Принцип работы конденсатора и его технические характеристики. Что такое конденсатор и для чего он нужен

  • Перевод

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.


Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Зачем нужен конденсатор для автоакустики, знают все те, кто так или иначе сталкивался с автозвуком. Дело в том, что когда устанавливается аудиосистема своими руками, приходится изучать множество материалов.
И в рекомендациях указывается, что вместе с усилителем обязательно должен ставиться конденсатор или накопитель. Нужны ли конденсаторы для акустики в авто или все это мифы.
Если нужны, то зачем и какова их роль во всей системе. Вот о чем пойдет речь в нашей статье.

Общая информация

Итак, зачем же нужен конденсатор? Как известно, цена на него не маленькая и не все автомобилисты, даже любители хорошего звука, желают лишний раз урезать свой бюджет.
С другой стороны, каждый меломан рано или поздно обзаводится мощной или доводит ее до совершенства. Это очень хорошо, но чем мощнее система, тем больше энергии ей подавай.

Примечание. АКБ не способна отдавать такую энергию, в результате чего происходит просадка (ниже подробно описывается, что это значит). Выражается просадка тем, что фары автомобиля начинают «моргать», падает мощность усилителя, бас идущий от сабвуфера, прежде четкий, становится «размытым».
В отдельных и особо тяжелых случаях резкое падение напряжения усилителя приводит к клиппингу, что грозит повреждением динамиков.

Правда или нет

По сей день и в интернете, на различных форумах, в блогах ведутся горячие споры, относительно надобности или бесполезности такого накопителя, как конденсатор. Сами споры, к огромному сожалению любителей автозвука, к истине никакой не приводят.
Они полностью бесполезны, ввиду того, что оппоненты даже не имеют начального школьного представления, касающиеся физики.

Примечание. Самая большая глупость, которую можно вычитать из форумов, гласит, что надо устанавливать конденсатор из расчета только фарадов на киловатт. Такие рекомендации в корне не верны, так как не поймешь, откуда они взяты.

Итак, чтобы в некоторой степени раскрыть завесу, давайте вернемся к урокам по физике. По мере того, как будут обновляться в нашей памяти ценные знания, все мифы исчезнут, как утренний дымок.

Различия конденсатора и АКБ

Важно знать:

  • Конденсатор для басовика, это тот же потребитель питания, который не способен сам вырабатывать электроэнергию. Но он способен ее накапливать, а затем потреблять на собственные утечки, но не утечки АКБ;
  • Задача конденсатора накапливать энергию, а затем отдавать ее потребителю. Сам накопитель обладает крайне низким внутренним сопротивлением и по этой причине «расстается» с энергией очень быстро (кстати, и накапливает ее тоже не медленно).

Примечание. Отличие конденсатора от аккумулятора в том, что пик отдачи энергии у конденсатора приходится только на первый миг, а затем происходит резкий упадок заряда. Тем самым, падает и скорость отдачи вместе с зарядом.

Различия конденсатора и ионистора

Ионисторы – это то, что возят у себя в багажнике большая часть меломанов.
Отличается от конденсатора следующими параметрами:

  • Огромными потерями;
  • Большим сопротивление;
  • Отдает заряд гораздо медленнее;
  • Стоит в несколько раз дешевле, чем конденсатор той же емкости.

Оптимальное время работы ионистора равно: 1 сек/83 кул.

Проверка ионистора

  • Цепляем ионистор в акустическую систему с просадками питания;
  • Заводим и наблюдаем, что напряжение на клеммах усиливается. Пока все в порядке;
  • Увеличиваем громкость и замечаем, что напряжение садится с 13 до 10 вольт.

Примечание. Все это означает, что при первом ударе саба заряд упадет и ионистор превратится в лишний компонент питания, поскольку полезным и активным он бывает лишь, когда его заряд больше напряжения в сети.

Такая ситуация среди любителей автозвука называется просадкой, но она может быть значительно хуже, если используются в питании тонкие некачественные провода и дешевый обмедненный алюминий. В этом случае к обычной просадке добавляется еще и просадка кабеля.

Примечание. Надо знать, чем опасна просадка кабеля. Дело в том, что при резком возрастании потребления происходит реактивное сопротивление. Чем больше и быстрее пользователь попытается взять с кабеля энергию, тем тот (кабель) сильнее этому будет препятствовать (если он тонкий и длинный).

Проблема дешевого и некачественного кабеля отразится и на ионисторе, который разрядившись, уже не сможет более получить энергию.

Установка конденсатора

При установке конденсатора рекомендуется подключать его параллельно питанию усилителя(см.). Ставить его надо, как можно ближе к усилителю мощности, по крайней мере, не дальше 60 см.
Если на место ионистора поставить конденсатор, то результат будет намного эффективнее.
Делается все так:

  • Генератор автомобиля ремонтируется или ставится новый;
  • От него прокладывается кабель на массу и плюс;
  • Ставится новая АКБ;
  • Все клеммы меняются или тщательно зачищаются;
  • Прокладывается силовой медный кабель хорошего качества с достаточным сечением;
  • Подключаем усилитель, не забываем предохранитель.

Совет. Пока не проверим все клеммы и не удостоверимся, что есть 14 вольт, конденсатор не соединяем.

  • После того, как все будет проверено, можно подключать и конденсатор. Замеры на клеммах покажут те же результаты, но удивляться не стоит. Если цепь «живая» и питания хватает, то конденсатору нечего включаться и он как бы ждет своего часа.

Примечание. Еще одним заблуждением является тот факт, что якобы конденсатор нуждается в системах, где необходима большая громкость или на соревнованиях эс пи эль. В обычных случаях, конденсатор удачно заменит ионистор.

Доказать необходимость конденсатора и в обычных автомобильных акустических системах можно, исходя из нижеприведенного:

  • Замер конденсатора может долго длиться, а от этого «проснется» даже самый кислотный аккумулятор и тем самым, сумеет отдать весь свой потенциал;
  • Среди так называемого эс пи элевого братства более принято использование гелеевых батарей, способных «стрелять» сотнями ампер с поразительной скоростью. Как бы ни был конденсатор восхваляем, но при такой скорости он будет «чувствовать» себя явно не у дел;
  • Опять же, касательно эс пи эль, конденсатор не к месту, так как является потребителем энергии, что для эс пи эль явное зло.

Одним словом, в эс пи эль уж точно никакой конденсатор или иной накопитель не используется.

Лучшие конденсаторы

На сегодняшний день, конденсаторов, как и любой другой продукции автозвука, на рынке очень много. Некоторые производители усилителей, даже заранее предусматривают клеммы, предназначенные для подключения конденсатора.

Примечание. К таким усилителям можно отнести Аудисон Весис HV Venti, который даже признан лучшим акустическим усилителем прошлого года.

Focal

Другой известный производитель усилителей и высококачественной аудиотехники, но уже из Франции, Фокал, в своих моделях использует иное решение: для конденсаторов здесь предусматривается место после блока питания усилителя. Именно здесь, как утверждают эксперты, эффективность использования дополнительных накопителей во много раз выше.

Если заглянуть внутрь корпуса любого электроприбора, можно увидеть множество различных компонентов, применяемых в современной схемотехнике. Разобраться, как работают все эти соединенные в единую систему резисторы, транзисторы, диоды и микросхемы, довольно сложно. Однако для того чтобы понять, зачем нужен конденсатор в электрических цепях, достаточно знаний школьного курса физики.

Устройство конденсатора и его свойства

Конденсатор состоит из двух или более электродов – обкладок, между которыми помещен слой диэлектрика. Такая конструкция обладает способностью накапливать электрический заряд при подключении к источнику напряжения. В качестве диэлектрика могут использоваться воздух или твердые вещества: бумага, слюда, керамика, оксидные пленки.

Основная характеристика конденсатора – постоянная или переменная электрическая емкость, измеряемая в фарадах. Она зависит от площади обкладок, зазора между ними и вида диэлектрика. Емкость конденсатора определяет два важнейших его свойства: способность накапливать энергию и зависимость проводимости от частоты пропускаемого сигнала, благодаря которым этот компонент получил широкое применение в электрических цепях.

Накопление энергии

Если подключить плоский конденсатор к источнику постоянного напряжения, на одном из его электродов будут постепенно собираться отрицательные заряды, а на другом – положительные. Данный процесс, называемый зарядкой, показан на рисунке. Его длительность зависит от значений емкости и активного сопротивления элементов цепи.

Наличие диэлектрика между обкладками препятствует протеканию заряженных частиц внутри устройства. Но в самой цепи в это время электрический ток будет существовать до тех пор, пока напряжения на конденсаторе и источнике не станут равны. Теперь, если отключить элемент питания от емкости, она сама будет являться своеобразной батарейкой, способной отдавать энергию в случае подсоединения нагрузки.

Зависимость сопротивления от частоты тока

Подключенный к цепи переменного тока конденсатор будет периодически перезаряжаться в соответствии с изменением полярности питающего напряжения. Таким образом, рассматриваемый электронный компонент, наряду с резисторами и катушками индуктивности, создает сопротивление Rс=1/(2πfC), где f – частота, С – емкость.

Как видно из представленной зависимости, конденсатор обладает высокой проводимостью по отношению к высокочастотным сигналам и слабо проводит низкочастотные. Сопротивление емкостного элемента в цепи постоянного тока будет бесконечно большим, что эквивалентно ее разрыву.

Изучив эти свойства, можно рассмотреть, зачем нужен конденсатор и где он используется.

Где применяются конденсаторы?

  • Фильтры – устройства в радиоэлектронных, энергетических, акустических и других системах, предназначенные для пропускания сигналов в определенных диапазонах частот. Например, в обычном зарядном устройстве для мобильного телефона применяются конденсаторы для сглаживания напряжения за счет подавления высокочастотных составляющих.
  • Колебательные контуры электронной аппаратуры. Их работа основана на том, что при включении конденсаторов в совокупности с катушкой индуктивности в цепи возникают периодические напряжения и токи.
  • Формирователи импульсов, таймеры, аналоговые вычислительные устройства. В работе этих систем используется зависимость времени заряда конденсатора от величины емкости.
  • Выпрямители с умножением напряжения, применяемые в том числе в рентгенотехнических установках, лазерах, ускорителях заряженных частиц. Здесь важнейшую роль играет свойство емкостного компонента накапливать энергию, сохранять и отдавать ее.

Конечно, это только самые распространенные устройства, где используются конденсаторы. Без них не обойдется ни одна сложная бытовая, автомобильная, промышленная, телекоммуникационная, силовая электронная аппаратура.

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы) , а на другой отрицательно заряженные частицы (электроны) . Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока. Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

Основными параметрами конденсатора являются:

  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф) , на практике часто встречаются мкФ (1мкФ = 0,000001 Ф ), нФ (1нФ = 0,000000001 Ф ), пФ (1пФ = 0,000000000001 Ф) , так как емкость в 1Ф очень велика. Но есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже) .
  2. Номинальное напряжение — это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В) . При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В ). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения — допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее) .
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) повышается вязкость электролита и его ESR (удельное электрическое сопротивление) , что ведет к уменьшению емкости конденсатора.

Для чего же нужны конденсаторы и с чем их «едят».

  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах) , он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т.п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью. Важно разобраться, для чего нужно конденсатор в электродвигателе и , поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства.

Для чего нужен конденсатор?

Устройство используется во всех электрических и радиотехнических схемах. Для каких целей в схему включают конденсатор:

  1. Выступает в роли сопротивления, что позволяет использовать его в качестве фильтра, чтобы подавлять ВЧ и НЧ помехи.
  2. Применяют для фотовспышек и лазеров, а все благодаря способности устройства накапливать заряд и быстро разряжаться, создавая импульс.
  3. Помогает компенсировать реактивную энергию, что позволяет использовать его в промышленности.
  4. Благодаря умению накапливать и долгое время сохранять заряд конденсатор можно использовать для сохранения информации и для питания маломощных устройств.

Для чего нужен автомобильный конденсатор?

Это устройство может выполнять несколько функций в автомобиле. Например, их используют, чтобы создать высокие показатели напряженности во всей электрической системе в авто. Чаще всего конденсатор применяют для автомобильной акустики. Говоря о том, зачем нужен конденсатов в автозвуке, заметим, что его основное предназначение заключается в помощи усилителю быстро отдавать имеющуюся мощность на пиках низких частот.

Если в акустической системе конденсатор не используется, тогда звук баса не будет таким четким, а также может возникать просадка в питании всей электрической сети автомобиля. Подобные скачки напряжения в итоге могут привести к тому, что сабвуфер попросту сломается.

При выборе конденсатора для автомобиля руководствуйтесь таким правилом, что на 1 кВт мощности должно приходиться 1 Ф. Выбирайте качественный конденсаторы и лучше всего, если у них будет смеха управления зарядом.

Стоит также выяснить, как правильно установить конденсатор. Лучше всего делать это максимально близко к сабвуферному усилителю, поскольку именно на него приходится самая большая нагрузка. Расстояние не должно быть больше 60 см. Тип подключения – параллельное.

Зачем нужен конденсатор в электродвигателе?

Для правильной работы некоторых двигателей необходимо использовать пусковой и рабочий конденсаторы. Основное предназначение пускового конденсатора заключается в повышении пусковых характеристик двигателя. Это устройство помогает уменьшить время входа двигателя в его рабочий режим, одновременно увеличить крутящийся момент и облегчить процесс запуска двигателя.

Что касается рабочего конденсатора, то он вовлечен в работу на протяжении всего времени работы двигателя. Это устройство обеспечивает допустимый нормами нагрев обмоток, оптимальную нагрузочную способность и экономичность электрического двигателя. Еще он способствует максимальному крутящему моменту и увеличению срока службы двигателя.

Теперь следует выяснить, какой конденсатор нужен для двигателя. Емкость этого устройства обычно выбирается из расчета, что на 100 Вт должно приходиться 6,6 мФ. Порой данное значение является некорректным, поэтому лучше всего подбирать емкость путем экспериментов. Есть несколько способ подбора, но наиболее точные значения можно получить благодаря подключению двигателя через амперметр. Важно проконтролировать потребляемый ток при разных емкостях. Задача заключается в том, чтобы найти, при какой емкости значение тока на амперметре будет минимальным.

Статьи по теме: