Измерения средних сопротивлений. Методы измерения активных сопротивлений

В современных телекоммуникационных системах значения изме­ряемых активных (активное - значит потребляющее мощность) со­противлений лежат в пределах от 10-8 до 10-10
Ом. Измеряют активное сопротивление как на постоянном, так и на переменном токе. Среди распространенных методов измерения активных сопротивлений на постоянном токе отметим: основанные на использовании амперметра-­вольтметра, логометрические, мостовые.

14.2.1. Измерение сопротивлевий методом амперметра-вольтметра

Измерение методом амперметра-вольтметра (точнее, методом амперметра или вольтметра) сводится к определению тока или на­пряжения в цепи с измеряемым двухполюсником и последующему расчету его параметров по закону Ома. Метод используют для изме­рения активного и полного сопротивления, индуктивности и емкости.

На рис. 14.1 показана схемная реализация этих методов при из­мерениях активного сопротивления. Измерение активных сопротив­лений проводят на постоянном токе, при этом включать резистор Rx в измерительную цепь можно по двум схемам.

В схеме с амперметром (рис. 14.1, а) отклонение показаний мил­лиамперметра мА
пропорционально току

и обратно пропорционально измеряемому сопротивлению Rx . По такой схеме удается измерять достаточно большие сопротивления (от 1 Ом до 200 МОм). Перед измерениями зажимы х замыкают Кл (тем самым закорачивают, т. е. шунтируют резистор Rx
) и переменным резистором Rдo6 устанавливают такой ток, чтобы стрелка отклонилась на всю шкалу, что соответствует точке 0 Ом.

Рисунок 14.1. Измерение активных сопротивлений методом:

а – амперметра;б - вольтметра

Для измерения небольших сопротивлений (0,01...100 Ом) исполь­зуют схему с вольтметром (рис. 14.1, б), показания которого равны

(14.2)

если Rдo6
>> Rx и U ERx /Rдo6 , т. е. имеет место прямая зависимость вольтметра от измеряемого сопротивления Rx. Перед измерением стрелку на приборе совмещают с отметкой «¥» при разомкнутых за­жимах х (тем самым отключают резистор Rx ).

Обе схемы измерения активных сопротивлений вызывают появле­ние методических погрешностей ΔRx , зависящих от внутренних сопро­тивлений схем. Для схемы, показанной на рис. 14.1, а, методическая погрешность тем меньше, чем ниже внутреннее сопротивление ампер­метра (при → 0, ΔRx → 0), а в схеме, показанной на рис. 14.1, б, погрешность тем меньше, чем выше внутреннее сопротивление вольт­метра (при RV → ¥ , ΔRx → 0). Итак, схемой, показанной на рис. 14.1, а, следует пользоваться для измерения больших сопротивлений, а схемой, показанной на рис. 14.1, б, - малых сопротивлений.

Погрешности измерения параметров элементов цепей методом вольтметра-амперметра на низких частотах составляют 0,5... 10% и определяются погрешностью используемых приборов и наличием па­разитных параметров. Погрешности увеличиваются с ростом частоты.

14.2.2. Измерение активного сопротивления логометром

Уменьшить влияние источника питания Е на точность измерения сопротивлений можно с помощью логометра. Логометром называют измерительный механизм, показывающий отношение двух электри­ческих величин, чаще всего двух токов. Логометры бывают магнито­электрическими и электродинамическими.

Рис. 14.2. Логометр:
а- устройство; б- схема включения

Наиболее распространен при практических измерениях лого­метр магнитоэлектрической системы. Логометр содержит две жестко скрепленные между рамки, помещенные в неравномерное поле по­стоянного магнита (рис. 14.2, а), которое реализуется специальной конфигурации полюсных наконечников. Неравномерным поле соз­дают для того, чтобы вращающие моменты, приложенные к рамкам, зависели не только от токов, протекающих в рамках, но и от положе­ния рамок в магнитном поле, т. е. М 1
= ψ1(a)I 1; М 2 = ψ2 (a)I X, где I 1, I X - токи, протекающие в рамках; ψ1(a), ψ2
(a) - значения потокосце­плений магнитов с их рамками. Противодействующий момент будет равен нулю, когда М 1
= М 2; ψ1(a)I 1
= ψ2 (a)I x, а значит, угол отклоне­ния подвижной системы

Для схемы включения, приведенной на рис. 14.2, б,

где Rp - сопротивление рамок; Ro - образцовое сопротивление.

Итак, согласно формуле (14.4), показания логометра не зависит от колебания напряжения питания. Зависимость показаний от сопротивления R X позволяет создавать лабораторные логометры с погрешностью измерений, не превышающей 0,5 %. Нечувствительность логометра к колебаниям напряжения питания дала возможность разработать класс приборов, питающихся от генераторов, ротор которых вращают вручную и еще иногда использующиеся для определения сопротивления изоляции действующих телефонных сетей.

Измерение сопротивлений омметрами

Омметр
- измерительный прибор, предназначенный для измерения сопротивлений. Электронный омметр аналогового типа выполняют по схеме инвертирующего усилителя на ОУ, охваченного отри­цательной ОС с помощью измеряемого сопротивления R x
(рис. 14.3, а) Напряжение на выходе усилителя омметра определяется как

Uвых = – URХ / R1 . (14.5)

Рис. 14.3. Схемы омметров для измерения сопротивлений:
а - малых; б - больших

Поскольку выходное напряжение линейно связано с измеряемым сопротивлением R x, то шкала прибора И может быть проградуирована непосредственно в единицах сопротивления. Шкала равномерна в широ­ких пределах. Погрешности измерения электронных омметров 2...4%.

В приборах для измерения особо больших активных сопротивле­ний (тераомметрах) сопротивления R z
и R , надо поменять местами (рис. 14.3, б), при этом шкала измерительного прибора И получается обратной и напряжение

Uвых
= – UR1 / RХ
(14.6)

Применение в одном приборе обоих вариантов схем позволяет создать измерители сопротивления с диапазоном измерения от еди­ниц Ом до нескольких десятков МОм с погрешностью не более 10%. Измерители сопротивлений, построенные по приведенным схемам, используют для измерения сопротивлений и на переменном токе.

Краткая ТЕОРИя

Закон Ома для однородного участка цепи.

Если на концах однородного участка цепи существует разность потенциалов Dj=j 2 -j 1 , то в данной цепи возникает электрический ток. Сила тока I , текущего через данный участок, пропорциональна разности потенциалов Dj на концах участка и обратно пропорциональна сопротивлению R этого участка цепи (или этого проводника)

Величина U = I×R называется падением напряжения на проводнике и численно равна количеству тепла, выделяющегося в проводнике при прохождении через него единичного электрического заряда.

Для однородного участка (т.е. не содержащего э.д.с.) разность потенциалов на концах участка численно равна падению напряжения на этом участке, т.е. Dj= U.

Если обычный аналоговый вольтметр (отклонение стрелки которого обусловлено током, проходящим в рамке или катушке) присоединить к точкам 1 и 2 участка цепи, то он покажет разность потенциалов Dj между этими точками. Разность потенциалов в этом случае будет равна падению напряжения U на вольтметре, т.е.

U = I V ·R V (2)

где R V - сопротивление вольтметра,

I V - ток, протекающий через вольтметр.

Сопротивление проводников.

Если участок цепи представляет собой проводник длиной l постоянного сечения S , однородного химического состава, то сопротивление R этого проводника определяется по формуле:



где r - удельное сопротивление материала.

Удельное сопротивление численно равно сопротивлению однородного проводника единичной длины и единичного сечения. Оно зависит от химического состава материала проводника, его температуры, и измеряется в системе СИ в Ом×м. На практике часто пользуются внесистемной единицей - Ом×мм 2 /м.

При комнатной температуре наименьшее удельное сопротивление имеют проводники из химически чистых металлов. Удельное сопротивление сплавов имеет большую величину, что позволяет применять их для изготовления резисторов с большим сопротивлением (реостаты, нагревательные элементы, шунты и добавочные сопротивления). В табл. 1 даны значения удельного сопротивления некоторых материалов.

Таблица 1

Методы измерения сопротивления.

Основными методами измерения сопротивления постоянному току являются: косвенный метод, метод непосредственной оценки и мостовой метод. Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности. Наиболее универсальным из косвенных методов является метод «амперметра-вольтметра», состоящий в практическом использовании закона Ома для однородного участка цепи. Действительно, из формул (1) и (2) следует

т.е. измеряя разность потенциалов U на концах проводника и величину тока I , протекающего через него , можно определить сопротивление R проводника.

Другим методом измерения сопротивлений является метод мостовых схем, который рассматривается в другой лабораторной работе. В мостовых схемах не требуется измерять токи и напряжения, поэтому они дают более точные результаты.

Метод непосредственной оценки предполагает измерение сопротивления постоянному току с помощью омметра. Но измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации.

В настоящей лабораторной работе изучается метод «амперметра-вольтметра».

При изготовлении, монтаже и эксплуатации электротехниче­ских и радиотехнических устройств и установок необходимо изме­рять электрическое сопротивление.

В практике для измерения сопротивлений применяют различ­ные методы в зависимости от характера объектов и условий измерения (например, твердые и жидкие проводники, заземлители, электроизоляция); от требований к точности и быстроте изме­рения; от величины измеряемых сопротивлений.

Методы измерения малых сопротивлений существенно отлича­ются от методов измерения больших сопротивлений, так как в первом случае надо принимать меры для исключения влияния на ре­зультаты измерений сопротивления соединительных проводов, пе­реходных контактов.

Измерительные механизмы омметров. Для прямого измере­ния сопротивлений применяют магнитоэлектрические измерительные механизмы одно- и двухрамочные.

Однорамочный механизм можно ис­пользовать для измерения сопротивлений. С этой целью в прибор вводят добавочный резистор с постоянным сопротивлением

и снабжают его источником питания (например, батареей сухих элементов). Измеряемое сопротивление включается с измери­телем последовательно (рис. 1) или параллельно.

При последовательном соединении ток в измерителе , где

- сопротивление измерителя; - на­пряжение источника питания.

Учитывая, что

, где - чувствительность прибора по току (постоянная величина), находим, что угол отклонения стрел­ки прибора при зависит только от величины измеряемо­го сопротивления :

Если шкалу отградуировать по этому выражению в единицах сопротивления, то прибор будет омметром. Напряжение сухих эле­ментов со временем уменьшается, поэтому в измерения вносится ошибка, тем большая, чем больше действительное напряжение от­личается от того напряжения, при котором была градуирована шкала.


Ошибка от непостоянства напряжения питающего источника не возникает, если измерительный механизм имеет две обмотки, расположенные на общей оси под некоторым углом друг к другу (рис. 2.).

Рис. 1. Рис. 2.

В двухрамочном измерительном механизме, который называют логометром, нет противодействующих пружин, вращающий и про­тиводействующий моменты создаются электромагнитными сила­ми. Поэтому при отсутствии тока в обмотках хорошо уравно­вешенная подвижная часть прибора находится в безразлич­ном равновесии (стрелка останавливается у любого деления шка­лы). Когда в катушках есть ток, на подвижную часть действуют два электромагнитных момента, направленные в противополож­ные стороны.

Магнитная цепь измерительного механизма устроена так, что магнитная индукция вдоль воздушного зазора распределена неравномерно, но с таким расчетом, что при повороте подвижной части в любую сторону вращающий момент уменьшается, а проти­водействующий момент увеличивается (в зависимости от направ­ления поворота роль моментов меняется).

Подвижная часть останавливается при

или . Отсюда следует, что поло­жение стрелки на шкале зависит от отношения токов в обмотках, т.е. , но не зависит от напряжения питающего источника.

На схеме рис. 2. видно, что измеряемое сопротивление

входит в цепь одной из катушеклогометра, поэтому ток в ней, а так­же отклонение стрелки прибора однозначно зависит от значения .

Используя эту зависимость, шкалу градуируют в единицах со­противления и тогда прибор является омметром. Омметры для из­мерения сопротивления изоляции снабжают источником питания с напряжением до 1000 В, чтобы измерение проводить при напря­жении, примерно равном рабочему напряжению установки. Таким источником может быть встроенный магнитоэлектрический генератор с ручным приводом или трансформатор с выпрямите­лем, включаемый в сеть переменного тока.

Омметры, рассчитанные на измерения больших сопротивлений (больше 1 МОм), называют мегаомметрами.

Косвенные методы измерения сопротивлений. Сопротивле­ние резистора или другого элемента электрической цепи можно определить по показаниям вольтметра и амперметра (при постоян­ном токе), применяя закон Ома:

(схемы рис. 3, а, б). По схеме на рис. 4 определяют сопротивление по показаниям одного вольтметра. В положении 1 переключателя П вольтметр из­меряет напряжение сети , а в положении 2 - напряжение на за­жимах вольтметра . В последнем случае . Отсю­да

Косвенные методы применяют для измерения средних сопротивле­ний, а одним вольтметром измеряют также большие сопротивле­ния. Точность этих методов значительно зависит от соотношения величин измеряемого сопротивления

и внутренних сопротивле­ний амперметра и вольтметра . Результаты измерения можно считать удовлетворительными по точности, если выполняются условия: (см. схему рис. 3, а); (см. схему рис. 3, б); (см. схему рис. 4).

Рис. 3 Рис. 4

Методы и приборы сравнения. Для измерения малых и средних сопротивлений применяют метод сравнения измеряемого сопротивления

с образцовым . Эти два сопротивления на схе­ме рис. 5 соединены последовательно, поэтому ток в них один и тот же. Величину его регулируют с помощью резистора , так, чтобы она не превышала допустимого тока для сопротивлений и . Отсюда . Неизвестные падения напряжения и измеряют вольтметром или потенциометром. Результаты измерения получаются более точными, если сопротив­ления и одного порядка, а сопротивление вольтметра доста­точно велико, так что присоединение его не влияет на режим основ­ной цепи.

При измерении малых сопротивлений этим методом вольтметр подключают с помощью потенциальных зажимов, которые позволяют исключить сопротивления контактов основной цепи из результатов измерения.

– это измерительный прибор, служащий для определения величины сопротивления в электрических цепях. Сопротивление измеряется в Омах и обозначается латинской буквой R . О том, что такое Ом в популярной форме изложено в статье сайта «Закон силы тока» .

Структурная схема и обозначение на схемах Омметра

Измерительный прибор Омметр структурно представляет собой стрелочный или цифровой индикатор с последовательно включенной батарейкой или источником питания, как показано на фотографии.

Функцию измерения сопротивления имеют все комбинированные приборы – стрелочные тестеры и цифровые мультиметры.

На практике, прибор, который измеряет только сопротивление, используется для особых случаев, например, для измерения сопротивления изоляции при повышенном напряжении, сопротивления заземляющего контура или как образцовый, служащий для поверки других омметров боше низкой точности.

На электрических измерительных схемах омметр обозначается греческой буквой омега заключенной в окружность, как показано на фотографии.

Подготовка Омметра для измерений

Ремонт электропроводки, электротехнических и радиотехнических изделий заключается в проверке целостности проводов и в поиске нарушения контакта в их соединениях.

В одних случаях сопротивление должно быть равно бесконечности, например сопротивление изоляции. А в других – равно нулю, например сопротивление проводов и их соединений. А в некоторых случаях равно определенной величине, например сопротивление нити накала лампочки или нагревательного элемента.

Внимание! Измерять сопротивление цепей, во избежание выхода из строя Омметра, допускается выполнять только при полном их обесточивании. Необходимо вынуть вилку из розетки или вынуть батарейки из отсека. Если в схеме есть электролитические конденсаторы большей емкости, то их необходимо разрядить, закоротив выводы конденсатора через сопротивление номиналом около 100 кОм на несколько секунд.

Как и при измерениях напряжения, перед измерением сопротивления, необходимо подготовить прибор. Для этого нужно установить переключатель прибора в положение, соответствующее минимальному измерению величины сопротивления.


Перед измерениями следует проверить работоспособность прибора, так как могут быть плохими элементы питания и Омметр может не работать. Для этого нужно соединить между собой концы щупов.

У тестера стрелка при этом должна установиться точно на нулевую отметку, если не установилась, то можно покрутить ручку «Уст. 0». Если не получится, надо заменить батарейки.

Для прозвонки электрических цепей, например, при проверке электрической лампочки накаливания, можно пользоваться прибором, у которого сели батарейки и стрелка не устанавливается на 0, но хоть немного реагирует при соединении щупов. Судить о целостности цепи будет возможно по факту отклонения стрелки. Цифровые приборы должны тоже показывать нулевые показания, возможно отклонение в десятых долях омов, за счет сопротивления щупов и переходного сопротивления в контактах подключения их к клеммам прибора.

При разомкнутых концах щупов, стрелка тестера должна установиться в точку, обозначенную на шкале ∞, а в цифровых приборах, мигать перегрузка или высвечиваться цифра 1 на индикаторе с левой стороны.

Омметр готов к работе. Если прикоснуться концами щупов к проводнику, то в случае его целостности, прибор покажет нулевое сопротивление, в противном случае, показания не изменятся.

В дорогих моделях мультиметров есть функция прозвонки цепей со звуковой индикацией, обозначенная в секторе измерения сопротивлений символом диода. Она очень удобна при прозвонке низкоомных цепей, например проводов кабеля витых пар для Интернета или бытовой электропроводки. Если провод цел, то прозвонка сопровождается звуковым сигналом, что освобождает от необходимости считывать показания с индикатора мультиметра.

Примеры из практики измерения сопротивления изделий

Теоретически обычно все понятно, однако на практике часто возникают вопросы, на которые лучше всего помогут ответить примеры проверки омметром наиболее часто встречающихся изделий.

Проверка ламп накаливания

Перестала светить лампочка накаливания в светильнике или в автомобильных бортовых приборах, как узнать причину? Неисправен может быть выключатель, электрический патрон или электропроводка . С помощью тестера легко проверяется любая лампа накаливания из домашнего светильника или фары автомобиля, нити накала ламп дневного света и энергосберегающих ламп. Для проверки достаточно установить переключатель прибора в положение измерения минимального сопротивления и прикоснуться концами щупов к выводам цоколя лампочки.

Сопротивление нити накала лампочки составило 51 Ом, что свидетельствует о ее исправности. Если бы нить была в обрыве, то прибор показал бы бесконечное сопротивление. Сопротивление галогенной лампочки на 220 В мощностью 50 ватт при свечении составляет около 968 Ом, автомобильной лампочки на 12 вольт мощностью 100 ватт, около 1,44 Ом.

Стоит заметить, что сопротивление нити лампы накаливания в холодном состоянии (когда лампочке не горит) в несколько раз меньше, чем в разогретом. Это связано с физическим свойством вольфрама. Его сопротивление с разогревом нелинейно возрастает. Поэтому лампы накаливания, как правило, перегорают в момент включения.

Проверка звуковоспроизводящих наушников

Бывает у наушников в одном из излучателей, или в обоих сразу, звук искажаться, периодически исчезает или отсутствует. Тут возможны два варианта, либо неисправны наушники, или устройство, с которого поступает сигнал. С помощью омметра легко проверить, в чем причина и локализовать место неисправности.

Для проверки наушников нужно подсоединить концы щупов к их разъему. Обычно наушники подключаются к аппаратуре с помощью разъема типа Джек 3,5 мм, показанному на фотографии.

Одним концом щупа прикасаются к общему выводу, а вторым по очереди к выводам правого и левого каналов. Сопротивление должно быть одинаковым и составлять около 40 Ом. Обычно в паспорте на наушники сопротивление указывается.

Если сопротивление каналов сильно отличается, то возможно в проводах имеется короткое замыкание или обрыв провода. Убедиться в этом легко, достаточно концы щупов подсоединить к выводам правого и левого каналов. Сопротивление должно быть в два раза больше, чем одного наушника, то есть уже 80 Ом. Практически измеряется суммарное сопротивление последовательно включенных излучателей.

Если сопротивление при шевелении проводников во время измерений изменяется, значит, провод в каком-то месте перетертый. Обычно провода перетираются в местах выхода из Джека или излучателей.

Для локализации места обрыва провода нужно во время измерений, изгибать провод локально, зафиксировав остальную его часть. По нестабильности показаний омметра вы определите место дефекта. Если у Джека, то нужно приобрести разборный разъем, откусить старый с участком плохого провода и распаять провод на контакты нового Джека.

Если обрыв находится у входа в наушники, то нужно их разобрать, удалить дефектную часть провода, зачистить концы и припаять, к тем же контактам, к которым провода были припаяны раньше. В статье сайта «Как паять паяльником» Вы можете ознакомиться об искусстве пайки.

Измерение номинала резистора (сопротивления)

Резисторы (сопротивления) широко применяются в электрических схемах. Поэтому при ремонте электронных устройств возникает необходимость проверки исправности резистора или определения его величины.

На электрических схемах резистор обозначается в виде прямоугольника, внутри которого иногда пишут римскими цифрами его мощность. I – один ватт, II – два ватта, IV – четыре ватта, V – пять ватт.

Проверить резистор (сопротивление) и определить его номинал можно с помощью мультиметра, включенного в режим измерения сопротивления. В секторе режима измерения сопротивления, предусмотрено несколько положений переключателя. Это сделано для того, чтобы повысить точность результатов измерений.

Например, положение 200 позволить измерять сопротивления величиной до 200 Ом. 2k – до 2000 Ом (до 2 кОм). 2M – до 2000000 Ом. (до 2 МОм). Буква k после цифр обозначает приставку кило – необходимость умножения числа на 1000, M обозначает Мега, и число нужно умножить на 1 000 000.

Если переключатель установить в положение 2k, то при измерении резистора номиналом 300 кОм прибор покажет перегрузку. Необходимо переключить его в положение 2М. В отличие, от измерения напряжения, в каком положении находится переключатель, не имеет значения, всегда можно в процессе измерений его переключить.

Онлайн калькуляторы для определения номинала резисторов
по цветовой маркировке

Иногда при проверке резистора, омметр показывает, какое-то сопротивление, но если резистор в результате перегрузок изменил свое сопротивление и оно уже не соответствует маркировке, то такой резистор применять недопустимо. Современные резисторы маркируются с помощью цветных колец. Определить номинала резистора, маркированного цветными кольцами удобней всего с помощью онлайн калькулятора.


маркированных 4 цветными кольцами

Онлайн калькулятор для определения сопротивления резисторов
маркированных 5 цветными кольцами

Проверка диодов мультиметром или тестером

Полупроводниковые диоды широко применяются в электрических схемах для преобразования переменного в постоянный ток, и обычно при ремонте изделий, после внешнего осмотра печатной платы в первую очередь проверяют диоды. Диоды изготавливают из германия, кремния и других полупроводниковых материалов.

По внешнему виду диоды бывают разной формы, прозрачные и цветные, в металлическом, стеклянном или пластмассовом корпусе. Но они всегда имеют два вывода и сразу бросаются в глаза. В схемах в основном применяются выпрямительные диоды, стабилитроны и светодиоды.


Условное обозначение диодов на схеме представляет собой стрелку, упирающуюся в отрезок прямой линии. Обозначается диод латинскими буквами VD, за исключением светодиодов, которые обозначаются буквами HL, В зависимости от назначения диодов в схему обозначения вносятся дополнительные элементы, что и отражено на чертеже выше. Так как в схеме диодов бывает больше одного, то для удобства после букв VD или HL добавляется порядковый номер.

Проверить диод гораздо легче, если представлять, как он работает. А работает диод как ниппель. Когда Вы надуваете мячик, резиновую лодку или автомобильное колесо, то воздух в них входит, а обратно его не пускает ниппель.

Диод работает точно также. Только пропускает в одну сторону не воздух, а электрический ток. Поэтому для проверки диода нужен источник постоянного тока, которым и может служить мультиметр или стрелочный тестер, так как в них установлена батарейка.


Выше представлена структурная схема работы мультиметра или тестера в режиме измерения сопротивления. Как видно, на клеммы подается напряжение постоянного тока определенной полярности. Плюс принято подавать на красную клемму, а минус на черную. При прикосновении к выводам диода таким образом, что плюсовой выход прибора окажется на анодном выводе диода, а минусовой на катоде диода, то ток через диод пойдет. Если щупы поменять местами, то диод ток не пропустит.

Диод обычно может иметь три состояния – быть исправным, пробитым или в обрыве. При пробое диод превращается в отрезок провода, будет пропускать ток при любом порядке прикосновении щупов. При обрыве напротив, ток не будет идти никогда. Редко, но бывает и еще одно состояние, когда изменяется сопротивление перехода. Такую неисправность можно определить по показаниям на дисплее.

По выше приведенной инструкции можно проверять выпрямительные диоды, стабилитроны, диоды Шоттки и светодиоды, как с выводами, так и в SMD исполнении. Рассмотрим, как проверять диоды на практике.


В первую очередь необходимо, соблюдая цветовую маркировку, вставить в мультиметр щупы. Обычно в COM вставляется черный провод, а в V/R/f – красный (это плюсовой вывод батарейки). Далее необходимо установить переключатель режимов работы в положение прозвонки (если есть такая функция измерений), как на фотографии или в положение 2kOm. Включить прибор, сомкнуть концы щупов и убедиться в его работоспособности.


Практику начнем с проверки древнего германиевого диода Д7, этому экземпляру уже 53 года. Диоды на основе германия сейчас практически не выпускают из-за высокой стоимости самого германия и низкой предельной рабочей температуры, всего 80-100°С. Но эти диоды имеют самое маленькое падение напряжения и уровень собственных шумов. Их очень ценят сборщики ламповых усилителей звука. В прямом включении падение напряжения на диоде из германия составляет всего 0,129 В. Стрелочный тестер покажет приблизительно 130 Ом. При смене полярности мультиметр показывает 1, стрелочный тестер покажет бесконечность, что означает очень большое сопротивление. Данный диод исправен.

Порядок проверки кремниевых диодов не отличается от проверки сделанных из германия. На корпусе диода, как правило, помечается вывод катода, это может быть окружность, линия или точка. В прямом включении падение на переходе диода составляет около 0,5 В. У мощных диодов напряжение падения меньше, и составляет около 0,4 В. Точно также, проверяются стабилитроны и диоды Шоттки. Падение напряжения у диодов Шоттки составляет около 0,2 В.


У мощных светодиодов на прямом переходе падает более 2 В и прибор может показывать 1. Но тут сам светодиод является индикатором исправности. Если при прямом включении видно, даже самое слабое свечение светодиода, то он исправен.

Надо заметить, что некоторые типы мощных светодиодов состоят из цепочки включенных последовательно несколько светодиодов и внешне это не заметно. Такие светодиоды иногда имеют падение напряжения до 30 В, и проверить их возможно только от блока питания с напряжением на выходе более 30В и включенным последовательно со светодиодом токоограничивающим резистором .

Проверка электролитических конденсаторов

Различают два основных вида конденсаторов, простые и электролитические. Простые конденсаторы можно включать в схему как угодно, а электролитические только с соблюдением полярности, иначе конденсатор выйдет из строя.

На электрических схемах конденсатор обозначается двумя параллельными линиями. При обозначении электролитического конденсатора обязательно обозначается его полярность подключения знаком «+».

Электролитические конденсаторы низко надежны, и являются самой распространенной причиной отказа электронных блоков изделий. Вздутый конденсатор в блоке питания компьютера или другого устройства, не редкая картина.

Тестером или мультиметром в режиме измерения сопротивления можно успешно проверять исправность электролитических конденсаторов, или как еще говорят, прозвонить. Конденсатор нужно выпаять из печатной платы и обязательно разрядить, чтобы не повредить прибор. Для этого нужно закоротить его выводы металлическим предметом, например пинцетом. Для проверки конденсатора переключатель на приборе нужно установить в режим измерения сопротивления в диапазоне сотен килоом или мегаом.

Далее нужно, прикоснутся щупами к выводам конденсатора. В момент касания стрелка прибора должна резко отклониться по шкале и медленно вернуться в положение бесконечного сопротивления. Скорость отклонения стрелки зависит от величины емкости конденсатора. Чем емкость конденсатора больше, тем медленнее будет возвращаться на место стрелка. Цифровой прибор (мультиметр) при прикосновении щупов к выводам конденсатора, сначала покажет маленькое сопротивление, а затем все возрастающее вплоть до сотен мегом.

Если поведение приборов отличается от выше описанного, например сопротивление конденсатора составляет ноль Ом или бесконечность, то в первом случае имеется пробой между обмотками конденсатора, а во втором, обрыв. Такой конденсатор неисправен и применению не подлежит.

Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток I x , но и ток I v , протекающий через вольтметр. Поэтому сопротивление

R x = U / (I – U/R v ) (110)

где R v - сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра U A = IR А. Поэтому

R x = U/I – R А (111)

где R А - сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений - схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током I v , а во второй - падением напряжения UА, будет невелика по сравнению с током I x и напряжением U x .

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением R x (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания - в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

R x = (R 1 /R 2)R 3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление R x (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 - гальванометр, а к зажимам 5 и 6 - источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление R x отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением R x и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями R x и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

R x = R 0 R 1 /R 4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления R x . Это позволяет проградуировать шкалу гальванометра в единицах сопротивления R x или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением R x (рис. 341) и добавочным резистором R Д в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора R Д ток в цепи зависит только от сопротивления R x . Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением R x подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор R д, в цепь другой катушки - резистор сопротивлением R x .

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

части логометра зависит от отношения I1/I2. Следовательно, при изменении R x будет изменяться угол? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой - к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку - с зажимом Л.

Статьи по теме: