2003 году
  2. 65 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2004 году
  3. 50 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2005 году
  4. 45 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2006-2007 году
  5. 32 нм — технологический процесс, соответствующий уровню технологии, достигнутому к 2009-2010 году
  6. 22 нм – производство должно начаться в конце 2012 году. Процессоры с архитектурой Intel скорее всего выпустит с интегрированным графическим ядром с архитектурой Larrabee.
  7. 8 нм — как планирует компания , что бы перейти на изготовление процессоров с применением техпроцесса 8 нм, необходимо перейти на технологию «полупроводников III-V» (III-Vs), материал для выпуска транзисторов нового поколения. А название – это состав химических элементов с валентностями III и V.
  8. 5 нм – если будет нормальное развитие методик массового производства, то перейти на 5-нм проектные нормы возможно будет в 2019 году, основой будут полевые транзисторы с применением углеродных нанотрубок (Carbon nanotube FET).


Компания придерживается стратегии развития технологий под названием «tick-tock», под ней подразумевается переход, при улучшении технологии, от старой архитектуры («tick») к новой «tock», один раз в два года.
Если сравнивать нормы 65 нм и 45 нм, то на одинаковых площадях размещается вдвое большее транзисторов. При этом уменьшается на 30% рассеивание мощности при переключении, а также на 20% увеличение скорости переключения транзистора. Также, в 5 раз сокращается ток утечки от истока к стоку и в 10 - ток утечки сквозь затвор транзистора. В два раза увеличилось количество транзисторов, тем самым повысилась производительность. Увеличился объем кэш-памяти второго уровня (L2) на 50%.

— есть ли предел уменьшения?

Самый первый транзистор, изготовленный учеными Bell Labs в 1947 году, по размеру был как человеческая ладонь, а 45-нм транзистор от Intel в 400 раз меньше красной кровяной клетки человека.
Но в производстве постоянно уменьшение техпроцесса приводит к некоторым затруднениям. Толщина компонента транзистора отвечающая за прохождение электронов, иначе говоря толщина диэлектрика затвора, у процессора изготовленного по техпроцессу в 65 нм, составляет всего 1.2 нм. Более 30 лет материалом диэлектрика затвора был диоксид кремния, молекула его состоит 1 атома кремния и 2 атомов кислорода. Толщина в 1.2 нм равна пяти атомарным слоям. И такой тонкий изолятор физически не в состоянии удержать токи утечки. Если диэлектрик затвора меньше 1 нм, ток утечки повышается экспоненциально.

Эту проблему решила компания , как не сложно понять решением проблемы стала замена диоксида кремния, на более качественный материал используемый для изготовления диэлектрика затвора. Так называемый изолятор high-k, изготовленный на основе гафния и обладающий высокой степенью диэлектрической проницаемости. При использовании диэлектрика high-k получилось достичь увеличения полевого эффекта транзистора и уменьшить слой диэлектрика, вместе с уменьшением тока утечки через затвор.

Центральный процессор в компьютере играет самую главную роль. Его можно считать "мозгом" всей системы, так как от него зависит количество обработанных данных, возможность запуска системы, совместимость оборудования. В серверах используются особые виды процессоров, которые предназначены именно для таких задач, то есть для вычислений. Вот компьютера.

Существует и такое понятие, как графический процессор, — он находится не на материнской плате, как центральный, а в графическом адаптере. Его задача — обрабатывать графические данные, передавать их на компьютер и выводить изображение на экран монитора.

У каждого из них свое строение и техпроцесс процессора, о котором дальше пойдет речь.

Последние полвека в изготовлении процессоров и прочей подобной техники используется кристалл кремния. Литографический метод обработки позволяет создавать отдельные транзисторы, которые очень важны, ведь из них и состоят процессоры.

Ориентируясь на актуальное состояние электрического поля, транзисторы могут блокировать или пропускать электрический ток. Это, кстати, основополагающая часть работы двоичной системы, которая заключена в этих двух положениях — включенном и выключенном.

Так что такое техпроцесс? Этот термин используется в показателях для того, чтобы указать на размер используемых транзисторов, из которых состоит любой процессор.

Возвращаясь к производству процессоров, можно выделить такой процесс, как фотолитография. Эта функция нужна для того, чтобы покрыть кристалл диэлектрическим материалом, из которого с помощью света выделяются транзисторы. В зависимости от возможности аппарата — тонкости и чувствительности, определяется техпроцесс процессора, то есть его толщина в нанометрах.

Как известно, чем тоньше техпроцесс процессора, тем большее количество транзисторов будет расположено на чипе.

Если размер будет небольшим, то его энергопотребление и количество выделяемого тепла будут в разы меньше. Именно по этой причине небольшой техпроцесс процессора позволяет размещать чип на портативных устройствах, а за счет этого мобильное устройство сможет дольше держать заряд.

Размер имеет значение еще и в экономических целях, так как при небольших затратах материала увеличивается численность изготавливаемых чипов. Однако это палка о двух концах, потому что для более тонкого техпроцесса процессора необходимо топовое дорогое оборудование.

Малые детали строения позволяют разместить на чипе большее количество элементов, за счет чего растет производительность процессора. При всем при этом параметры размера самого чипа остаются неизменными.

Если у процессора есть техническая возможность для того, чтобы разогнаться, то чем меньше предел техпроцесса процессора, тем выше будут частоты.

Примерно с 70-х по 80-е годы были созданы процессоры с техпроцессом в три микрометра. Такого прорыва в компьютерных технологиях достигли компании "Зилог" и "Интел" в 75-79-х годах. С тех пор было принято решение улучшать качество литографического оборудования.

С 1990 года в архитектуре процессора появились значимые изменения, тогда же и были выпущены чипы с 0,35-микрометровым техпроцессом, или 350-нанометровым. Однако в начале двадцать первого века размеры транзисторов были уменьшены в три раза, что равнялось 130 нанометрам.

Самый значимый технологический прорыв пришелся на 2004 год — именно в то время производители освоили технологию 65-нанометрового технологического процесса. Тогда же поступили в продажу Core 2 Duo и его конкурент — AMD Phenom X4. Что касается консолей, то для Xbox 360 были произведены процессоры Falcon и Jasper.

Значимые изменения

Две ведущие компании по достигли размера в 32 нанометра, демонстрируя это в процессорах поколения Sandy Bridge и AMD Bulldozer.

Компания "Интел" создала кристалл, способный работать с частотой 3500 мегагерц, а количество ядер стало равно четырем. Также появился более усовершенствованный графический чип, встроенный в процессор, частота которого доходит до полутора гигагерц. В то же время чип обладал поддержкой новой оперативной памяти, контроллером интерфейса PCI-E второго поколения и протоколами x86. Увеличилась скорость потока данных, благодаря наличию кэша третьего уровня, размер которого - восемь мегабайт.

Что касается ее прямого конкурента, AMD, то ему удалось оснастить процессор шестнадцатью ядрами с частотой до 4000 мегагерц. В остальном отличия от "Интела" практически нет.

Однако только "синей" команде удалось достичь ощутимого прорыва и выпустить чипы с 22-нанометровым техпроцессом, что позволило процессорам семейства Ivy Bridge, Haswell и Xeon, серий Core i5 и i7 обеспечить высокую производительность, понижая при этом потребляемую энергию.

Производительность процессоров увеличивается только за счет количества транзисторов, при этом значение тепловыделения не подвергается изменению.

Когда уменьшается технологический процесс, производители имеют возможность разместить на территории чипа большее количество остальных составляющих вроде ядер и дополнительных компонентов.

Статьи по теме: