Включить шифрование wep. Wifi шифрование — какое бывает и как выбрать

WEP (Wired Equivalent Privacy) - Защита, эквивалентная секретности) - характеристика стандарта 802.11, которая используется для обеспечения безопасности передачи данных. Шифрование данных осуществлялось с использованием алгоритма RC4 на ключе со статической составляющей от 40 до 104 бит и с дополнительной случайной динамической составляющей (вектором инициализации) размером 24 бит; в результате шифрование данных производилось на ключе размером от 64 до 128 бит. Перед WEP не стоит задача полностью скрыть передаваемую информацию, требуется лишь сделать ее недоступной для прочтения.

Эта технология была разработана специально для шифрования потока передаваемых данных в рамках локальной сети. Использует не самый стойкий алгоритм RC4 на статическом ключе. Часть WEP-ключа является статической (40 бит в случае 64-битного шифрования), а другая часть (24 бит) – динамичекая (вектор инициализации), то есть меняющаяся в процессе работы сети. Основной уязвимостью протокола WEP является то, что вектора инициализации повторяются через некоторый промежуток времени, и взломщику потребуется лишь собрать эти повторы и вычислить по ним статическую часть ключа. Для повышения уровня безопасности можно дополнительно к WEP шифрованию использовать стандарт 802.1x или VPN.

Для усиления защиты применяется так называемый вектор инициализации Initialization Vector (IV), который предназначен для рандомизации дополнительной части ключа, что обеспечивает различные вариации шифра для разных пакетов данных. Данный вектор является 24-битным. Таким образом, в результате мы получаем общее шифрование с разрядностью от 64 (40+24) до 128 (104+24) бит. Идея очень здравая, поскольку при шифровании мы оперируем и постоянными, и случайно подобранными символами.

Взломать подобную защиту можно - соответствующие утилиты присутствуют в Интернете (например, AirSnort, WEPcrack). Основное её слабое место - это как раз-таки вектор инициализации. Поскольку мы говорим о 24 битах, это подразумевает около 16 миллионов комбинаций (2 в 24 степени) - после использования этого количества ключ начинает повторяться. Хакеру необходимо найти эти повторы (от 15 минут до часа для ключа 40 бит) и за секунды взломать остальную часть ключа. После этого он может входить в сеть как обычный зарегистрированный пользователь.

Протокол безопасности wep

В том же, 1997 г., когда базовый стандарт 802.11 ратифицировали, в IEEE был одобрен механизм Wired Equivalent Privacy (WEP), который использует шифрование в качестве средства обеспечения безопасности в беспроводных сетях. WEP работает на втором уровне модели OSI и применяет для шифрования 40-битный ключ, что явно недостаточно.

Еще в октябре 2000 г. был опубликован документ IEEE 802.11-00/362 под названием "Unsafe at any key size; An analysis of the WEP encapsulation", созданный Джесси Уолкером (Jesse R. Walker), где описываются проблемы алгоритма WEP и атаки, которые могут быть организованы с использованием его уязвимостей. Данная проблема получила развитие в двух работах, опубликованных с интервалом в месяц: "Intercepting Mobile Communications: The Insecurity of 802.11" от сотрудников университета Беркли, представленной на 7-й ежегодной конференции по мобильной вычислительной технике и сетям в июле 2001 г., и "Weaknesses in the Key Scheduling Algorithm of RC4" (совместно подготовлена специалистами Cisco Systems и факультета вычислительной техники израильского института Weizmann), вышедшей в свет в августе 2001 г.

В этом же году появилась и первая утилита, разработанная Адамом Стаблфилдом (Adam Stubblefield), в которой на практике были реализованы теоретические выкладки вышеприведенных авторов и которая взламывала WEP-шифр в течение нескольких часов. На сегодняшний день существуют утилиты, позволяющие взломать WEP за 5--30 с. Проблемы алгоритма WEP носят комплексный характер и кроются в целой серии слабых мест:

Механизме обмена ключами (а точнее, практически полном его отсутствии);

Малых разрядностях ключа и вектора инициализации (Initialization Vector -- IV);

Механизме проверки целостности передаваемых данных;

Способе аутентификации и алгоритме шифрования RC4. Процесс шифрования WEP выполняется в два этапа.

1 Вначале подсчитывается контрольная сумма (Integrity Checksum Value -- ICV) с применением алгоритма Cyclic Redundancy Check (CRC-32), добавляемая в конец незашифрованного сообщения и служащая для проверки его целостности принимаемой стороной.

2. На втором этапе осуществляется непосредственно шифрование.

Ключ для WEP-шифрования -- общий секретный ключ, который должны знать устройства на обеих сторонах беспроводного канала передачи данных. Этот секретный 40-битный ключ вместе со случайным 24-битным IV является входной последовательностью для генератора псевдослучайных чисел, базирующегося на шифре Вернама для генерации строки случайных символов, называемой ключевым потоком (key stream).

Данная операция выполняется с целью избежания методов взлома, основанных на статистических свойствах открытого текста.

IV используется, чтобы обеспечить для каждого сообщения свой уникальный ключевой поток.

Зашифрованное сообщение (рис. 1) образуется в результате выполнения операции XOR над незашифрованным сообщением с ICV и ключевым потоком. Чтобы получатель мог прочитать его, в передаваемый пакет в открытом виде добавляется IV. Когда информация принимается на другой стороне, производится обратный процесс (p=c+b). Значение b получатель вычисляет, применив код Вернама к входной последовательности, состоящей из ключа К (который он знает заранее) и IV, пришедшего этим же сообщением в открытом виде. Для каждого очередного пакета процесс повторяется с новым выбранным значением IV. К числу известных свойств алгоритма RC4 относится то, что при использовании одного и того же значения ключа и вектора инициализации мы всегда будем получать одинаковое значение b , следовательно, применение операции XOR к двум текстам, зашифрованным RC4 с помощью того же значения b , представляет собой не что иное, как операцию XOR к двум начальным текстам.

c 1 =p 1 +b; c 2 =p 2 +b; c 1 +c 2 =(p 1 +b)+(p 2 +b)=p 1 +p 2

Таким образом, мы можем получить незашифрованный текст, являющийся результатом операции XOR между двумя другими оригинальными текстами. Процедура их извлечения не составляет большого труда. Наличие оригинального текста и IV позволяет вычислить ключ, что в дальнейшем даст возможность читать все сообщения данной беспроводной сети. После несложного анализа можно легко рассчитать, когда повторится b . Так как ключ K постоянный, а количество вариантов IV составляет 2 24 =16 777 216, то при достаточной загрузке точки доступа, среднем размере пакета в беспроводной сети, равном 1500 байт (12 000 бит), и средней скорости передачи данных, например 5 Mbps (при максимальной 11 Mbps), мы получим, что точкой доступа будет передаваться 416 сообщений в секунду, или же 1 497 600 сообщений в час, т. е. повторение произойдет через 11 ч 12 мин (2 24 /1 497 600=11,2 ч). Данная проблема носит название "коллизия векторов". Существует большое количество способов, позволяющих ускорить этот процесс. Кроме того, могут применяться атаки "с известным простым текстом", когда одному из пользователей сети посылается сообщение с заранее известным содержанием и прослушивается зашифрованный трафик. В этом случае, имея три составляющие из четырех (незашифрованный текст, вектор инициализации и зашифрованный текст), можно вычислить ключ.

С ICV, используемым в WEP-алгоритме, дела обстоят аналогично. Значение CRC-32 подсчитывается на основе поля данных сообщения. Это хороший метод для определения ошибок, возникающих при передаче информации, но он не обеспечивает целостность данных, т. е. не гарантирует, что они не были подменены в процессе передачи. Контрольная сумма CRC-32 имеет линейное свойство: CRC(A XOR B)=CRC(A)XOR CRC(B), предоставляющее нарушителю возможность легко модифицировать зашифрованный пакет без знания WEP-ключа и пересчитать для него новое значение ICV.

Wired Equivalent Privacy (WEP) — устаревший алгоритм для обеспечения безопасности беспроводной IEEE 802.11 сети.

Беспроводные сети с использованием радио в большей степени подвержены прослушиванию, чем проводные.

В 1999 году WEP предназначался для обеспечения конфиденциальности, сопоставимой с проводной сетью. Также WEP - необязательная характеристика стандарта IEEE 802.11, которая используется для обеспечения безопасности передачи данных. Она идентична протоколу безопасности в кабельных локальных сетях без применения дополнительных методов шифрования.

Технология WEP

Согласно стандарту 802.11, шифрование данных WEP используется в следующих целях:

1. Предотвращение несанкционированного доступа к данным при использовании беспроводных сетевых устройств.

2. Предотвращение перехвата трафика беспроводных локальных сетей.

WEP позволяет администратору беспроводной сети определять для каждого пользователя набор ключей, основанный на "строке ключей", которая обрабатывается алгоритмом WEP. Любой пользователь, не имеющий требуемого ключа, не может получить доступ в сеть.

Как указывается в спецификации, WEP использует алгоритм шифрования RC4 с 40-битным или 128-битным ключом. При включении WEP все станции (как клиентские, так и точки доступа) получают свой ключ, который применяется для шифрования данных, прежде чем последние будут переданы на передатчик. Если станция получает пакет, не зашифрованный соответствующим ключом, он исключается из трафика. Этот метод служит для защиты от несанкционированного доступа и перехвата данных.

Начиная с 2001 года ряд серьёзных недостатков, выявленных криптоаналитиками, показали, что сегодня WEP—связи можно взломать за несколько минут. Через несколько месяцев в IEEE была создана новая 802.11i целевая группа по борьбе с проблемами. В 2003 году Wi-Fi Альянс объявил о том, что WEP был заменён на WPA, который представлял собой 802.11i поправку. В 2004 году с момента полного принятия стандарта 802.11i(или WPA2) IEEE заявило что WEP-40 и WEP-104 не рекомендуются, поскольку не выполняют своих обязанностей в области обеспечения безопасности. Несмотря на свои недостатки WEP и сегодня широко используется.

Специалисты, изучающие проблему защиты информации, опубликовали подробный отчет о слабостях в методах кодирования, широко применяемых для засекречивания информации при передаче по беспроводным сетям.

Корень проблемы – имеющиеся лазейки в обеспечении секретности, возникающие от недостатков в алгоритме присвоения кода, используемом в Wired Equivalent Privacy (WEP) - протоколе, являющимся частью сетевого радио-стандарта 802.11.

Уязвимости защиты при радиопередаче данных были широко описаны и прежде, но основное отличие недавно обнаруженного недостатка заключается в том, что его гораздо проще эксплуатировать. По сообщению EE-Times, пассивный перехват зашифрованного текста с дальнейшей обработкой его по методу, предложенному исследователями, позволил бы злоумышленнику с радио LAN-подключением подбирать защитные коды менее чем за 15 минут. Увеличение длины ключа, применяемого при кодировании, не дало бы пользы при отражении нападений, основанных на использовании фундаментальной ошибки, заключающейся в самой методологии используемой техники кодирования.

Механизм шифрования WEP

Шифрование WEP (Wired Equivalent Privacy - секретность на уровне проводной связи) основано на алгоритме RC4 (Rivest’s Cipher v.4 - код Ривеста), который представляет собой симметричное потоковое шифрование. Как было отмечено ранее, для нормального обмена пользовательскими данными ключи шифрования у абонента и точки радиодоступа должны быть идентичными.

Ядро алгоритма состоит из функции генерации ключевого потока. Эта функция генерирует последовательность битов, которая затем объединяется с открытым текстом посредством суммирования по модулю два. Дешифрация состоит из регенерации этого ключевого потока и суммирования его с шифрограммой по модулю два для восстановления исходного текста. Другая главная часть алгоритма - функция инициализации, которая использует ключ переменной длины для создания начального состояния генератора ключевого потока.

RC4 - фактически класс алгоритмов, определяемых размером его блока. Этот параметр n является размером слова для алгоритма. Обычно, n = 8, но в целях анализа можно уменьшить его. Однако для повышения уровня безопасности необходимо задать большее значение этой величины. Внутреннее состояние RC4 состоит из массива размером 2n слов и двух счетчиков, каждый размером в одно слово. Массив известен как S-бокс, и далее он будет обозначаться как S. Он всегда содержит перестановку 2n возможных значений слова. Два счетчика обозначены через i и j.

Алгоритм инициализации RC4

Этот алгоритм использует ключ, сохраненный в Key и имеющий длину l байт. Инициализация начинается с заполнения массива S, далее этот массив перемешивается путем перестановок, определяемых ключом. Так как над S выполняется только одно действие, должно выполняться утверждение, что S всегда содержит все значения кодового слова.

Начальное заполнение массива:

for i = 0 to 2n – 1

Скрэмблирование :

for i = 0 to 2n – 1

j = j + S[i] + Key

Перестановка (S[i], S[j])

Генератор ключевого потока RC4 переставляет значения, хранящиеся в S, и каждый раз выбирает новое значение из S в качестве результата. В одном цикле RC4 определяется одно n-битное слово K из ключевого потока, которое в дальнейшем суммируется с исходным текстом для получения зашифрованного текста.

Инициализация:

Цикл генерации:

Перестановка (S[i], S[j])

Результат: K = S + S[j]].

Особенности WEP-протокола

Достаточно устойчив к атакам, связанным с простым перебором ключей шифрования, что обеспечивается необходимой длиной ключа и частотой смены ключей и инициализирующего вектора;

Самосинхронизация для каждого сообщения. Это свойство является ключевым для протоколов уровня доступа к среде передачи, где велико число искаженных и потерянных пакетов;

Эффективность : WEP легко реализовать;

Открытость ;

Использование WEP-шифрования не является обязательным в сетях стандарта IEEE 802.11.

Для непрерывного шифрования потока данных используется потоковое и блочное шифрование.

Потоковое шифрование

При потоковом шифровании выполняется побитовое сложение по модулю 2 (функция “исключающее ИЛИ”, XOR) ключевой последовательности, генерируемой алгоритмом шифрования на основе заранее заданного ключа, и исходного сообщения. Ключевая последовательность имеет длину, соответствующую длине исходного сообщения, подлежащего шифрованию.

Блочное шифрование

Блочное шифрование работает с блоками заранее определенной длины, не меняющейся в процессе шифрования. Исходное сообщение фрагментируется на блоки, и функция XOR вычисляется над ключевой последовательностью и каждым блоком. Размер блока фиксирован, а последний фрагмент исходного сообщения дополняется пустыми символами до длины нормального блока. Например, при блочном шифровании с 16-байтовыми блоками исходное сообщение длиной в 38 байтов фрагментируется на два блока длиной по 16 байтов и 1 блок длиной 6 байтов, который затем дополняется 10 байтами пустых символов до длины нормального блока.

Потоковое шифрование и блочное шифрование используют метод электронной кодовой книги (ECB). Метод ECB характеризуется тем, что одно и то же исходное сообщение на входе всегда порождает одно и то же зашифрованное сообщение на выходе. Это потенциальная брешь в системе безопасности, ибо сторонний наблюдатель, обнаружив повторяющиеся последовательности в зашифрованном сообщении, в состоянии сделать обоснованные предположения относительно идентичности содержания исходного сообщения.

Для устранения указанной проблемы используют:

· Векторы инициализации (Initialization Vectors - IVs).

· Обратную связь (feedback modes).

До начала процесса шифрования 40- или 104-битный секретный ключ распределяется между всеми станциями, входящими в беспроводную сеть. К секретному ключу добавляется вектор инициализации (IV).

Вектор инициализации

Вектор инициализации (Initialization Vector - IV) используется для модификации ключевой последовательности. При использовании вектора инициализации ключевая последовательность генерируется алгоритмом шифрования, на вход которого подается секретный ключ, совмещенный с IV. При изменении вектора инициализации ключевая последовательность также меняется. На рис. 8.3 исходное сообщение шифруется с использованием новой ключевой последовательности, сгенерированной алгоритмом шифрования после подачи на его вход комбинации из секретного ключа и вектора инициализации, что порождает на выходе шифрованное сообщение.

Таким образом, один и тот же нешифрованный фрейм, передаваемый многократно, каждый раз будет порождать уникальный шифрованный фрейм.

Вектор инициализации имеет длину 24 бита и совмещается с 40- или 104-битовым базовым ключом шифрования WEP таким образом, что на вход алгоритма шифрования подается 64- или 128-битовый ключ. Вектор инициализации присутствует в нешифрованном виде в заголовке фрейма в радиоканале, с тем чтобы принимающая сторона могла успешно декодировать этот фрейм. Несмотря на то, что обычно говорят об использовании шифрования WEP с ключами длиной 64 или 128 битов, эффективная длина ключа составляет лишь 40 или 104 бита по причине передачи вектора инициализации в нешифрованном виде. При настройках шифрования в оборудовании при 40-битном эффективном ключе вводятся 5 байтовых ASCII-символов (5×8=40) или 10 шестнадцатеричных чисел (10×4=40), и при 104-битном эффективном ключе вводятся 13 байтовых ASCII-символов (3×8=104) или 26 шестнадцатеричных чисел (26×4=104). Некоторое оборудование может работать со 128-битным ключом.

Слабые места WEP шифрования и примеры атак

Все атаки на WEP основаны на недостатках шифра RC4, таких, как возможность коллизий векторов инициализации и изменения кадров. Для всех типов атак требуется проводить перехват и анализ кадров беспроводной сети. В зависимости от типа атаки, количество кадров, требуемое для взлома, различно. С помощью программ, таких как Aircrack-ng, взлом беспроводной сети с WEP шифрованием осуществляется очень быстро и не требует специальных навыков.

Атака Фларера-Мантина-Шамира

Была предложена в 2001 году Скоттом Фларером, Ициком Мантином и Ади Шамиром. Требует наличия в кадрах слабых векторов инициализации. В среднем для взлома необходимо перехватить около полумиллиона кадров. При анализе используются только слабые векторы. При их отсутствии (например, после коррекции алгоритма шифрования) данная атака неэффективна.

Атака KoreK

В 2004 году была предложена хакером, называющим себя KoreK. Ее особенность в том, что для атаки не требуются слабые вектора инициализации. Для взлома необходимо перехватить несколько сотен тысяч кадров. При анализе используются только векторы инициализации.

Атака Тевса-Вайнмана-Пышкина

Была предложена в 2007 году Эриком Тевсом (Erik Tews), Ральфом-Филипом Вайнманом (Ralf-Philipp Weinmann) и Андреем Пышкиным. Использует возможность инъекции ARP запросов в беспроводную сеть. На данный момент это наиболее эффективная атака, для взлома требуется всего несколько десятков тысяч кадров. При анализе используются кадры целиком.В заключении можно напомнить, что в алгоритме есть множество слабых мест:

  • механизмы обмена ключами и проверки целостности данных
  • малая разрядность ключа и вектора инициализации (англ. Initialization vector)
  • способ аутентификации
  • алгоритм шифрования.

В 2001 году появилась спецификация WEP-104, которая, тем не менее, не решила проблемы, так как длина вектора инициализации и способ проверки целостности данных остались прежними. В 2004 году IEEE одобрил новые механизмы WPA и WPA2. С тех пор WEP считается устаревшим. В 2008 году вышел стандарт DSS (англ. Data Security Standard) комитета SSC (англ. Security Standards Council) организации PCI (англ. Payment Card Industry) в котором рекомендуется прекратить использовать WEP для шифрования после 30 июня 2010 года.

Нередко возникает вопрос: какой тип шифрования Wi-Fi выбрать для домашнего маршрутизатора. Казалось бы мелочь, но при некорректных параметрах, к сети , да и c передачей информации по Ethernet-кабелю могут возникнуть проблемы.

Поэтому здесь мы рассмотрим, какие типы шифрования данных поддерживают современные WiFi роутеры, и чем тип шифрования aes отличается от популярного wpa и wpa2.

Тип шифрования беспроводной сети: как выбрать способ защиты?

Итак, всего существует 3 типа шифрования:

  1. 1. WEP шифрование

Тип шифрования WEP появился ещё в далеких 90-х и был первым вариантом защиты Wi-Fi сетей: позиционировался он как аналог шифрования в проводных сетях и применял шифр RC4. Существовало три распространенных алгоритма шифровки передаваемых данных - Neesus, Apple и MD5 - но каждый из них не обеспечивал должного уровня безопасности. В 2004 году IEEE объявили стандарт устаревшим ввиду того, что он окончательно перестал обеспечивать безопасность подключения к сети. В данный момент такой тип шифрования для wifi использовать не рекомендуется, т.к. он не является криптостойким.

  1. 2. WPS - это стандарт, не предусматривающий использование . Для подключения к роутеру достаточно просто нажать на соответствующую кнопку, о которой мы подробно рассказывали в статье .

Теоретически WPS позволяет подключиться к точке доступа по восьмизначному коду, однако на практике зачастую достаточно лишь четырех.

Этим фактом преспокойно пользуются многочисленные хакеры, которые достаточно быстро (за 3 - 15 часов) взламывают сети wifi, поэтому использовать данное соединение также не рекомендуется.

  1. 3. Тип шифрования WPA/WPA2

Куда лучше обстоят дела с шифрованием WPA. Вместо уязвимого шифра RC4 здесь используется шифрование AES, где длина пароля – величина произвольная (8 – 63 бита). Данный тип шифрования обеспечивает нормальный уровень безопасности безопасность, и вполне подходит для простых wifi маршрутизаторов. При этом существует две его разновидности:

Тип PSK (Pre-Shared Key) – подключение к точке доступа осуществляется с помощью заранее заданного пароля.
- Enterprise – пароль для каждого узла генерируется автоматически с проверкой на серверах RADIUS.

Тип шифрования WPA2 является продолжением WPA с улучшениями безопасности. В данном протоколе применяется RSN, в основе которого лежит шифрование AES.

Как и у шифрования WPA, тип WPA2 имеет два режима работы: PSK и Enterprise.

С 2006 года тип шифрования WPA2 поддерживается всем Wi-Fi оборудованием, соответственное гео можно выбрать для любого маршрутизатора.

Преимущества шифрования WPA2 перед WPA:

Генерация ключей шифрования происходит в процессе подключения к роутеру (взамен статических);
- Использование алгоритма Michael для контроля целостности передаваемых сообщений
- Использование вектора инициализации существенно большей длины.
Кроме того, тип шифрования Wi-Fi выбирать стоит в зависимости от того, где используется ваш роутер:

Шифрование WEP, TKIP и CKIP вообще не стоит использовать;

Для домашней точки доступа вполне подойдет WPA/WPA2 PSK;

Для стоит выбрать WPA/WPA2 Enterprise.

Личные данные и файлы, расположенные в беспроводной сети , иногда могут видеть лица, принимающие радиосигнал вашей сети. Это может привести к краже личных данных и других злонамеренных действий.

Сетевой ключ безопасности или парольная фраза помогут защитить беспроводную сеть от подобного несанкционированного доступа.

Мастер установки сети поможет установить сетевой ключ безопасности .

Примечание : Не рекомендуется использовать протокол Wired Equivalent Privacy (WEP) как способ защиты беспроводной сети. Технология защищенного доступа Wi-Fi (WPA или WPA2) безопаснее. Если технология WPA или WPA2 не работает, рекомендуется заменить сетевой адаптер на такой, который работает с WPA или WPA2. Все сетевые устройства, компьютеры, маршрутизаторы и точки доступа имеют также поддерживать WPA или WPA2.

Методы шифрования для беспроводных сетей

Сейчас существуют три способа шифрования для беспроводных сетей: технология защищенного доступа Wi-Fi (WPA и WPA2), протокол Wired Equivalent Privacy (WEP) и 802.1x. Первые два метода подробнее описано ниже. 802.1x, который обычно используется для корпоративных сетей, в этом разделе не описывается.

Технология защищенного доступа Wi-Fi (WPA и WPA2)

Для подключения с помощью WPA и WPA2 необходимо иметь ключ безопасности . После проверки ключа все данные, пересылаемые между компьютером или устройством и точкой доступа, будет зашифровано.

Существуют два типа аутентификации WPA: WPA и WPA2. По возможности используйте WPA2, поскольку он самый безопасный. Почти все новые беспроводные адаптеры поддерживают WPA и WPA2, но существуют некоторые старые модели, которые их не пидтримують.

У WPA-Personal и WPA2-Personal пользователям предоставляется одинаковая парольная фраза. Эти типы рекомендованы для использования в домашних сетях. WPA-Enterprise и WPA2-Enterprise предназначены для использования с сервером аутентификации 802.1х, который создает различные ключи для каждого пользователя. Этот тип обычно используется в рабочих сетях.

Протокол Wired Equivalent Privacy (WEP)

WEP – это способ защиты сети предыдущего поколения, до сих пор доступен и поддерживает старые модели устройств, но использовать его не рекомендуется . При активации протокола WEP необходимо настроить сетевой ключ безопасности. Этот ключ шифрования, которые направляются через сеть с одного компьютера на другой. Однако защиту WEP относительно легко взломать.

Существуют два типа WEP: открытая аутентификация системы и аутентификация посредством совместного ключа. Ни один из них не является абсолютно безопасным, но аутентификация посредством совместного ключа – это наименее безопасный тип.

Для большинства беспроводных компьютеров и точек доступа открытый ключ аутентификации такой же, как и статический ключ шифрования WEP, который используется для защиты сети. Злоумышленник может перехватить сообщение успешной аутентификации общего ключа и с помощью средств анализа определить общий ключ аутентификации и статический ключ шифрования WEP.

После определения статического ключа шифрования WEP злоумышленник будет иметь полный доступ к сети. По этой причине эта версия Windows не поддерживает автоматическую настройку сети с помощью общего ключа аутентификации WEP.

Если, несмотря на эти предостережения, все же нужно установить аутентификацию WEP посредством совместного ключа, это можно сделать, выполнив следующие действия.

Создание профиля с помощью общего ключа аутентификации WEP

  1. Откройте окно «Центр управления сетями и общим доступом».
  2. Щелкните Настроить новое подключение или сеть .
  3. Выберите Подключение вручную к беспроводной сети и нажмите кнопку Далее .
  4. На странице Введите информацию о беспроводной сети, которую нужно добавить под заголовком Тип защиты выберите WEP.
  5. Заполните остальные страницы и нажмите кнопку Далее .
  6. Щелкните Настройка подключения .
  7. Перейдите на вкладку Безопасность , в списке Тип защиты выберите Общий .
  8. Нажмите кнопку ОК .
    Перед чтением данного материала, рекомендуется ознакомится с предыдущими статьями цикла:
  • Строим сеть своими руками и подключаем ее к Интернет, часть первая - построение проводной Ethernet сети (без коммутатора, в случае двух компьютеров и с коммутатором, а также при наличии трех и более машин) и организация доступа в Интернет через один из компьютеров сети, на котором имеются две сетевые карты и установлена операционная система Windows XP Pro.
  • Часть вторая: настройка беспроводного оборудования в одноранговой сети - рассматриваются вопросы организации сети, при использовании только беспроводных адаптеров.

В предыдущей статье шифрованию в беспроводных сетях было посвящено всего несколько слов - было обещано осветить этот вопрос в отдельной статье. Сегодня мы выполняем свое обязательство:)

Для начала - немного теории.

Шифрованию данных в беспроводных сетях уделяется так много внимания из-за самого характера подобных сетей. Данные передаются беспроводным способом, используя радиоволны, причем в общем случае используются всенаправленные антенны. Таким образом, данные слышат все - не только тот, кому они предназначены, но и сосед, живущий за стенкой или «интересующийся», остановившийся с ноутбуком под окном. Конечно, расстояния, на которых работают беспроводные сети (без усилителей или направленных антенн), невелики - около 100 метров в идеальных условиях. Стены, деревья и другие препятствия сильно гасят сигнал, но это все равно не решает проблему.

Изначально для защиты использовался лишь SSID (имя сети). Но, вообще говоря, именно защитой такой способ можно называть с большой натяжкой - SSID передается в открытом виде и никто не мешает злоумышленнику его подслушать, а потом подставить в своих настройках нужный. Не говоря о том, что (это касается точек доступа) может быть включен широковещательный режим для SSID, т.е. он будет принудительно рассылаться в эфир для всех слушающих.

Поэтому возникла потребность именно в шифровании данных. Первым таким стандартом стал WEP - Wired Equivalent Privacy. Шифрование осуществляется с помощью 40 или 104-битного ключа (поточное шифрование с использованием алгоритма RC4 на статическом ключе). А сам ключ представляет собой набор ASCII-символов длиной 5 (для 40-битного) или 13 (для 104-битного ключа) символов. Набор этих символов переводится в последовательность шестнадцатеричных цифр, которые и являются ключом. Драйвера многих производителей позволяют вводить вместо набора ASCII-символов напрямую шестнадцатеричные значения (той же длины). Обращаю внимание, что алгоритмы перевода из ASCII-последовательности символов в шестнадцатеричные значения ключа могут различаться у разных производителей. Поэтому, если в сети используется разнородное беспроводное оборудование и никак не удается настройка WEP шифрования с использованием ключа-ASCII-фразы, - попробуйте ввести вместо нее ключ в шестнадцатеричном представлении.

А как же заявления производителей о поддержке 64 и 128-битного шифрования, спросите вы? Все правильно, тут свою роль играет маркетинг - 64 больше 40, а 128 - 104. Реально шифрование данных происходит с использованием ключа длиной 40 или 104. Но кроме ASCII-фразы (статической составляющей ключа) есть еще такое понятие, как Initialization Vector - IV - вектор инициализации. Он служит для рандомизации оставшейся части ключа. Вектор выбирается случайным образом и динамически меняется во время работы. В принципе, это разумное решение, так как позволяет ввести случайную составляющую в ключ. Длина вектора равна 24 битам, поэтому общая длина ключа в результате получается равной 64 (40+24) или 128 (104+24) бит.

Все бы хорошо, но используемый алгоритм шифрования (RC4) в настоящее время не является особенно стойким - при большом желании, за относительно небольшое время можно подобрать ключ перебором. Но все же главная уязвимость WEP связана как раз с вектором инициализации. Длина IV составляет всего 24 бита. Это дает нам примерно 16 миллионов комбинаций - 16 миллионов различных векторов. Хотя цифра «16 миллионов» звучит довольно внушительно, но в мире все относительно. В реальной работе все возможные варианты ключей будут использованы за промежуток от десяти минут до нескольких часов (для 40-битного ключа). После этого вектора начнут повторяться. Злоумышленнику стоит лишь набрать достаточное количество пакетов, просто прослушав трафик беспроводной сети, и найти эти повторы. После этого подбор статической составляющей ключа (ASCII-фразы) не занимает много времени.

Но это еще не все. Существуют так называемые «нестойкие» вектора инициализации. Использование подобных векторов в ключе дает возможность злоумышленнику практически сразу приступить к подбору статической части ключа, а не ждать несколько часов, пассивно накапливая трафик сети. Многие производители встраивают в софт (или аппаратную часть беспроводных устройств) проверку на подобные вектора, и, если подобные попадаются, они молча отбрасываются, т.е. не участвуют в процессе шифрования. К сожалению, далеко не все устройства обладают подобной функцией.

В настоящее время некоторые производители беспроводного оборудования предлагают «расширенные варианты» алгоритма WEP - в них используются ключи длиной более 128 (точнее 104) бит. Но в этих алгоритмах увеличивается лишь статическая составляющая ключа. Длина инициализационного вектора остается той же самой, со всеми вытекающими отсюда последствиями (другими словами, мы лишь увеличиваем время на подбор статического ключа). Само собой разумеется, что алгоритмы WEP с увеличенной длиной ключа у разных производителей могут быть не совместимы.

Хорошо напугал? ;-)

К сожалению, при использовании протокола 802.11b ничего кроме WEP выбрать не удастся. Точнее, некоторые (меньшинство) производители поставляют различные реализации WPA шифрования (софтовыми методами), которое гораздо более устойчиво, чем WEP. Но эти «заплатки» бывают несовместимы даже в пределах оборудования одного производителя. В общем, при использовании оборудования стандарта 802.11b, есть всего три способа зашифровать свой трафик:

  • 1. Использование WEP с максимальной длиной ключа (128 бит или выше), если оборудование поддерживает циклическую смену ключей из списка (в списке - до четырех ключей), желательно эту смену активировать.
  • 2. Использование стандарта 802.1x
  • 3. Использование стороннего программного обеспечения для организации VPN туннелей (шифрованных потоков данных) по беспроводной сети. Для этого на одной из машин ставится VPN сервер (обычно с поддержкой pptp), на других - настраиваются VPN клиенты. Эта тема требует отдельного рассмотрения и выходит за рамки этой статьи.

802.1x использует связку из некоторых протоколов для своей работы:

  • EAP (Extensible Authentication Protocol) - протокол расширенной аутентификации пользователей или удаленных устройств;
  • TLS (Transport Layer Security) - протокол защиты транспортного уровня, он обеспечивает целостность передачи данных между сервером и клиентом, а так же их взаимную аутентификацию;
  • RADIUS (Remote Authentication Dial-In User Server) - сервер аутентификации (проверки подлинности) удаленных клиентов. Он и обеспечивает аутентификацию пользователей.

Протокол 802.1x обеспечивает аутентификацию удаленных клиентов и выдачу им временных ключей для шифрования данных. Ключи (в зашифрованном виде) высылаются клиенту на незначительный промежуток времени, после которого генерируется и высылается новый ключ. Алгоритм шифрования не изменился - тот же RC4, но частая ротация ключей очень сильно затрудняет вероятность взлома. Поддержка этого протокола есть только в операционных системах (от Microsoft) Windows XP. Его большой минус (для конечного пользователя) в том, что протокол требует наличие RADIUS-сервера, которого в домашней сети, скорее всего, не будет.

Устройства, поддерживающие стандарт 802.11g, поддерживают улучшенный алгоритм шифрования WPA - Wi-Fi Protected Access. По большому счету это временный стандарт, призванный заполнить нишу безопасности до прихода протокола IEEE 802.11i (так называемого WPA2). WPA включает в себя 802.1X, EAP, TKIP и MIC.

Из нерассмотренных протоколов тут фигурируют TKIP и MIC:

  • TKIP (Temporal Key Integrity Protocol) - реализация динамических ключей шифрования, плюс к этому, каждое устройство в сети так же получает свой Master-ключ (который тоже время от времени меняется). Ключи шифрования имеют длину 128 бит и генерируются по сложному алгоритму, а общее кол-во возможных вариантов ключей достигает сотни миллиардов, а меняются они очень часто. Тем не менее, используемый алгоритм шифрования - по--прежнему RC4.
  • MIC (Message Integrity Check) - протокол проверки целостности пакетов. Протокол позволяет отбрасывать пакеты, которые были «вставлены» в канал третьим лицом, т.е. ушли не от валидного отправителя.

Большое число достоинств протокола TKIP не покрывает его основной недостаток- используемый для шифрования алгоритм RC4. Хотя на данный момент случаев взлома WPA на основе TKIP зарегистрировано не было, но кто знает, что преподнесет нам будущее? Поэтому сейчас все популярнее становится использование стандарта AES (Advanced Encryption Standard), который приходит на замену TKIP. К слову, в будущем стандарте WPA2 есть обязательное требование к использованию AES для шифрования.

Какие выводы можно сделать?

  • при наличии в сети только 802.11g устройств лучше пользоваться шифрованием на основе WPA;
  • по возможности (при поддержке всеми устройствами) включать AES шифрование;

Переходим к непосредственной настройке шифрования на устройствах. Я использую те же беспроводные адаптеры, что и в предыдущей статье:

Cardbus адаптер Asus WL-100g установлен на ноутбуке. Интерфейс управления картой - утилита от ASUS (ASUS WLAN Control Center).

Внешний адаптер с USB-интерфейсом ASUS WL-140 . Управление адаптером - через встроенный в Windows XP интерфейс (Zero Wireless Configuration). Эта карта стандарта 802.11b, поэтому поддержки WPA не имеет.

Плата с PCI интерфейсом Asus WL-130g . Интерфейс управления в реализации от (производитель чипсета данной PCI карты).

ASUS WLAN Control Center - ASUS WL-100g

Начнем с настройки шифрования в интерфейсе управления ASUS WLAN Control Center. Все настройки сосредоточены в разделе Encryption . Сначала выберем тип аутентификации (Network Authentication ), нам доступны три типа: Open System, Shared Key и WPA.

1. WEP-шифрование.

Типы Open System/Shared Key (Открытая система/Общий ключ) являются подмножествами алгоритма аутентификации, встроенного в WEP. Режим Open System является небезопасным, и его категорически не рекомендуется включать при возможности активации Shared Key. Это связано с тем, что в режиме Open System для входа в беспроводную сеть (ассоциации с другой станцией или точкой доступа) достаточно знать лишь SSID сети, а в режиме Shared Key - нужно еще установить общий для всей сети WEP-ключ шифрования.

Далее выбираем шифрование (Encryption) - WEP, размер ключа - 128 бит (64-битный ключ лучше не использовать вовсе). Выбираем формат ключа, HEX (ввод ключа в шестнадцатеричном виде) или генерация ключа из ASCII последовательности (не забываем, что алгоритмы генерации могут различаться у производителей). Так же учитываем, что WEP-ключ (или ключи) должны быть одинаковы на всех устройствах в одной сети. Всего можно ввести до четырех ключей. Последним пунктом выбираем, какой из ключей будет использоваться (Default Key). В данном случае есть еще один способ - запустить использовать все четыре ключа последовательно, что повышает безопасность. (совместимость только у устройств одного и того же производителя).

2. WPA-шифрование.

При поддержке на всех устройствах (обычно это 802.11g устройства) настоятельно рекомендуется использовать этот режим, вместо устаревшего и уязвимого WEP.

Обычно беспроводные устройства поддерживают два режима WPA:

  • Стандартный WPA. Нам он не подходит, так как требует наличие RADIUS сервера в сети (к тому же работает лишь в связке с точкой доступа).
  • WPA-PSK - WPA с поддержкой Pre Shared Keys (заранее заданных ключей). А это то, что нужно - ключ (одинаковый для всех устройств) вручную задается на всех беспроводных адаптерах и первичная аутентификация станций осуществляется через него.

В качестве алгоритмов шифрования можно выбрать TKIP или AES. Последний реализован не на всех беспроводных клиентах, но если он поддерживается всеми станциями, то лучше остановиться именно на нем. Wireless Network Key - это тот самый общий Pre Shared Key. Желательно сделать его длиннее и не использовать слово из словаря или набор слов. В идеале это должна быть какая-нибудь абракадабра.

После нажатия на кнопку Apply (или Ok), заданные настройки будут применены к беспроводной карте. На этом процедуру настройки шифрования на ней можно считать законченной.

Интерфейс управления в реализации от Ralink - Asus WL-130g

Настройка не очень отличается от уже рассмотренного интерфейса от ASUS WLAN CC. В окне открывшегося интерфейса идем на закладку Profile , выбираем нужный профиль и жмем Edit .

1. WEP шифрование.

Настройка шифрования осуществляется в закладке Authentication and Security . В случае активации WEP шифрования, выбираем Shared в Authentication type (т.е. общий ключ).

Выбираем тип шифрования - WEP и вводим до четырех ASCII или шестнадцатеричных ключей. Длину ключа в интерфейсе задать нельзя, сразу используется 128-битный ключ.

2. WPA шифрование.

Если в Authentication type выбрать WPA-None, то мы активируем WPA-шифрование с общим ключом. Выбираем тип шифрования (Encryption ) TKIP или AES и вводим общий ключ (WPA Pre-Shared Key ).

На этом и заканчивается настройка шифрования в данном интерфейсе. Для сохранения настроек в профиле достаточно нажать кнопку Ok .

Zero Wireless Configuration (встроенный в Windows интерфейс) - ASUS WL-140

ASUS WL-140 является картой стандарта 802.11b, поэтому поддерживает только WEP шифрование.

1. WEP шифрование.

В настройках беспроводного адаптера переходим на закладку Беспроводные сети . Далее выбираем нашу беспроводную сеть и жмем кнопку Настроить .

В появившемся окне активируем Шифрование данных . Также активируем Проверку подлинности сети , отключение этого пункта приведет к включению аутентификации типа «Open System», т.е. любой клиент сможет подключиться к сети, зная ее SSID.

Вводим ключ сети (и повторно его же в следующем поле). Проверяем его индекс (порядковый номер), обычно он равен единице (т.е. первый ключ). Номер ключа должен быть одинаков на всех устройствах.

Ключ (сетевой пароль), как нам подсказывает операционная система, должен содержать 5 или 13 символов или быть полностью введен в шестнадцатеричном виде. Еще раз обращаю внимание, что алгоритм перевода ключа из символьного вида в шестнадцатеричной может отличаться у Microsoft и производителей собственных интерфейсов к управлению беспроводными адаптерами, поэтому надежнее будет ввести ключ в шестнадцатеричном виде (т.е. цифрами от 0 до 9 и буквами от A до F).

В интерфейсе есть еще флаг, отвечающий за Автоматическое предоставление ключа , но я точно не знаю, где это будет работать. В разделе помощи сказано, что ключ может быть зашит в беспроводной адаптер производителем оного. В общем, лучше не активировать эту функцию.

На этом настройку шифрования для 802.11b адаптера можно считать законченной.

Кстати, о встроенной в ОС помощи. Большинство из сказанного здесь и даже более того можно найти в Центре справки и поддержки , которая обладает хорошей системой помощи, достаточно лишь ввести ключевые слова и нажать на зеленую стрелку поиска.

2. WPA шифрование.

Рассмотрев настройку шифрования на примере 802.11b адаптера ASUS WL-140, мы не коснулись настройки WPA в Windows, так как карта не поддерживает этот режим. Рассмотрим этот аспект на примере другого адаптера - ASUS WL-100g. Возможность настройки WPA в Windows XP появляется с установкой Service Pack версии 2 (или же соответствующими обновлениями, лежащими на сайте Microsoft).

Service Pack 2 сильно расширяет функции и удобство настроек беспроводной сети. Хотя основные элементы меню не изменились, но к ним добавились новые.

Настройка шифрования производится стандартным образом: сначала выбираем значок беспроводного адаптера, далее жмем кнопку Свойства .

Переходим на закладку Беспроводные сети и выбираем, какую сеть будем настраивать (обычно она одна). Жмем Свойства .

В появившемся окне выбираем WPA-None, т.е. WPA с заранее заданными ключами (если выбрать Совместимая , то мы включим режим настройки WEP шифрования, который уже был описан выше).

Выбираем AES или TKIP (если все устройства в сети поддерживают AES, то лучше выбрать его) и вводим два раза (второй в поле подтверждения) WPA-ключ. Желательно какой-нибудь длинный и трудноподбираемый.

После нажатия на Ok настройку WPA шифрования также можно считать законченной.

В заключении пару слов о появившемся с Service Pack 2 мастере настройки беспроводной сети.

В свойствах сетевого адаптера выбираем кнопку Беспроводные сети .

В появившемся окне - жмем на Установить беспроводную сеть .

Тут нам рассказывают, куда мы попали. Жмем Далее .

Выбираем Установить беспроводную сеть . (Если выбрать Добавить , то можно создать профили для других компьютеров в той же беспроводной сети).

В появившемся окне устанавливаем SSID сети, активируем, если возможно, WPA шифрование и выбираем способ ввода ключа. Генерацию можно предоставить операционной системе или ввести ключи вручную. Если выбрано первое, то далее выскочит окошко с предложением ввести нужный ключ (или ключи).

  • В текстовом файле, для последующего ручного ввода на остальных машинах.
  • Сохранение профиля на USB-флешке, для автоматического ввода на других машинах с Windows XP с интегрированным Service Pack версии 2.

Если выбран режим сохранения на Flash, то в следующем окне предложат вставить Flash-носитель и выбрать его в меню.

Если было выбрано ручное сохранение параметров, то после нажатия кнопки Напечатать

… будет выведен текстовый файл с параметрами настроенной сети. Обращаю внимание, что генерируется случайный и длинные (т.е. хороший) ключи, но в качестве алгоритма шифрования используется TKIP. Алгоритм AES можно позже включить вручную в настройках, как было описано выше.

Итого

Мы закончили настройку шифрования на всех адаптерах беспроводной сети. Теперь можно проверить видят ли компьютеры друг друга. Как это сделать, рассказывалось во второй части цикла «сети своими руками» (действуем аналогично способу, когда шифрование в сети не было включено).

Если нас постигла неприятность, и не все компьютеры видят друг друга, то проверяем общие настройки у адаптеров:

  • Алгоритм аутентификации должен быть одинаков у всех (Shared Keys или WPA);
  • Алгоритм шифрования должен быть одинаков у всех (WEP-128bit, WPA-TKIP или WPA-AES);
  • Длина ключа (в случае WEP-шифрования) должна быть одинаковой у всех станций в сети (обычная длина - 128bit);
  • Сам ключ должен быть одинаковым на всех станциях сети. Если используется WEP, то возможная причина - использование ASCII-ключа и в сети используется разнородное оборудование (от разных производителей). Попробуйте ввести ключ в шестнадцатеричном представлении.
Статьи по теме: