Что такое гироскоп в смартфоне и как он работает. Гироскоп, что это в телефоне и как он используется

Последнее время (года так с 2015) все больше пользователей заинтересовалось: а есть ли гироскоп в смартфоне, которым они постоянно пользуются? Особенно сильно на это повлияла недавно вышедшая игра Pokemon Go, требующая наличия этого датчика. Без него «Покемоны» не могут работать в режиме дополненной реальности, показывая зверушку в естественной среде обитания.

Не только игры требуют наличие гироскопа. Как и цифровой компас, он позволяет улучшить работу навигационной системы, позволяет реализовать некоторые жестовые элементы управления и т.д. Часто гироскоп совмещен с акселерометром смартфона, и в этом тандеме смартфон можно использовать при просмотре виртуальной реальности в очках. Но иногда может применяться только один из датчиков. Узнать, как работает и зачем нужен гироскоп, выяснить, есть ли он в вашем смартфоне, поможет статья.

Что такое гороскоп?

Гироскоп – это специальный датчик в смартфоне, работающий за счет определения вектора силы тяжести. Он позволяет определить, в какую сторону она направлена, чтобы определить положение устройства в пространстве. Классический гироскоп представляет собой подставку с обручем, в котором на шарнире закреплен обруч меньшего размера. Внутри него находится еще один обруч, а в центре обруча располагается вращающийся диск-ротор на шпильке.

Как Стив Джобс продвигал гироскоп и акселерометр в смартфоне

Под действием силы тяжести диск всегда находится в одном положении, вне зависимости от того, в какую сторону наклонен гироскоп. Эта особенность позволяет регистрировать отклонения подвеса гироскопа для определения положения в пространстве. Однако классический гироскоп в карданном подвесе неприменим в миниатюрной электронике. В смартфонах устанавливаются более миниатюрные MEMS (микроэлектромеханические системы) с детектирующим кольцом. Размеры их корпуса составляют от 5 до 10 мм в ширину и длину, 2-5 мм в высоту, что приемлемо для смартфона.

Зачем гироскоп в смартфоне?

Наиболее востребованной функцией, возложенной на гироскоп смартфона (это было больше 5 лет назад) стало определение положения для автоматического поворота изображения на экране. Затем датчик стали использовать в навигационных программах, играх, приложениях, выполняющих работу строительного уровня. Его данные могут использоваться для жестового управления. Например, при перевороте устройства экраном вниз – включается беззвучный режим или блокируется экран.

Возможности применения гироскопа достаточно широки и ограничиваются лишь фантазией разработчиков программ. Совместно с акселерометром, датчик используется в большинстве современных 3D-игр. Вы можете совместно с VR-гарнитурой для смартфона играть и просматривать 360-градусный контент. Функции обоих сенсоров похожи, они взаимозаменяемы на 90 %. Однако часто производители отказываются от одного из датчиков, и в этом случае поиграть в очках не получится, отзывчивость будет на низком уровне.

Как узнать, есть ли в смартфоне гироскоп?

Определить есть ли гироскоп в смартфоне, проще всего владельцам техники Apple. Если у вас iPhone 4 или новее – датчик точно присутствует на плате. Владельцы устройств на базе ОС Android могут воспользоваться приложениями, отображающими полные технические характеристики смартфона.

В Aida64 просмотреть, какие сенсоры есть на борту, можно во вкладке «Датчики». Такая же функциональность есть в популярном бенчмарке AnTuTu. Детально просмотреть показания гироскопа и узнать, правильно ли он работает, можно в приложении Sensor Sense. В приложении Sensor Kinetics можно найти данные о любых датчиках смартфона и проверить их работоспособность.


Каждый смартфон оснащен множеством датчиков. Среди них наиболее часто встречаемые датчик освещенности, магнитометрии, ускорения, приближения, расстояния, акселерометр (G-сенсор) и гироскоп (гиродатчик). Про то, мы уже писали, а сейчас хотим ознакомить вас с другим интересным устройством - гироскопом, который чаще всего используется вместе с акселерометром.

Впервые слово "гироскоп" использовал французский физик Леон Фуко , так он назвал свой прибор, с помощью которого наблюдал суточное вращение Земли . Современные гироскопы применяются не только для определения вращения тела. Основное их предназначение в наши дни - это определение угла отклонения тела относительно разных плоскостей. Комбинация гироскопа и акселерометра позволяет отследить и зафиксировать движение в трехмерном пространстве.

Первым смартфоном, оснащенным гироскопом, стал iPhone 4 компании Apple, после чего его наличие стало чуть ли не обязательным требованием для любого телефона. Использование гироскопа в iPhone сделало его смартфоном с совершенно новыми интересными возможностями. Например, ответить на входящий звонок , листать страницы и картинки электронной книги, менять музыку, ставить паузу владельцы iPhone могут, просто встряхнув смартфон.

В мобильных телефонах гироскоп и акселерометр присутствуют вместе, что намного увеличивает чувствительность гаджета к любым наклонам, поворотам и другим незначительным движениям. Такое реагирование устройства при наличии определенного программного обеспечения может защитить смартфон от повреждений при падении и ударах. Однако в современных мобильных телефонах гироскопы с акселерометром применяются не только для защиты, главная их задача - улучшение качества игр. С появлением этих датчиков отпала необходимость в виртуальных джойстиках, вместо них появилась кнопка выстрела.

Теперь нацелить пушку, управлять автомобилем и повернуть руль вертолета во время игр можно путем простого изменения положения смартфона в пространстве - осуществляя наклоны вправо-влево, от себя и на себя, а также движениями по горизонтали и вертикали, не изменяя при этом наклон корпуса.

Гироскоп учитывает и скорость перемещения. Благодаря ему, в играх для управления можно использовать не только поворот устройства, но и скорость поворота, что делает управление смартфоном более точным, удобным и приятным. Как видите, функции гироскопа и акселерометра примерно одинаковые, они оба определяют угол отклонения и ускорение тела. Но принцип их работы совершенно разный: гироскоп фиксирует положение тела в пространстве относительно собственной "гравитации" созданной быстро вращающейся массой, а акселерометр использует гравитационное ускорение планеты. Поэтому в невесомости акселерометр работать не может.

На сегодняшний день разработано много приложений для гироскопов, более того под этот датчик существует специальный , получивший название CoveFlow . В этом режиме работают большое количество приложений у смартфонов iPhone. Например, при использовании калькулятора в портретном положении доступны только сложение, вычитание, умножение и деление, а при повороте смартфона на 90 градусов включается инженерный режим, в котором уже можно произвести не только простые математические действия, но и сложные.

Функции гироскопа могут использоваться и для определения местоположения на местности. На мобильных устройствах, оснащенных гироскопом, очень приятно определить направление движения, используя GPS-навигацию - карта всегда будет поворачиваться в ту сторону, в какую направлен ваш взгляд . Например, если вы стоите лицом к какому-то населенному пункту, то это отобразиться на карте, если повернетесь, то положение карты тоже изменится.


Гироскоп активно используют не только в мобильных устройств, но и в авиации, космонавтике и судоходстве, как навигационный прибор . В качестве основного элемента такого гироскопа является быстро вращающийся ротор , закрепленный таким образом, чтобы его ось вращения поворачивалась. Такое положение позволяет гироскопу определить угол поворота основания - самолета, ракеты или корабля, пилотам которых уже не нужно ориентироваться по примерным показаниям магнитного компаса . Они получают данные о положении своего воздушного или морского судна с гирогоризонтали или гировертикали.

Однако не все пользователи мобильных устройств считают полезным наличие гироскопа в своем телефоне. Некоторые предпочитают его просто отключить. Связано это с тем, что во многих моделях смартфонов и планшетов программы реагируют на изменения положения в пространстве с незначительным запозданием. Например, если вы просматриваете картинки на своем смартфоне лежа на диване, то ориентация страницы измениться каждый раз, как только вы перевернетесь или смените позу. Это согласитесь не очень приятно, если вы хотели и дальше любоваться картинками в том же формате, а спустя некоторое время после изменения положения размеры изображения стали другими.

ГИРОСКОП (от греческого γ?ρος - круг, окружность и σκοπ?ω - наблюдать), устройство, совершающее быстрые циклические (вращательные или колебательные) движения и чувствительное вследствие этого к повороту в инерциальном пространстве. Термин «гироскоп» предложен в 1852 году Ж. Б. Л. Фуко для изобретённого им прибора, предназначенного для демонстрации вращения Земли вокруг своей оси. Долгое время термин «гироскоп» использовался для обозначения быстровращающегося симметричного твёрдого тела. В современной технике гироскоп - основной элемент всевозможных гироскопических устройств или приборов, широко применяемых для автоматического управления движением самолётов, судов, торпед, ракет, космических аппаратов, мобильных роботов, для целей навигации (указатели курса, поворота, горизонта, стран света), для измерения угловой ориентации подвижных объектов и во многих других случаях (например, при прохождении стволов штолен, строительстве метрополитенов, при бурении скважин).

Классический гироскоп. Согласно законам ньютоновской механики скорость поворота оси быстровращающегося симметричного твёрдого тела в пространстве обратно пропорциональна его собственной угловой скорости и, следовательно, ось гироскопа поворачивается столь медленно, что на некотором интервале времени её можно использовать в качестве указателя неизменного направления в пространстве.

Простейшим гироскопом является волчок, парадоксальность поведения которого заключается в его сопротивлении изменению направления оси вращения. Под воздействием внешней силы ось волчка начинает двигаться в направлении, перпендикулярном вектору силы. Именно благодаря этому свойству вращающийся волчок не падает, а его ось описывает конус вокруг вертикали. Это движение называется прецессией гироскопа. Если к оси быстро вращающегося свободного гироскоп придожить пару сил {Р, Р’}, Р’ = -Р, с моментом М = Ph, где h - плечо пары сил (рис. 1), то (против ожидания) гироскоп начнёт дополнительно поворачиваться не вокруг оси х, перпендикулярной к плоскости пары сил, а вокруг оси у, лежащей в этой плоскости и перпендикулярной оси z вращения гироскопа. Если в какой-либо момент времени действие пары сил прекратится, то одновременно прекратится прецессия, т. е. прецессионное движение гироскопа безынерционно. Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп обычно закрепляют в кольцах карданового подвеса (рис. 2), который представляет собой систему твёрдых тел (рамок, колец), последовательно соединённых между собой цилиндрическими шарнирами. Обычно при отсутствии технологических погрешностей оси рамок карданового подвеса пересекаются в одной точке - центре подвеса. Закреплённое в таком подвесе симметричное тело вращения (ротор) имеет три степени свободы и может совершать любой поворот вокруг центра подвеса. Гироскоп, у которого центр масс совпадает с центром подвеса, называется уравновешенным, астатическим или свободным. Изучение законов движения классического гироскопа - задача динамики твёрдого тела.

Основной количественной характеристикой ротора механического гироскопа является его вектор собственного кинетического момента, называемого также моментом количества движения или моментом импульса,

где I - момент инерции ротора гироскопа относительно оси собственного вращения, Ω - угловая скорость собственного вращения гироскопа относительно оси симметрии.

Медленное движение вектора собственного кинетического момента гироскопа под действием моментов внешних сил, называемое прецессией гироскопа, описывается уравнением

ω x Η = Μ, (2)

где ω - вектор угловой скорости прецессии, Н - вектор собственного кинетического момента гироскопа, М - ортогональная к Н составляющая вектора момента внешних сил, приложенных к гироскопу.

Момент сил, приложенных со стороны ротора к подшипникам оси собственного вращения ротора, возникающий при изменении направления оси и определяемый уравнением

М g = -М = Η x ω, (3)

называется гироскопическим моментом.

Кроме медленных прецессионных движений ось гироскопа может совершать быстрые колебания с малой амплитудой и высокой частотой - так называемые нутации. Для свободного гироскопа с динамически симметричным ротором в безынерционном подвесе частота нутационных колебаний определяется формулой

где А - момент инерции ротора относительно оси, ортогональной оси собственного вращения и проходящей через центр масс ротора. При наличии сил трения нутационные колебания обычно достаточно быстро затухают.

Погрешность гироскопа измеряется скоростью ухода его оси от первоначального положения. Согласно уравнению (2) величина ухода, называемого также дрейфом, пропорциональна моменту сил М относительно центра подвеса гироскопа:

ω ух = М/Н (4)


Уход ω ух обычно измеряется в угловых градусах в час. Из формулы (4) следует, что свободный гироскоп функционирует идеально лишь в том случае, если внешний момент М равен 0. При этом угловая скорость прецессии обращается в нуль и ось собственного вращения будет в точности совпадать с неизменным направлением в инерциальном пространстве.

Однако на практике любые средства, используемые для подвеса ротора гироскопа, являются причиной возникновения нежелательных внешних моментов неизвестной величины и направления. Формула (4) определяет пути повышения точности механического гироскопа: надо уменьшить «вредный» момент сил М и увеличить кинетический момент Н. При выборе угловой скорости гироскопа необходимо учитывать одно из главных ограничений, связанных с пределами прочности материала ротора из-за возникающих при вращении центробежных сил. При разгоне ротора выше так называемой допускаемой угловой скорости начинается процесс его разрушения.

Лучшие современные гироскопы имеют случайный уход порядка 10 -4 -10 -5 °/ч. Ось гироскопа с погрешностью 10 -5 °/ч совершает полный оборот на 360° за 4 тысячи лет! Точность балансировки гироскопа с погрешностью 10 -5 °/ч должна быть выше одной десятитысячной доли микрометра (10 -10 м), то есть смещение центра масс ротора из центра подвеса не должно превышать величину порядка диаметра атома водорода.

Гироскопические устройства можно разделить на силовые и измерительные. Силовые устройства служат для создания моментов сил, приложенных к основанию, на котором установлен гироскопический прибор; измерительные предназначены для определения параметров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и тому подобное).

Впервые уравновешенный гироскоп нашёл практическое применение в 1898 году в приборе для стабилизации курса торпеды, изобретённом австрийским инженером Л. Обри. Аналогичные приборы в различных вариантах исполнения начали использовать в 1920-х годах на самолётах для указания курса (гироскоп направления, гирополукомпасы), а позднее для управления движением ракет. На рисунке 3 показан пример применения гироскопа с тремя степенями свободы в авиационном указателе курса (гирополукомпасе). Вращение ротора в шарикоподшипниках создаётся и поддерживается струёй сжатого воздуха, направленной на рифлёную поверхность обода. По шкале азимута, прикреплённой к наружной рамке, можно, установив ось собственного вращения ротора параллельно плоскости основания прибора, ввести требуемое значение азимута. Трение в подшипниках незначительно, поэтому ось вращения ротора сохраняет заданное положение в пространстве. Пользуясь стрелкой, скреплённой с основанием, по шкале азимута можно контролировать поворот самолёта.

Гирогоризонт, или искусственный горизонт, позволяющий пилоту поддерживать свой самолёт в горизонтальном положении, когда естественный горизонт не виден, основан на использовании гироскопа с вертикальной осью вращения, сохраняющей своё направление при наклонах самолёта. В автопилотах применяются два гироскопа с горизонтальной и вертикальной осями вращения; первый служит для сохранения курса самолёта и управляет вертикальными рулями, второй - для сохранения горизонтального положения самолёта и управляет горизонтальными рулями.

С помощью гироскопа созданы автономные инерциальные навигационные системы (ИНС), предназначенные для определения координат, скорости и ориентации подвижного объекта (корабля, самолёта, космического аппарата и тому подобное) без использования какой-либо внешней информации. В состав ИНС кроме гироскопа входят акселерометры, предназначенные для измерения ускорения (перегрузки) объекта, а также компьютер, интегрирующий по времени выходные сигналы акселерометров и выдающий навигационную информацию с учётом показания гироскопа. К началу 21 века созданы настолько точные ИНС, что дальнейшего повышения точностей для решения многих задач уже не требуется.

Развитие гироскопической техники последних десятилетий сосредоточилось на поиске нетрадиционных областей применения гироскопических приборов - разведка полезных ископаемых, предсказание землетрясений, сверхточное измерение координат железнодорожных путей и нефтепроводов, медицинская техника и многое другое.

Неклассические виды гироскопов. Высокие требования к точности и эксплутационным характеристикам гироскопических приборов привели не только к дальнейшим усовершенствованиям классического гироскопа с вращающимся ротором, но и к поискам принципиально новых идей, позволяющих решить проблему создания чувствительных датчиков для индикации и измерения угловых движений объекта в пространстве. Этому способствовали успехи квантовой электроники, ядерной физики и других областей точных наук.

В гироскопе с воздушной опорой шариковые подшипники, используемые в традиционном кардановом подвесе, заменены «газовой подушкой» (газодинамической опорой). Это полностью устранило износ материала опор во время работы и позволило почти неограниченно увеличить время службы прибора. К недостаткам газовых опор относятся довольно большие потери энергии и возможность внезапного отказа при случайном контакте ротора с поверхностью опоры.

Поплавковый гироскоп представляет собой роторный гироскоп, в котором для разгрузки подшипников подвеса все подвижные элементы взвешиваются в жидкости с большой плотностью так, чтобы вес ротора вместе с кожухом уравновешивался гидростатическими силами. Благодаря этому на много порядков снижается сухое трение в осях подвеса и увеличивается ударная и вибрационная стойкость прибора. Герметичный кожух, выполняющий роль внутренней рамки карданового подвеса, называется поплавком. Ротор гироскопа внутри поплавка вращается на воздушной подушке в аэродинамических подшипниках со скоростью порядка 30-60 тысяч оборотов в минуту. Для повышения точности прибора необходимо использование системы термостабилизации. Поплавковый гироскоп с большим вязким трением жидкости называется также интегрирующим гироскопом.

Динамически настраиваемый гироскоп (ДНГ) принадлежит к классу гироскопа с упругим подвесом ротора, в которых свобода угловых движений оси собственного вращения обеспечивается за счёт упругой податливости конструктивных элементов (например, торсионов). В ДНГ, в отличие от классического гироскопа, используется так называемый внутренних карданов подвес (рис. 4), образованный внутренним кольцом 2, которое изнутри крепится торсионами 4 к валу электродвигателя 5, а снаружи - торсионами 3 к ротору 1. Момент трения в подвесе проявляется только в результате внутреннего трения в материале упругих торсионов. В ДНГ за счёт подбора моментов инерции рамок подвеса и угловой скорости вращения ротора осуществляется компенсация упругих моментов подвеса, приложенных к ротору. К достоинствам ДНГ относятся их миниатюрность, отсутствие подшипников со специфическими моментами трения, присутствующими в классическом кардановом подвесе, высокая стабильность показаний, относительно невысокая стоимость.

Рис. 4. Динамически настраиваемый гироскоп с внутренним кардановым подвесом: 1 - ротор; 2 - внутреннее кольцо; 3 и 4 - торсионы; 5 - электродвигатель.

Кольцевой лазерный гироскоп (КЛГ), называемый также квантовым гироскопом, создан на основе лазера с кольцевым резонатором, в котором по замкнутому оптическому контуру одновременно распространяются встречные электромагнитные волны. К достоинствам КЛГ относятся отсутствие вращающегося ротора, подшипников, подверженных действию сил трения, высокая точность.

Волоконно-оптический гироскоп (ВОГ) представляет собой волоконно-оптический интерферометр, в котором распространяются встречные электромагнитные волны. ВОГ является аналоговым преобразователем угловой скорости вращения основания, на котором он установлен, в выходной электрической сигнал.

Волновой твердотельный гироскоп (ВТГ) основан на использовании инертных свойств упругих волн в твёрдом теле. Упругая волна может распространяться в сплошной среде, не изменяя своей конфигурации. Если возбудить стоячие волны упругих колебаний в осесимметричном резонаторе, то вращение основания, на котором установлен резонатор, вызывает поворот стоячей волны на меньший, но известный угол. Соответствующее движение волны как целого называется прецессией. Скорость прецессии стоячей волны пропорциональна проекции угловой скорости вращения основания на ось симметрии резонатора. К достоинствам ВТГ относятся: высокое отношение точность/цена; способность переносить большие перегрузки, компактность и небольшая масса, низкая энергоёмкость, малое время готовности, слабая зависимость от температуры окружающей среды.

Вибрационный гироскоп (ВГ) основан на свойстве камертона сохранять плоскость колебаний своих ножек. В ножке колеблющегося камертона, установленного на платформе, вращающейся вокруг оси симметрии камертона, возникает периодических момент сил, частота которого равна частоте колебания ножек, а амплитуда пропорциональна угловой скорости вращения платформы. Поэтому, измеряя амплитуду угла закрутки ножки камертона, можно судить об угловой скорости платформы. К недостаткам ВГ относится нестабильность показаний из-за сложностей высокоточного измерения амплитуды колебаний ножек, а также то, что они не работают в условиях вибрации, которая практически всегда сопровождает места установки приборов на движущихся объектах. Идея камертонного гироскопа стимулировала целое направление поисков новых типов гироскопов, использующих пьезоэлектрический эффект либо вибрацию жидкостей или газов в специально изогнутых трубках и тому подобное.

Микромеханический гироскоп (ММГ) относится к гироскопам низких точностей (ниже 10 -1 °/ч). Эта область традиционно считалась малоперспективной для задач управления движущимися объектами и навигации. Но в конце 20 века разработка ММГ стала одним из наиболее интенсивно разрабатываемых направлений гироскопической техники, тесно связанным с современными кремниевыми технологиями. ММГ представляет собой своеобразный электронный чип с кварцевой подложкой площадью в несколько квадратных миллиметров, на которую методом фотолитографии наносится плоский вибратор типа камертона. Точность современных ММГ невелика и достигает 10 1 -10 2 °/ч, однако решающее значение имеет исключительно низкая стоимость микромеханических чувствительных элементов. Благодаря использованию хорошо отработанных современных технологий массового производства микроэлектроники открывается возможность применения ММГ в совершенно новых областях: автомобили и бинокли, телескопы и видеокамеры, мыши и джойстики персональных компьютеров, мобильные робототехнические устройства и даже детские игрушки.

Неконтактный гироскоп относится к гироскопическим устройствам сверхвысоких точностей (10 -6 -5·10 -4 °/ч). Разработка гироскопа с неконтактными подвесами началась в середине 20 века. В неконтактных подвесах реализуется состояние левитации, т. е. состояние, при котором ротор гироскопа «парит» в силовом поле подвеса без какого-либо механического контакта с окружающими телами. Среди неконтактных гироскопов выделяют гироскопы с электростатическим, магнитным и криогенным подвесами ротора. В электростатическом гироскопе проводящий бериллиевый сферический ротор подвешен в вакуумированной полости в регулируемом электрическом поле, создаваемом системой электродов. В криогенном гироскопе сверхпроводящий ниобиевый сферический ротор подвешен в магнитном поле; рабочий объём гироскопа охлаждается до сверхнизких температур, так, чтобы ротор перешёл в сверхпроводящее состояние. Гироскоп с магниторезонансным подвесом ротора является аналогом гироскопа с электростатическим подвесом ротора, в котором электрическое поле заменено магнитным, а бериллиевый ротор - ферритовым. Современные гироскопы с неконтактными подвесами - это сложнейшие приборы, которые вобрали в себя новейшие достижения техники.

Кроме перечисленных выше типов гироскопов проводились и проводятся работы над экзотическими типами гироскопа, такими, как ионный гироскоп, ядерный гироскоп и др.

Математические задачи в теории гироскопа. Математические основы теории гироскопа заложены Л. Эйлером в 1765 году в его работе «Theoria motus corporum solidorum sue rigidorum». Движение классического гироскопа описывается системой дифференциальных уравнений 6-го порядка, решение которой стало одной из самых знаменитых математических задач. Эта задача относится к разделу теории вращательного движения твёрдого тела и является обобщением задач, решаемых до конца простыми средствами классического анализа. Однако при этом она настолько трудна, что ещё далека от завершения, несмотря на результаты, полученные крупнейшими математиками 18-20 века. Современные гироскопические приборы потребовали решения новых математических задач. Движение неконтактных гироскопов с высокой точностью подчиняется законам механики, поэтому, решая уравнения движения гироскопа с помощью компьютера, можно точно предсказывать положение оси гироскопа в пространстве. Благодаря этому разработчикам неконтактных гироскопов не приходится балансировать ротор с точностью 10 -10 м, которую невозможно достичь при современном уровне технологии. Достаточно точно измерять погрешности изготовления ротора данного гироскопа и вводить соответствующие поправки в программы обработки сигналов гироскопа. Получающиеся с учётом этих поправок уравнения движения гироскопа оказываются очень сложными, и для их решения приходится применять весьма мощные компьютеры, использующие алгоритмы, основанные на последних достижениях математики. Разработка программ расчёта движения гироскопа с неконтактными подвесами позволяет существенно повысить точность гироскопа, а следовательно, и точность определения местоположения объекта, на котором установлены эти гироскопы.

Лит.: Магнус К. Гироскоп. Теория и применение. М., 1974; Ишлинский А. Ю. Ориентация, гироскопы и инерциальная навигация. М., 1976; Климов Д. М., Харламов С. А. Динамика гироскопа в кардановом подвесе. М., 1978; Ишлинский А. Ю., Борзов В. И., Степаненко Н. П. Лекции по теории гироскопов. М., 1983; Новиков Л. З., Шаталов М. Ю. Механика динамически настраиваемых гироскопов. М., 1985; Журавлев В. Ф., Климов Д. М. Волновой твердотельный гироскоп. М., 1985; Мартыненко Ю. Г. Движение твердого тела в электрических и магнитных полях. М., 1988.

Или технологией Bluetooth был чем-то необычным. Теперь же все эти функции стали привычными, а некоторые из них даже успели устареть. Производители добавляют в свои модели новые возможности, одна из которых - гироскоп в телефоне. Что же он из себя представляет, как применяется?

Гироскоп и акселерометр

Многие люди часто путают эти два понятия. Давайте разберёмся.

Акселерометр, или G-сенсор - устройство, которое отслеживает изменение положения девайса относительно своей оси - например, повороты влево-вправо, на себя и от себя.

Гироскоп в телефоне позволяет регистрировать не только эти действия, но и любые перемещения устройства в пространстве, а также фиксировать скорость перемещения. Поэтому можно считать его улучшенным акселерометром.

Принцип действия гироскопа

Устройство представляет собой диск, который закреплён на двух подвижных рамках. Он быстро вращается. При изменении положения этих рамок, диск не сдвигается с места. Если постоянно поддерживать вращение, например, с помощью электромотора, то можно с точностью определить положение объекта, на котором установлен гироскоп. Это может быть использовано и для определения сторон света.

Варианты применения

Ещё в девятнадцатом веке гироскоп использовался военно-морскими силами и гражданскими судами, так как с помощью него можно было наиболее точно определить стороны света. Ещё он нашёл своё применение в авиации и ракетной технике.

Гироскоп iPhone 4

В Айфоне конструкция прибора немного отличается от классической, поскольку она выполнена на основе микроэлектромеханического датчика. Принцип же действия остаётся прежним.

Гироскоп в телефоне имеет очень большую сферу применения. Безусловно, в первую очередь это разнообразные игры, использующие данную технологию. Наиболее популярные среди них - гоночные симуляторы и шутеры. Для примера: в шутерах используется так называемая «дополненная реальность» - выстрелы производятся с помощью нажатия, а для того, чтобы прицелиться, нужно изменить положение смартфона - камера в игре передвинется точно так же.

Кроме игровой индустрии, гироскоп применяется в разнообразном программном обеспечении. С его помощью доступ к различным функциям становится гораздо удобнее. Например, в некоторых операционных системах при встряхивании устройства происходит обновление Bluetooth. Ещё эта технология применяется в ряде специфических приложений, служащих для измерения угла наклона (уровня).

Мобильная индустрия в последнее время развивается всё быстрее и быстрее. Ещё недавно гироскоп в телефоне был модной новинкой, а теперь он используется повсеместно и считается привычной деталью любого смартфона. Возможно, всего через несколько лет появится новое поколение устройств, позволяющих проецировать изображение на любую точку пространства, ведь наука идёт вперёд семимильными шагами. Пока же мы можем только строить предположения по этому поводу и искать способы применения тем технологиям, которые уже изобретены.

Новейшие смартфоны оснащены многочисленными датчиками. Одним из самых полезных модулей выступает гироскоп. Для чего такое устройство внедряют в системы сотовых телефонов? Гироскоп в смартфоне - что это? Какие функции на него возложены? Обо всем этом пойдет речь в нашей публикации.

Краткий экскурс в историю

Гироскоп - изобретение французского ученого Леона Фуко. Прототип, согласно принципу работы которого функционируют современные устройства, использовался физиком в целях отслеживания особенностей суточного вращения планеты.

Инновационные гироскопы используются не только для отслеживания специфики колебания различных тел. В наши дни основным назначением прибора является определение углов отклонения предметов по отношению к плоскостям. Для чего нужен гироскоп в смартфоне? Комбинирование такого модуля с акселерометром открывает возможность для отслеживания движений телефона в трехмерном пространстве.

Впервые средство сотовой связи с таким модулем на борту представила компания Apple. Случилось это в ходе презентации модели смартфона iPhone 4. Впоследствии инновационному решению стали подражать самые различные разработчики телефонов.

Гироскоп в смартфоне - что это?

Гироскоп в сотовом телефоне не имеет ничего общего с традиционным механическим устройством. Здесь модуль представляет собой микроскопическую электронную плату, которая способна вычислять угловые скорости, передавая соответствующую информацию в виде электрических сигналов. Как правило, габариты такого чипа составляют всего лишь несколько миллиметров. Если отвечать в общих чертах на вопрос: "Гироскоп в смартфоне - что это?", то несведущему человеку может показаться, что никакой особой пользы владельцу эта фишка не несет - применение устройства направлено всего лишь на определение отклонения мобильного гаджета от собственной оси. Но так ли это?

Отличие гироскопа от акселерометра

Гироскоп в смартфоне - что это? Такой модуль способен передавать данные тем или иным приложениям об угле наклона мобильного гаджета по отношению к земной поверхности. Подобная функция закреплена также за акселерометром. Однако указанные девайсы имеют различный принцип работы. Ведь функционирование акселерометра основано на вычислении собственного ускорения в пространстве. На практике отмеченные возможности обеих систем оказываются взаимозаменяемыми. Именно по этой причине современные смартфоны оснащаются как гироскопом, так и акселерометром.

Функции гироскопа

Зачем нужен гироскоп в смартфоне? Применение датчика открывает следующие возможности. В первую очередь благодаря элементарному встряхиванию мобильного телефона пользователь способен быстро ответить на входящий звонок. Гироскоп позволяет просматривать изображения, переключать аудиозаписи в плеере, облегчает переворачивание страниц во время просмотра текстовых документов.

Еще зачем гироскоп в смартфоне? Чрезвычайно удобным модуль становится при использовании калькулятора. Благодаря отклонению гаджета в ту или иную сторону можно выбирать функции умножения, деления, вычитать и слагать значения.

Разработчики мобильных устройств нашли применение гироскопу также при работе с различными приложениями и программным обеспечением. При встряхивании некоторых устройств автоматически происходит обновление Bluetooth. Очень удобным наличие модуля становится при необходимости измерения уровней и углов наклона.

Гироскоп незаменим в случае работы с электронными картами. Модуль дает возможность определять точное положение пользователя на определенной местности. При запуске навигатора карта будет менять положение вслед за поворотом человека. Если пользователь развернется лицом к тому или иному объекту, это сразу же отобразится на визуальной схеме. Такая функция будет крайне полезной для людей, которые увлекаются активным отдыхом, в частности путешествиями и ориентированием на местности.

Без гироскопа не могут обойтись любители мобильных игр. Функциональный модуль способствует созданию более реалистичной картинки и облегчает управление. Особенно правдоподобными благодаря гироскопу становятся всевозможные симуляторы, шутеры, трехмерные бродилки. Чтобы езда на виртуальной машине либо полет на самолете казались более реальными, достаточно изменения положения смартфона в одной из плоскостей.

Если пользователь мобильного телефона в дальнейшем планирует использовать шлем виртуальной реальности, в таком случае наличие гороскопа выступает обязательным условием. Без датчика станет невозможным отслеживание системой смартфона поворотов головы, перемещения человека в пространстве.

Недостатки

Но наличие в смартфоне гироскопа может обернуться минусом, да таким, что отдельные пользователи стараются сразу же отключить функциональный модуль. Речь идет о реакции некоторых приложений на изменения положения сотового телефона в пространстве со значительным запозданием.

Сравнительным недостатком наличия гироскопа в смартфоне выступают неудобства, которые способны возникать при чтении электронной книги. Если пользователь произвольно меняет позу, датчик тут же преобразит ориентацию странички в соответствующей плоскости. Подобные моменты обычно вызывают раздражение.

Как определить, есть ли гироскоп в смартфоне

Узнать о присутствии функционального модуля в системе мобильного устройства можно несколькими способами. Наиболее простой и доступный вариант - ознакомление с описанием модели смартфона на официальном сайте изготовителя либо просмотр прилагающейся к гаджету технической документации.

Существуют и другие решения. Например, можно прибегнуть к установке на телефон специальных приложений. Одним из таковых выступает AnTuTu Benchmark. После инсталляции и запуска приложения достаточно перейти на вкладку «Информация». Через несколько мгновений на экране отобразятся все спецификации смартфона.

В качестве альтернативы вышеуказанному варианту можно воспользоваться утилитой Sensor Sense. Приложение фиксирует данные, которые исходят со всех датчиков, встроенных в мобильное устройство. Если в списке «запеленгованных» модулей не окажется гироскопа, это будет свидетельствовать о его отсутствии.

Статьи по теме: