Как работает мобильный (сотовый) телефон. Принцип работы мобильного телефона

Схема мобильного устройства. До сих пор не могу понять и представить, как можно на одном квадратом миллиметре процессора, поместить несколько миллионов транзисторов. Мало того что поместить, так еще и чтоб они работали и выпускать процессоры в промышленном масштабе по миллиону штук за раз. А производители телефонов, обещают выпустить еще более маленькие процессоры и более производительные телефоны.

Для того что бы узнать устройство телефона, узнать принцип работы GSM мобильной связи написан этот обзор.

Показать ещё

Далее, можно найти и почитать об устройстве сотового телефона и его основных функциональных узлов. Найти схемы мобильных устройств. Узнать принцип работы мобильного телефона и схемы работы канала GSM. Конструкция и схемотехника телефонных аппаратов сотовой связи стандарта GSM.

Запасные части и ремонт мобильных телефонов.

Магазин запчастей и комплектующих для телефона, планшета, смартфона

radiomaster.net - еще один интернет сервис предоставляющий для загрузки на компьютер или телефон схем устройства телефона и инструкций для простых и мобильных телефонов и другой техники. Схемы мобильных телефонов скачиваются с сайта бесплатно, без рекламы и смс, напрямую с этого сайта. На момент написания обзора скачать бесплатно схемы для сотовых телефонов, можно для более чем 600 моделей мобильных устройств.

market.yandex.ru - поиск и покупка запасных частей для мобильных и сотовых телефонов через не заменимую службу Яндекс.Маркет. Как всегда для пользователей сервиса удобная сортировка и поиск частей телефона по цене и ближайшему расположению магазина запасных частей для сотового телефона.

На примере рассмотрения устройства и работы проводного телефона познакомимся со способами превращения энергии звуковых волн в электрический переменный ток и обратного превращения энергии этого тока в энергию звуковых волн. Преобразование энергии звуковых волн, созданных голосом говорящего, в энергию переменного тока может осуществляться, например, при помощи микрофона и трансформатора. Этот ток передается по проводам в то место, где голос говорящего должен быть услышан. В этом месте преобразование электрической энергии в звук производится при помощи телефона.

Микрофон. В проводном телефоне, а также в радиостанции типа «Урожай» применяется так называемый угольный микрофон. Его разрез показан схематически в левой части фиг. 1. Микрофон состоит из угольной колодки К и тонкой угольной пластинки - мембраны М, между которыми насыпан угольный порошок П, через который от мембраны к колодке проходит электрический ток батареи Б. Сопротивление угольного порошка электрическому току зависит от плотности прилегания друг к другу частиц порошка.

Предположим, что перед микрофоном колеблется струна с частотой 440 гц. При этом в воздухе вокруг струны распространяются звуковые волны, т. е. последовательные сжатия и разрежения воздуха. Каждое сжатие воздуха, достигнув мембраны, создает давление на нее.

Фиг. 1. Схема телефонной передачи по проводам.

Вследствие этого мембрана несколько прогибается внутрь и уплотняет порошок. Следующее вслед разрежение, достигнув мембраны, вызывает обратное действие: центр мембраны удаляется от колодки, и степень уплотнения порошка уменьшается по сравнению с первоначальным. Так как при частоте колебаний 440 щ до мембраны достигает в течение секунды 440 сжатий и разрежений воздуха, то мембрана 440 (раз в секунду уплотнит порошок и столько же раз уменьшит степень его уплотнения. Будет изменяться и сопротивление микрофона. Так как микрофон соединен последовательно с батареей, то при каждом изменении его сопротивления изменится проходящий через него ток. Другими словами, 440 раз в секунду получится увеличение тока в цепи и столько же раз ослабление его. Графически это показано на фиг. 2,а. Такой ток, проходящий все время в одном направлении, но периодически меняющийся по величине, называется пульсирующим током. Его можно рассматривать как два тока, существующие одновременно в цепи: 1) постоянный1, величина которого равна среднему между самым большим и самым малым значениями пульсирующего тока, и 2) переменный 2, «наложенный на постоянный ток».


Фиг. 2. Графические изображения тока через микрофон (а) и э. д. с. на вторичной обмотке трансформатора (б) в схеме фиг. 1.

При этом можно считать, что в те моменты, когда величина пульсирующего тока становится больше величины образующего его постоянного тока, переменный ток имеет то же направление, что и постоянный ток; в те же моменты, когда величина пульсирующего тока делается меньше постоянного тока, переменный ток течет навстречу постоянному току, ослабляя его. Эти переменный и постоянный ток и часто называют также переменной и постоянной составляющими (или слагающими) пульсирующего тока.

1 Постоянным током называется электрический ток, текущий все время в одном направлении и не изменяющийся по величине. Соответственно постоянным напряжением, постоянной электродвижущей силой (э. д. с.) называются f неизменные во времени напряжение, э. д. с.
2 Переменным током называется электрический ток, направление которого через равные промежутки времени изменяется. Величина его тоже непрерывно изменяется. Наибольшее ее значение называется амплитудой.

Проходя по сопротивлению, пульсирующий ток создает на нем пульсирующее напряжение (постоянное то направлению, но периодически изменяющееся по величине). Пульсирующее напряжение можно «разложить» на одновременно действующие постоянное и «переменное напряжения и назвать их соответственно постоянной и переменной составляющими напряжения.

Трансформатор состоит из сердечника, собранного из стальных пластин, на который намотаны две обмотки из изолированного провода. Пульсирующий ток проходит по его первичной обмотке I (фиг. 1). Когда ток через микрофон и эту обмотку усиливается, во вторичной обмотке II получается э. д. с. одного направления, а когда он ослабляется, - э. д. с. другого направления. Частота э. д. с. на вторичной обмотке получается такой же, как и частота изменения тока через первичную обмотку. Электродвижущая сила на вторичной обмотке трансформатора изменяется так, как это графически показано на фиг. 2,6. Концы вторичной обмотки трансформатора соединяются проводами с телефоном (фиг. 1). Электродвижущая сила на вторичной обмотке трансформатора создает в проводах" и цепи телефона электрический переменный ток звуковой частоты.

При воздействии на микрофон сложных звуков, например при разговоре, на вторичной обмотке трансформатора получается ряд переменных э. д. с. с частотами, соответствующими передаваемому звуку.

Переменные электрические токи, э. д. с. и напряжения, возникающие в результате действия звука, по аналогии со звуковыми колебаниями часто называют электрическими колебаниями низкой (или звуковой) частоты1.

Телефон. Телефон электромагнитного типа содержит в себе постоянный магнит с полюсными наконечниками из мягкой стали, на которые надеты две катушки с обмоткой, состоящей из большого числа витков тонкого изолированного провода. Обмотки катушек соединены последовательно и их свободные концы выведены наружу. Вся магнитная система помещена в круглую коробку, сделанную из металла или пластмассы, нa края которой наложена круглая гонкая жестяная пластинка, носящая название мембраны.

Она расположена близко к полюсным наконечникам, но не соприкасается с ними. Мембрана закрыта круглой раковиной (амбушюром), служащей для прикладывания к уху и имеющей в середине отверстие для прохода звука.

Под действием притяжения магнита мембрана всегда несколько вогнута в середине. Если через обмотку телефона пропустить постоянный ток, то он будет создавать некоторое дополнительное намагничивание полюсных наконечников. При одном направлении тока это дополнительное намагничивание увеличит магнитный ток между полюсными наконечниками и середина мембраны прогнется сильнее. При обратном направлении тока магнитный поток между наконечниками уменьшится, а мембрана несколько выпрямится; при этом ее середина удалится от наконечников.
Если через обмотки телефона пропустить переменный ток от вторичной обмотки трансформатора (фиг. 1), то мембрана телефона будет колебаться с той же частотой, с какой колеблется мембрана микрофона, т. е. будет воспроизводить такие же звуки, какие действуют на микрофон. Звуки, создаваемые мембраной телефона, значительно слабее звуков, действующих на микрофон, и слышать их можно только, приложив телефон к уху.

Величина звукового давления, создаваемого мембраной телефона, приблизительно пропорциональна величине переменного тока, идущего через телефон, или величине переменного напряжения, которое получается на обмотке электромагнитов телефона.

Чтобы каждый из пользующихся телефонной связью мог говорить и слушать своего собеседника, на каждом конце линии связи включаются микрофон с батареей и трансформатором и телефон.

Здесь Ваше мнение имеет значение -
поставьте вашу оценку (оценили - 6 раз)

Мобильный телефон является неотъемлемой частью современного, технологически развитого общества. Несмотря на обыденность и внешнею простоту этого прибора, очень не многие знают как работает мобильный телефон.

Устройство мобильного телефона

Современные технологии и постоянно движущийся вперёд прогресс позволяют создавать телефоны с огромным количеством функций и возможностей. С каждой новой моделью телефоны становятся всё тоньше, красивее и доступнее по финансам. Несмотря на огромную разновидность моделей и производителей, все эти приборы устроены по одному принципу.

По сути, мобильный телефон - это приёмно-передающее устройство, которое в своём корпусе имеет приёмник, передатчик и радиоантенну. Приёмник обеспечивает приём радиосигнала, преобразовывает его в электрические импульсы и посылает на динамик вашего телефона в виде электрических волн. Динамик преобразует эти электрические импульсы в звук, который мы слышим при разговоре с собеседником.

Микрофон воспринимает вашу речь, преобразует её в электрические сигналы и посылает на встроенный передатчик. Задача передатчика преобразовать электрические импульсы в радиоволны и передать на ближайшую станцию посредством антенны. Антенна служит для усиления приема и передачи радиоволн от телефона на ближайшую станцию сотовой связи.

Как работает телефон стационарный

Устройство стационарного телефона не сильно отличается от мобильного. В стационарном телефоне нет необходимости преобразовывать электрические импульсы в радиоволны, поскольку контакт с абонентом происходит по телефонному кабелю через Автоматическую Телефонную Станцию (АТС). Станция не нуждается в поиске аппарата по зоне своего действия и при наборе номера она автоматически вас соединяет с тем телефонным аппаратом, на который зарегистрирован этот номер.

Как работает мобильная связь?

Каждый из нас имеет возможность визуально наблюдать большое количество радиовышек, расположенных в разных частях города. Эти вышки, как правило, устанавливаются на максимально возвышенных местах, на крышах высотных зданий, на конструкциях других коммуникаций или на собственных стационарных вышках. Эти радиовышки называются базовыми станциями (БС). Вы можете заметить что в городах такие станции установлены гораздо чаще чем на междугороднем пространстве. Это связано с тем, что в городских условиях существует много естественных помех в виде бетонных зданий и различных металлических сооружений, которые значительно ухудшают качество сигнала. Одновременно в городах сосредоточено большее количество абонентов, которые создают сильную нагрузку на сотовую сеть и для поддержания хорошего качества связи требуется усиление зоны покрытия.

Ваш телефон имеет собственную идентификацию в виде мобильного номера вашей SIM карты. Во включённом состоянии, мобильный телефон постоянно сканирует пространство в поисках сети и автоматически выбирает ту Базовую станцию, которая обеспечивает лучшее качество сигнала. Одновременно он сообщает станции о своём местоположении и состоянии, таким образом, центральный компьютер оператора сотовой связи всегда знает, в зоне действия какой базовой станции находится телефон и готов ли он принять сигнал вызова. Как только другой абонент делает вызов вашего номера, компьютер определяет ваше местонахождение и посылает сигнал вызова на ваш телефон. Если телефон выключен или не находится в зоне действия ближайшей Базовой Станции, то компьютер сообщает вам что абонент находится вне зоны покрытия и не может принять звонок.

Немного грустно, что подавляющее большинство людей на вопрос: «Как работает сотовая связь?», отвечают «по воздуху» или вообще - «не знаю».

В продолжение этой темы, у меня вышел один забавный разговор с другом на тему работы мобильной связи. Случилось это аккурат за пару дней до отмечаемого всеми связистами и телекомщиками праздника «Дня радио». Так уж сложилось, что в силу своей ярой жизненной позиции, мой друг считал, что мобильная связь работает вообще без проводов через спутник . Исключительно за счет радиоволн. Сначала у меня не получалось переубедить его. Но после непродолжительной беседы все встало на свои места.

После этой дружеской «лекции» появилась идея написать простым языком о том, как работает сотовая связь. Все как есть.

Когда вы набираете номер и начинаете звонить, ну, или вам кто-нибудь звонит, то ваш мобильный телефон по радиоканалу связывается с одной из антенн ближайшей базовой станции. Где же находятся эти базовые станции, спросите вы?

Обратите внимание на промышленные здания, городские высотки и специальные вышки . На них и располагаются большие серые прямоугольные блоки с торчащими антеннами разных форм. Но антенны эти не телевизионные и не спутниковые, а приемо-передающие операторов сотовой связи. Они направлены в разные стороны, чтобы обеспечить связью абонентов со всех сторон. Ведь мы же не знаем, откуда будет поступать сигнал и куда занесет «горе-абонента» с телефонной трубкой? На профессиональном жаргоне антенны также называют «секторами». Как правило, они устанавливаются от одной до двенадцати.

От антенны сигнал по кабелю передается непосредственно в управляющий блок станции . Вместе они и образуют базовую станцию [антенны и управляющий блок]. Несколько базовых станций, чьи антенны обслуживают отдельную территорию, например, район города или небольшой населенный пункт, подсоединены к специальному блоку - контроллеру . К одному контроллеру обычно подключается до 15 базовых станций.

В свою очередь, контроллеры, которых также может быть несколько, кабелями подключены к «мозговому центру» - коммутатору . Коммутатор обеспечивает выход и вход сигналов на городские телефонные линии, на других операторов сотовой связи, а также операторов междугородней и международной связи.

В небольших сетях используется только один коммутатор, в более крупных, обслуживающих сразу более миллиона абонентов, могут использоваться два, три и более коммутаторов , объединенных между собой опять-таки проводами.

Зачем же такая сложность? Спросят читатели. Казалось бы, можно антенны просто подключить к коммутатору и все будет работать . А тут базовые станции, коммутаторы, куча кабелей… Но, не все так просто.

Когда человек передвигается по улице пешком или идет на автомобиле, поезде и т.д. и при этом еще и разговаривает по телефону, важно обеспечить непрерывность связи. Связисты процесс эстафетной передачи обслуживания в мобильных сетях называют термином «handover». Необходимо вовремя переключать телефон абонента из одной базовой станции на другую, от одного контроллера к другому и так далее.

Если бы базовые станции были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору . А ему «бедному» и так есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку на технические средства . Это снижает вероятность отказа оборудования и, как следствие, потери связи. Ведь все мы заинтересованы в бесперебойной связи, не так ли?

Итак, достигнув коммутатора, наш звонок переводится д алее - на сеть другого оператора мобильной, городской междугородной и международной связи. Конечно же, это происходит по высокоскоростным кабельным каналам связи. Звонок поступает на коммутатор другого оператора. При этом последний «знает», на какой территории [в области действия, какого контроллера] сейчас находится нужный абонент. Коммутатор передает телефонный вызов конкретному контроллеру, в котором содержится информация, в зоне действия какой базовой станции находится адресат звонка. Контроллер посылает сигнал этой единственной базовой станции, а она в свою очередь «опрашивает», то есть вызывает мобильный телефон. Трубка начинает причудливо звонить.

Весь этот длинный и сложный процесс в реальности занимает 2-3 секунды !

Точно также происходят телефонные звонки в разные города России, Европы и мира. Для связи коммутаторов различных операторов связи используются высокоскоростные оптоволоконные каналы связи . Благодаря им сотни тысяч километров телефонный сигнал преодолевает за считанные секунды.

Спасибо великому Александру Попову за то, что он дал миру радио! Если бы не он, возможно, мы бы сейчас были лишены многих благ цивилизации.

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в

основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время:

запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 про-

ходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя).

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса

ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.

Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердеч-

нику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.

Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении

диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.

В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный способ соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный способ применяется в переговорных устройствах и коммутаторах с ручным управлением.)

Статьи по теме: