Назначение стека протоколов tcp ip.

Транспортный уровень (Transport Layer - TL) определяет правила транспортировки пакетов по сети. Транспортный уровень наблюдает за доставкой из конца в конец индивидуальных пакетов, он не учитывает никаких зависимостей между этими пакетами (даже принадлежащими к одному сообщению). Он обрабатывает каждый пакет как если бы каждая часть принадлежала отдельному сообщению, независимо от того, так это на самом деле или нет. Протоколы транспортного уровня гарантируют, что все сообщения прибывают в конечный пункт неповрежденными и пакеты располагаются в первоначальном порядке. На транспортном уровне осуществляется контроль нарушения информации и контроль ошибок, а также управление потоком по всему тракту "источник - пункт назначения".

Транспортный уровень выполняет следующие задачи:

  • Адресация точки сервиса . Компьютеры часто выполняют несколько программ в одно и то же время. По этой причине доставка "источник - пункт назначения" означает доставку не только от одного компьютера до следующего, но также и от заданного процесса (функционирующей программы) на одном компьютере к заданному процессу (функционирующей программе) на другом. Поэтому заголовок транспортного уровня должен включать тип адреса, называемый адрес сервисной точки (или адрес порта). Сетевой уровень доставляет каждый пакет на корректный адрес компьютера; транспортный уровень доставляет полное сообщение к корректному процессу на этом компьютере.
  • Сегментация и повторная сборка . Сообщение разделено на транспортируемые сегменты, каждый сегмент содержит порядковый номер. Эти номера дают возможность транспортному уровню после достижения пункта назначения правильно повторно собрать сообщение и заменять пакеты, которые были потеряны в передаче.
  • Управление подключением . Транспортный уровень может быть ориентирован на работу без установления соединения ( connectionless transfer) или ориентирован на подключение ( connection-oriented transfer) - дейтаграммный режим. Транспортный уровень без установления соединения (по предварительно установленному виртуальному соединению) обрабатывает каждый сегмент как независимый пакет и поставляет его транспортному уровню в машине пункта назначения. Ориентированный на подключение транспортный уровень сначала перед поставкой пакетов устанавливает соединение с транспортным уровнем в компьютере пункта назначения. После того как все данные переданы, подключение заканчивается.

    В режиме, не ориентированном на соединение, транспортный уровень используется для передачи одиночных дейтаграмм, не гарантируя их надежную доставку. Режим, ориентированный на соединение, применяется для надежной доставки данных.

  • Управление потоком . Подобно уровню звена передачи данных, транспортный уровень несет ответственность за управление потоком. Однако управление потоком на этом уровне выполняется от "конца концу".
  • Контроль ошибок . Подобно уровню звена передачи данных, транспортный уровень несет ответственность за контроль ошибок. Транспортный уровень передачи удостоверяется, что полное сообщение достигло транспортного уровня приема без ошибки (повреждения, потери или дублирования). Исправление ошибки обычно происходит с помощью повторной передачи.

Уровень сеанса (Session Layer SL) - сетевой контроллер диалога. Он устанавливает, поддерживает и синхронизирует взаимодействие между связывающимися системами.

При помощи сеансового уровня ( Session Layer ) организуется диалог между сторонами, фиксируется, какая из сторон является инициатором, какая из сторон активна и каким образом завершается диалог.

Задачи сеансового уровня следующие:

  • Управление диалогом . Сеансовый уровень дает возможность двум системам вступать в диалог. Он позволяет обмен сообщениями между двумя процессами. При этом возможны режимы: либо полудуплексный (один путь одновременно), либо дуплексный (два пути одновременно). Например, диалог между терминалом и универсальной ЭВМ может быть полудуплексным.
  • Синхронизация . Сеансовый уровень позволяет процессу добавлять контрольные точки (точки синхронизации) в поток данных. Например, если система посылает файл из 2 000 страниц, желательно вставить контрольные точки после каждых 100 страниц, чтобы гарантировать, что каждый модуль со 100 страницами получен и опознается независимо. В этом случае, если случается нарушение в течение передачи страницы 523, единственная страница, которую требуется и которая будет снова послана после системного восстановления - страница 501 (первая страница пятой сотни)

Уровень представления (Presentation Layer) занимается формой предоставления информации нижележащим уровням, например, перекодировкой или шифрованием информации.

Задачи уровня представления следующие:

  • Перекодировка информации . Процессы (функционирующие программы) в двух системах обычно меняют информацию в форме символьных строк, чисел и так далее. Информация, прежде чем быть переданной, должна быть изменена на потоки бит. Поскольку различные компьютеры используют различные системы кодирования, уровень представления несет ответственность за способность к взаимодействию между этими различными методами кодирования. Уровень представления в передатчике изменяет информацию от формы, зависящей от передатчика, в общую форму. Уровень представления в компьютере приема заменяет общий формат в формат его приемника.
  • Шифрование . Чтобы доставлять конфиденциальную информацию, система должна обеспечить секретность. Шифрование означает, что передатчик преобразовывает первоначальную информацию к другой форме и посылает результирующее сообщение по сети. Расшифровка должна быть полностью противоположна первоначальному процессу, чтобы преобразовать сообщение назад к его первоначальной форме.
  • Сжатие . Сжатие данных уменьшает число битов, содержавшихся в информации. Сжатие данных становится особенно важным в передаче мультимедиа, таких как текст, аудио и видео.

Прикладной уровень (Application Layer - AL) - это набор протоколов, которыми обмениваются удаленные узлы, реализующие одну и ту же задачу (программу). Прикладной уровень дает возможность пользователю (человеку либо программному обеспечению) обращаться к сети. Он обеспечивает интерфейсы пользователя и поддержку услуг - электронной почты, удаленного доступа и перевода средств, общедоступного управления базы данных и других типов распределенных информационных служб.

Примеры услуг, оказываемых прикладным уровнем:

  • Сетевой виртуальный терминал . Сетевой виртуальный терминал - программная версия физического терминала, он позволяет пользователю войти в удаленный хост. Чтобы сделать это, приложение создает программную имитацию терминала в удаленном хосте. Компьютер пользователя общается с программным терминалом, который, в свою очередь, общается с хостом, и наоборот. Удаленный хост определяет эту связь как связь с одним из его собственных терминалов и позволяет вход.
  • Передача файлов, доступ и управление . Это приложение позволяет пользователю обращаться к файлам в удаленном хосте, чтобы изменять или читать данные, извлекать файлы из удаленного компьютера для использования в местном компьютере и администрировать или управлять файлами на удаленном компьютере.
  • Услуги почты . Это приложение обеспечивает базу для передачи и хранения электронной почты.
  • Услуги каталога . Это приложение обеспечивает распределенные источники базы данных и доступ к глобальной информации о различных объектах и услугах.

Стек протоколов Интернета

Стек протоколов сети Интернет2 был разработан до модели OSI . Поэтому уровни в стеке протоколов Интернета не соответствуют аналогичным уровням в модели OSI . Стек протоколов Интернета состоит из пяти уровней: физического, звена передачи данных, сети, транспортного и прикладного. Первые четыре уровня обеспечивают физические стандарты, сетевой интерфейс , межсетевое взаимодействие и транспортные функции, которые соответствуют первым четырем уровням модели OSI . Три самых верхних уровня в модели OSI представлены в стеке протоколов Интернета единственным уровнем, называемым прикладным уровнем рис. 1.3.


Рис. 1.3.

ARP Address Resolution Protocol Протокол нахождения адреса
ATM Asynchronous Transfer Mode Режим асинхронной передачи
BGP Border Gateway Protocol Протокол пограничной маршрутизации
DNS Domain Name System Система доменных имен
Ethernet Ethernet Network Сеть Ethernet
FDDI Fiber Distributed Data Interface Волоконно-оптический распределенный интерфейс данных
HTTP Hyper Text Transfer Protocol Протокол передачи гипертекста
FTP File transfer Protocol Протокол передачи файлов
ICMP Internet Control Message Protocol Протокол управляющих сообщений
IGMP Internet Group Management Protocol Протокол управления группами (пользователей) в Интернете
IP Internet Protocol Межсетевой протокол
NFS Network File System Протокол сетевого доступа к файловым системам
OSPF Open Shortest Path First Открытый протокол предпочтения кратчайшего канала
PDH Plesiochronous Digital Hierarchy Плезиохронная цифровая иерархия
PPP Point-to- Point Protocol Протокол связи "точка-точка"

Набор интернет-протоколов обеспечивает сквозную передачу данных, определяющую, как данные должны пакетироваться, обрабатываться, передаваться, маршрутизироваться и приниматься. Эта функциональность организована в четыре слоя абстракции, которые классифицируют все связанные протоколы в соответствии с объемом задействованных сетей. От самого низкого до самого высокого уровня - это уровень связи, содержащий методы связи для данных, которые остаются в пределах одного сегмента сети (ссылка); интернет-уровень, обеспечивающий межсетевое взаимодействие между независимыми сетями; транспортный уровень, обрабатывающий связь между хостами; и прикладной уровень, который обеспечивает обмен данными между процессами для приложений.

Развитием архитектуры Интернета и протоколов в модели TCP/IP занимается открытое международное сообщество проектировщиков IETF .

История

Стек протоколов TCP/IP был создан на основе NCP (Network Control Protocol) группой разработчиков под руководством Винтона Серфа в 1972 году. В июле 1976 года Винт Серф и Боб Кан впервые продемонстрировали передачу данных с использованием TCP по трём различным сетям. Пакет прошел по следующему маршруту: Сан-Франциско - Лондон - Университет Южной Калифорнии. К концу своего путешествия пакет проделал 150 тысяч км, не потеряв ни одного бита. В 1978 году Серф, Джон Постел и Дэнни Кохэн решили выделить в TCP две отдельные функции: TCP и IP (англ. Internet Protocol , межсетевой протокол). TCP был ответственен за разбивку сообщения на датаграммы (англ. datagram ) и соединение их в конечном пункте отправки. IP отвечал за передачу (с контролем получения) отдельных датаграмм. Вот так родился современный протокол Интернета. А 1 января 1983 года ARPANET перешла на новый протокол. Этот день принято считать официальной датой рождения Интернета.

Уровни стека TCP/IP

Стек протоколов TCP/IP включает в себя четыре уровня :

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI . На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных, благодаря чему, в частности, обеспечивается полностью прозрачное взаимодействие между проводными и беспроводными сетями.

Распределение протоколов по уровням модели TCP/IP
Прикладной
(Application layer)
напр., HTTP , RTSP , FTP , DNS
Транспортный

Транспортный уровень

Сетевой (межсетевой) уровень

Канальный уровень

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель , витая пара , оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов , модуляцию , амплитуду сигналов , частоту сигналов , способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

При проектировании стека протоколов на канальном уровне рассматривают помехоустойчивое кодирование - позволяющие обнаруживать и исправлять ошибки в данных вследствие воздействия шумов и помех на канал связи.

Сравнение с моделью OSI

Три верхних уровня в модели OSI, то есть уровень приложения, уровень представления и уровень сеанса, отдельно не различаются в модели TCP/IP , которая имеет только прикладной уровень над транспортным уровнем. Хотя некоторые чистые приложения протокола OSI, такие как X.400 , также объединяют их, нет требования, чтобы стек протокола TCP/IP должен накладывать монолитную архитектуру над транспортным уровнем. Например, протокол NFS-приложений работает через протокол представления данных External Data Representation (XDR), который, в свою очередь, работает по протоколу Remote Procedure Call (RPC). RPC обеспечивает надежную передачу данных, поэтому он может безопасно использовать транспорт UDP с максимальным усилием.

Различные авторы интерпретировали модель TCP/IP по-разному и не согласны с тем, что уровень связи или вся модель TCP/IP охватывает проблемы уровня OSI уровня 1 (физический уровень) или предполагается, что аппаратный уровень ниже уровня канала.

Несколько авторов попытались включить слои 1 и 2 модели OSI в модель TCP/IP, поскольку они обычно упоминаются в современных стандартах (например, IEEE и ITU). Это часто приводит к модели с пятью слоями, где уровень связи или уровень доступа к сети разделяются на слои 1 и 2 модели OSI.

Усилия по разработке протокола IETF не касаются строгого расслоения. Некоторые из его протоколов могут не соответствовать чисто модели OSI, хотя RFC иногда ссылаются на нее и часто используют старые номера уровня OSI. IETF неоднократно заявлял, что разработка интернет-протокола и архитектуры не должна соответствовать требованиям OSI. В RFC 3439 , адресованном интернет-архитектуре, содержится раздел, озаглавленный «Слой, считающийся вредным».

Например, считается, что уровни сеанса и представления пакета OSI включены в прикладной уровень пакета TCP/IP. Функциональность уровня сеанса можно найти в протоколах, таких как HTTP и SMTP , и более очевидна в таких протоколах, как Telnet и протокол инициации сеанса (SIP). Функциональность уровня сеанса также реализована с нумерацией портов протоколов TCP и UDP, которые охватывают транспортный уровень в наборе TCP/IP. Функции уровня представления реализуются в приложениях TCP/IP со стандартом MIME при обмене данными.

Конфликты очевидны также в оригинальной модели OSI, ISO 7498, когда не рассматриваются приложения к этой модели, например, ISO 7498/4 Management Framework или ISO 8648 Internal Organization of the Network layer (IONL). Когда рассматриваются документы IONL и Management Framework, ICMP и IGMP определяются как протоколы управления уровнем для сетевого уровня. Аналогичным образом IONL предоставляет структуру для «зависимых от подсетей объектов конвергенции», таких как ARP и RARP.

Протоколы IETF могут быть инкапсулированы рекурсивно, о чем свидетельствуют протоколы туннелирования, такие как Инкапсуляция общей маршрутизации (GRE). GRE использует тот же механизм, который OSI использует для туннелирования на сетевом уровне. Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.

К тому же, модель OSI не использует дополнительный уровень - «Internetworking» - между канальным и сетевым уровнями. Примером спорного протокола может быть ARP или STP .

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Распределение протоколов по уровням модели OSI
TCP/IP OSI
7 Прикладной Прикладной напр., HTTP , SMTP , SNMP , FTP , Telnet , SSH , SCP , SMB , NFS , RTSP , BGP
6 Представления напр., XDR , AFP , TLS , SSL
5 Сеансовый напр., ISO 8327 / CCITT X.225, RPC , NetBIOS , PPTP , L2TP , ASP
4 Транспортный Транспортный напр., TCP , UDP , SCTP , SPX , ATP , DCCP , GRE
3 Сетевой Сетевой напр., , ICMP , IGMP , CLNP , OSPF , RIP , IPX , DDP , ARP
2 Канальный Канальный напр., Ethernet , Token ring , HDLC , PPP , X.25 , Frame relay , ISDN , ATM , SPB , MPLS
1 Физический напр., электрические провода , радиосвязь , волоконно-оптические провода , инфракрасное излучение

Обычно в стеке TCP/IP верхние 3 уровня модели OSI (прикладной , представления и сеансовый) объединяют в один - прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению.

Описание модели TCP/IP в технической литературе

Примечания

  1. Модели OSI и TCP/IP . База знаний osLogic.ru
  2. Сетевые модели TCP/IP и OSI . Cisco Learning
  3. Васильев А. А. , Телина И. С. , Избачков Ю. С. , Петров В. Н. Информационные системы: Учебник для вузов. - СПб. : Питер, 2010. - 544 с. - ISBN 978-5-49807-158-9 .
  4. Эндрю Кровчик, Винод Кумар, Номан Лагари и др. .NET сетевое программирование для профессионалов / пер. с англ. В. Стрельцов. - М. : Лори, 2005. - 400 с. - ISBN 1-86100-735-3 . - ISBN 5-85582-170-2 .

Лекция №3

Стек протоколов TCP / IP

План лекции

Стек TCP/IP.

История создания стека TCP/IP.

Модель OSI.

Структура TCP/IP.

Документы RFC.

Обзор основных протоколов.

Утилиты диагностики TCP/IP.

Контрольные вопросы.

Стек TCP/IP

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

4. Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

5. Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

6. Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

7. Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

Структура TCP / IP

В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

DIV_ADBLOCK187">

3) черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

4) стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track , так как уровень готовности может меняться.

Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www. rfc-editor. org . В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

Обзор основных протоколов

Протокол IP (Internet Protocol) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

Протоколы RIP (Routing Information Protocol – протокол маршрутной информации) и OSPF (Open Shortest Path First – « первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

Протокол ICMP (Internet Control Message Protocol – протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

POP3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

Telnet – протокол эмуляции терминала1, позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.

1 Терминал – это сочетание устройства ввода и устройства вывода, например клавиатура и дисплей.

Утилиты диагностики TCP / IP

В состав операционной системы Windows Server 2003 входит ряд утилит (небольших программ), предназначенных для диагностики функционирования стека TCP/IP. Каждый системный администратор должен знать эти утилиты и уметь применять их на практике.

Информацию о любой утилите можно вывести, набрав в командной строке имя утилиты с ключом «/?», например: IPconfig /?

IPconfig

Утилита предназначена, во-первых, для вывода информации о конфигурации стека TCP/IP, во-вторых, для выполнения некоторых действий по настройке стека.

При вводе названия утилиты в командной строке без параметров на экране отобразится информация об основных настройках TCP/IP (эти настройки рассматриваются в следующих лекциях):

– суффикс DNS (Connection-specific DNS Suffix);

– IP-адрес (IP Address);

– маска подсети (Subnet Mask);

– шлюз по умолчанию (Default Gateway).

Приведем основные ключи утилиты:

/ all – отображение полной информации о настройке стека TCP/IP на данном компьютере. Следует отметить, что при наличии нескольких сетевых адаптеров выводятся данные по каждому адаптеру отдельно. Наиболее важные сведения кроме представленных выше – физический адрес (МАС-адрес) сетевого адаптера (Physical Address) и наличие разрешения DHCP (DHCP Enabled).

/ release – освобождение IP-адреса (имеет смысл, если DHCP разрешен).

/ renew – обновление конфигурации TCP/IP (обычно выполняется, если DHCP разрешен).

/ displaydns – вывод на экран кэша имен DNS.

/ flushdns – очистка кэша имен DNS.

/ registerdns – обновление аренды DHCP и перерегистрация доменного имени в базе данных службы DNS.

Основная цель этой популярной утилиты – выяснение возможности установления соединения с удаленным узлом. Кроме того, утилита может обратиться к удаленному компьютеру по доменному имени, чтобы проверить способность преобразования символьного доменного имени в IP-адрес.

Принцип работы: утилита отправляет на удаленный узел несколько пакетов (число пакетов определяется ключом n , по умолчанию четыре) по протоколу ICMP. Такие пакеты называются эхо-пакетами, т. е. требуют

ответа. Если удаленный узел доступен, он отвечает на каждый эхо-пакет своим пакетом, а утилита измеряет интервал между отправкой эхо-пакета и приходом ответа.

Нужно отметить, что отсутствие ответа может быть связано не с физической недоступностью удаленного компьютера, а с тем, что на нем установлено программное обеспечение, запрещающее отправку ответов на эхо-пакеты (брандмауэр – firewall).

Основные ключи:

t – пакеты отправляются до тех пор, пока пользователь не нажмет комбинацию CTRL+C.

a – определение доменного имени по IP-адресу.

l <размер> – максимальный размер пакета (по умолчанию 32 байта).

w <таймаут> – задание времени ожидания ответа в миллисекундах (по умолчанию 1000 миллисекунд = 1 секунда).

Название утилиты произошло от Trace Route – отслеживание маршрута. Утилита позволяет решить следующие задачи:

– проследить путь прохождения пакета от данного компьютера до удаленного узла (отображаются промежуточные узлы-маршрутизаторы);

– выявить участки задержки пакетов;

– выявить места потери пакетов.

Принцип работы: утилита отправляет эхо-пакеты на заданный удаленный узел. Отличие между эхо-пакетами заключается в параметре, который называется «время жизни» (TTL – Time To Live). Этот параметр обозначает количество маршрутизаторов (процесс перехода пакета через маршрутизатор называется hop – прыжок), которое может пройти пакет, прежде чем попадет на заданный узел. Каждый маршрутизатор уменьшает время жизни на единицу. Если на каком-то маршрутизаторе TTL станет равным нулю, тот отбрасывает пакет и отправляет служебное сообщение на узел-источник.

Первый эхо-пакет посылается с временем жизни, равным единице. Первый маршрутизатор отбрасывает эхо-пакет и отправляет служебное сообщение, в котором содержится информации об имени и адресе маршрутизатора. Следующий эхо-пакет имеет TTL = 2 и отбрасывается уже на втором маршрутизаторе. Таким образом, эхо-пакеты отправляются с увеличением времени жизни на единицу, пока не придет ответ от заданного удаленного узла или время ожидания не будет превышено.

Основные ключи:

/ h < maximum_ hops> – максимальное число хопов (маршрутизаторов) при поиске узла.

/ w <таймаут> – задание времени ожидания ответа в миллисекундах.

Утилита отображает статистическую информацию по протоколам IP, TCP, UDP и ICMP, а также позволяет отслеживать сетевые соединения. Основные ключи:

/ a – список всех подключений и прослушивающихся портов.

/e – статистика для Ethernet.

/ n – список всех подключений и портов в числовом формате.

/ s – статистика для перечисленных четырех протоколов.

< interval> – интервал в секундах, через который утилита выводит требуемую информацию (для прекращения вывода – CTRL+C).

Эта утилита работает с протоколами преобразования IP-адресов в МАС-адреса и обратно ARP и RARP. С её помощью можно выводить на экран таблицу соответствия IP-адресов и МАС-адресов (ARP-кэш), добавлять и удалять записи в ней.

Основные ключи:

/ a – отображение таблицы ARP или, если указан IP-адрес, запись только для этого адреса.

/ s – добавление записи в таблицу.

/ d – удаление записи из таблицы.

Hostname

Это самая простая утилита – она выводит на экран имя компьютера.

Резюме

Стек протоколов TCP/IP – это самый распространенный на сегодняшний день набор иерархически упорядоченных протоколов, применяемый как в локальных, так и в глобальных сетях. Важнейшие протоколы стека – IP, TCP и UDP – появились в начале 80-х годов в рамках проекта ARPANET, который являлся предшественником Интернета. В 90-е годы по мере развития Интернета роль стека TCP/IP сильно возросла.

Стек TCP/IP был разработан на основе модели сетевого взаимодействия DARPA, хотя между уровнями модели DARPA, международной семиуровневой моделью OSI и стеком TCP/IP может быть установлено соответствие. Стандарты протоколов TCP/IP отражены в свободно доступных документах RFC.

Основными протоколами стека являются IP, TCP, UDP, ICMP, ARP, протоколы маршрутизации RIP и OSPF, протоколы прикладного уровня HTTP, FTP, POP3, SMTP, telnet, SNMP.

Для диагностики и управления стеком TCP/IP в операционной системе Microsoft Windows Server 2003 существуют специальные утилиты – IPconfig, ping, tracert, netstat, arp, hostname и др.

Контрольные вопросы

1. Объясните, что означают свойства «платформонезависимость» и «открытость» применительно к стеку протоколов TCP/IP.

2. Что такое ARPANET?

3. Поясните, для чего предназначена модель OSI? Где она применяется?

4. Назовите функции канального, сетевого и транспортного уровней модели OSI.

5. Чем отличается модель DARPA (DoD) от модели OSI? Как вы думаете, почему?

6. Что такое RFC? В файлах какого формата издаются RFC?

7. Для чего используется протокол ICMP? Протокол ARP?

8. Поясните принцип работы утилиты ping.

9. Поясните принцип работы утилиты tracert.

В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

TCP/IP

Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

Стек протоколов сети TCP/IP имеет 4 уровня:

  1. Канальный (Link).
  2. Сетевой (Internet).
  3. Транспортный (Transport).
  4. Прикладной (Application).

Прикладной уровень

Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

  • HTTP;
  • SMTP;

Каждый протокол определяет собственный порядок и принципы работы с данными.

HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

  1. Определение адреса отправителя. Это необходимо для возвращения писем.
  2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
  3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

Заголовок (Header)

В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

Транспортный уровень

На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

Протоколы передачи данных:

Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

TCP или UDP?

У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

Сетевой уровень

Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

Сетевой уровень отвечает за:

  • Определение маршрутов доставки.
  • Передачу пакетов между сетями.
  • Присвоение уникальных адресов.

Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

Самый популярный протокол этого уровня - IP.

IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

Виды IP-адресов

В сетях используются два вида IP-адресов:

  1. Публичные.
  2. Приватные.

Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

IPv4

Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

Формат записи: .

IPv6

Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

Пример записи: .

Существует три типа IPv6-адресов:

  1. Unicast.
  2. Anycast.
  3. Multicast.

Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

Маска подсети

Маска подсети выявляет из IP-адреса подсеть и номер хоста.

Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

Подсеть и хост

Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

Адресация

Для адресации в стеке протоколов TCP/IP используются три типа адресов:

  1. Локальные.
  2. Сетевые.
  3. Доменные имена.

Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

DNS (Domain Name System) устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

Канальный уровень

На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

Самые распространенные протоколы:

  1. Ethernet.
  2. WLAN.

Ethernet - наиболее распространенная технология проводных локальных сетей.

WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

Настройка TCP/IP для использования статического IPv4-адреса

Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

Настройка TCP/IP для использования динамического IPv4-адреса

Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

Способы передачи данных

Данные передаются через физическую среду тремя способами:

  • Simplex.
  • Half-duplex.
  • Full Duplex.

Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

Примеры симплексной связи:

  • Телевещание.
  • Сигнал от спутников GPS.

Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная двусторонняя связь может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

Пример полудуплексной связи - общение по рации на одной частоте.

Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

Пример - общение по телефону через мобильную сеть.

TCP/IP vs OSI

Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

  1. Физический (Physical).
  2. Канальный (Data Link).
  3. Сетевой (Network).
  4. Транспортный (Transport).
  5. Сеансовый (Session).
  6. Представительский (Presentation).
  7. Прикладной (Application).

В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

Транспортный уровень остается без изменений. Выполняет одинаковые функции.

Сетевой уровень также не изменен. Выполняет ровно те же задачи.

Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.

Семинар.

Мы будем Вам очень благодарны! Спасибо!

Если Вам понравился данный материал, пожалуйста, поделитесь им с друзьями.

Сетевые протоколы управляют сетевым оборудованием, обеспечивают обмен информацией между подключенными устройствами. Чтобы сетевые компьютеры могли сообщаться, они должны использовать один и тот же протокол. Стандартизация в области коммуникационных протоколов является важной задачей, так как она лежит в основе принципа работы всего сетевого оборудования определенной технологии.

Протоколы локальных сетей должны обладать следующими основными характеристиками:

· обеспечивать надежность сетевых каналов;

· обладать высоким быстродействием;

· обрабатывать исходные и целевые адреса узлов;

· соответствовать сетевым стандартам

Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBEUI. Эти стеки на нижних уровнях – физическом и канальном модели OSI – используют одни и те же протоколы Ethernet, Token Ring, FDDI и др. На верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы, не соответствуют уровням модели OSI, так как она появилась уже как результат обобщения уже существующих и реально используемых стеков.

NetBEUI - самый простой из перечисленных стеков протоколов. Он является самым быстродействующим, однако его функциональные возможности ограничены. В этом протоколе отсутствуют средства логической адресации на сетевом уровне, поэтому его целесообразно использовать в локальной сети, но нельзя маршрутизировать из одной сети в другую. Реализация этой функции возможно только совместно с маршрутизируемым протоколом, например с TCP/IP.

Протоколы IPX и SPX совместно обеспечивают маршрутизацию сетевых сообщений. Компания Novell разработала протокол IPX /SPX для серверов и клиентов NetWare, однако его можно использовать и в других операционных системах. Протокол IPX работает на сетевом уровне модели OSI, относится к категории протоколов, работающих без установления соединения. Протокол SPX работает на транспортном уровне модели OSI, он обеспечивает распознавание и сборку пакетов и другие службы с установлением соединения. IPX доставляет пакеты по назначению, а SPX следит за тем, чтобы пакеты прибыли полностью и в целостном состоянии, он поддерживает нумерацию пакетов, отслеживает количество переданных пакетов.

Самым распространенным является стандартный стек TCP/IP . Практически все сети передают основную часть своего трафика с его помощью, в том числе и глобальная сеть Интернет. Этот стек также является основой для создания корпоративных intranet-сетей, использующих гипертекстовую технологию WWW. Все современные операционные системы поддерживают протоколы TCP/IP.



TCP/IP – это многоуровневый стек, он сдержит около ста стандартизированных протоколов, обеспечивающих эффективную передачу данных. Так как стек был разработан до появления модели взаимодействия открытых систем OSI, то соответствие уровней протоколов TCP/IP модели OSI достаточно условно. Базовыми протоколами являются следующие:

· Transmission Control Protocol (TCP);

· User Datagram Protocol (UDP);

· Internet Protocol (IP).

Каждый коммуникационный протокол оперирует некоторой порцией передаваемых данных - блоком данных. В протоколе TCP принято называть блоки кадрами, в UDP – датаграммами, в IP – пакетами. Часто пакет называют также датаграммой, характеризуя таким образом блок данных, содержащий маршрутную информацию. Датаграммами оперируют протоколы без установления соединений, такие как IP и UDP. Потоком называют данные, поступающие от приложений на транспортный уровень TCP или UDP. Протокол TCP разбивает поступающий файл на пакеты.

Структура протоколов TCP/IP приведена на рис. 13. Протоколы TCP/IP делятся на 4 уровня.

Самый нижний (уровень IV ) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений «точка-точка» SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Рис. 13. Структура стека протоколов TCP/IP.

Уровень III - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных протоколов локальных и глобальных сетей. В качестве основного протокола сетевого уровня в стеке используется протокол IP, с помощью которого решаются задачи межсетевой адресации и маршрутизации пакетов. IP является протоколом без установления соединением, т.е. доставка пакетов до узла назначения не гарантируется. Это и не входит в его задачу.

Протокол IP реализует следующие базовые функции: передача данных, адресация, маршрутизация и динамическая фрагментация пакетов. Для правильной доставки пакета используется специальная система адресации. Передающий и принимающий компьютеры в сети идентифицируются с помощью логических IP-адресов. Адресная информация пакета позволяет определять маршрут движения. Протокол может передавать пакеты в сетях разных типов, которые используют пакеты разной длины. Например, пакет Ethernet может иметь длину от 64 до 1526 байтов, а пакет FDDI – до 4472 байтов. Полная длина IP-пакета может достигать 65535 байтов. Пакет содержит заголовок и данные. Заголовок IP-пакета содержит ряд полей. Среди них следующие: адреса источника и приемника, общая длина пакета в байтах, включающая заголовок и данные, транспортный протокол (TCP или UDP), время жизни, которое задается во избежания непрерывной циркуляции в некоторой сети. По истечении указанного времени пакет уничтожается.

Маршрутизация представляет собой процесс перемещения информации по объединенной сети от источника к приемнику. Маршрут следования, как правило, содержит промежуточные пункты передачи. При маршрутизации определяется оптимальный маршрут и осуществляется транспортировка (коммутация) пакетов. Для определения наилучшего маршрута используется множество различных метрик: длина маршрута, полоса пропускания, нагрузка, надежность, задержка, затраты на передачу. Чтобы упростить процесс определения маршрута, на каждом маршрутизаторе создаются и регулярно обновляются таблицы маршрутизации, в которых содержится информация о возможных маршрутах от рассматриваемого маршрутизатора до следующего пункта. Для выбора оптимального пути сравниваются метрики маршрутизаторов. Маршрутизаторы взаимодействуют между собой и ведут таблицы маршрутизации, обмениваясь сообщениями, в том числе и об обновлении маршрута. Анализ данных позволяет составить представление о топологии сети и состоянии каналов связи, что используется для построения маршрутов к устройствам-приемникам.

К уровню межсетевого взаимодействия относятся протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации о продвижении пакетов RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol) и протокол разрешения адреса узла сети ARP (Address Resolution Protocol).

Протокол RIP основан на наборе алгоритмов, использующих понятие вектора расстояний для сравнения маршрутов и выбора наилучшего из них до места назначения. RIP посылает сообщения по сети об обновлении маршрутов и изменении топологии сети. Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор присваивает соответствующему элементу вектора значение, которое имеет смысл - "связи нет".

Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.

Протокол ICMP предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета. ICMP генерирует сообщения о невозможности доставки пакета, об истечении лимита времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Протокол ARP , как указывалось выше, используется для определения локального адреса по IP-адресу. Протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу-, реверсивный ARP – RARP, используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера. В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом. Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP-запросе отправитель указывает свой локальный адрес.

Следующий уровень стека протоколов (уровень II) является основным. На этом уровне функционируют протокол управления передачей TCP и протокол дейтаграмм пользователя UDP.

Протокол TCP это транспортный протокол, который обеспечивает надежную передачу данных между процессами приложений в сети. Прежде чем начать передавать данные, TCP устанавливает между двумя компьютерами сеанс соединения. Затем поступающий из приложения поток данных в виде байтов разбивается на пакеты, в каждый пакет добавляется информация о нумерации пакетов, чтобы на принимающей стороне их можно было собрать в правильной последовательности. Нумерация позволяет обнаружить недостающие пакеты. Поступление пакетов подтверждается приемником. Байты, не получившие подтверждения в течение определенного времени, передаются заново. Соединение в TCP позволяет вести передачу данных одновременно в обе стороны, то есть осуществлять полнодуплексную передачу. Протокол IP используется протоколом TCP в качестве транспортного средства. Перед отправкой своих блоков данных протокол TCP помещает их в оболочку IP-пакета.

Протокол UDP обеспечивает передачу прикладных пакетов датаграммным способом и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами. Он не ориентирован на установление соединения. Не выполняется также нумерация пакетов данных, поэтому они могут быть потеряны, продублированы или прийти не в том порядке, в котором были отправлены. Однако UDP гарантирует правильность данных, поступивших на принимающий компьютер. Протокол более пригоден для передачи небольших сообщений, которые можно разместить в одном пакете, или для тех приложений, которым не страшна потеря некоторой порции данных. Функциональная простота протокола UDP обусловливает его высокое быстродействие. Однако по сравнению с TCP он менее надежный.

Различные сетевые приложения, установленные на одном компьютере, могут одновременно получать или отправлять сообщения. Для того чтобы их разделять, в протоколах транспортного уровня используют порты. Наиболее распространенные приложения используют предопределенные порты. Так, например, службе удаленного доступа к файлам FTP соответствует порт 21, службе telnet – 23, SMTP – 25, HTTP - 80. Назначение номеров портов известным прикладным процессам осуществляется централизованно, для менее распространенных служб - локально. Номер порта в совокупности с номером сети и номером конечного узла однозначно определяют прикладной процесс в сети. Этот набор идентифицирующих параметров носит название сокета (socket) .

Верхний уровень (уровень I ) называется прикладным. На этом уровне действуют протоколы передачи файлов FTP, эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Интернет, протокол передачи гипертекста HTTP и другие.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспортного протокол с установлением соединений – TCP. Кроме пересылки файлов протокол FTP предлагает и другие услуги. Так, пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов. Кроме того, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленного компьютера. При использовании сервиса telnet пользователь фактически управляет удаленным компьютером так же, как и локальный пользователь, поэтому такой вид доступа требует хорошей защиты. Поэтому серверы telnet всегда используют как минимум аутентификацию по паролю, а иногда и более мощные средства защиты.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Интернет. Позднее SNMP стали применять и для управления любым коммуникационным оборудованием – концентраторами, коммутаторами, сетевыми адаптерами и т.п. Проблема управления в протоколе SNMP разделяется на две задачи.

Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия SNMP-агента, работающего в управляемом оборудовании, и SNMP-монитора, работающего на компьютере администратора. Протоколы передачи определяют форматы сообщений, которыми обмениваются агенты и монитор.

Вторая задача связана с контролируемыми переменными, характеризующими состояние управляемого устройства. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в устройствах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые управляемое устройство должно сохранять, и допустимые операции над ними.

Пакет TCP/IP включает некоторые утилиты, предназначенные для просмотра параметров конфигурации протокола и устранения неполадок. К числу наиболее рапространенных утилит относятся следующие: ping, ARP и RARP, netstat, nbstat, утилиты конфигурирования IP: ipconfig, winipcfg, config, ifconfig, утилиты отслеживания маршрута: traceroute, tracert, iptrace. Все утилиты запускаются в командной строке, предназначены для использования в операционных системах Windows, UNIX / Linux.

Утилита ping используется для проверки соединения IP. Ее можно запускать как с доменным именем в качестве параметра, так с цифровым. Эта утилита посылает на принимающий компьютер эхо-запрос ICMP. Получив его, принимающий компьютер передает обратно эхо-ответ ICMP, что подтверждает наличие соединения. С помощью утилиты ping можно найти IP - адрес компьютера по его имени. Если в командной строке ввести команду ping microsoft.com, то на экран будет выведен адрес хоста: 207.46.130.108.

Утилита – nslookup – возвращает IP-адрес компьютера с заданным именем по цифровому адресу. С помощью утилиты ARP в одноименном протоколе можно просматривать и модифицировать отображение IP-адресов на MAC – адреса. Утилита netstаt позволяет получить статистику сети, связанную с активными в данный момент соединениями. Полученные данные используются для устранения неполадок в соединении TCP/IP. Команду можно использовать со следующим опциями: а – просмотр всех соединений и активных портов, е – просмотр статистика в Ethernet, р – вывод информации о выбранном протоколе (для Windows), r – просмотр таблицы маршрутизации и др. Конфигурационную информацию можно вывести в зависимости от операционной системы Windows или UNIX с помощью команд ipconfig и ifconfig соответственно. Эти утилиты возвращают информацию о текущих IP-адресе и MAC-адресе, о маске подсети, адрес сервера DNS, данные DHCP и др. Утилиты tracert и traceroute используются для отслеживания маршрута, по которому пакеты проходят от передающего компьютера к принимающему. Первая команда предназначена для Windows, вторая – для UNIX. Результат отслеживания содержит имена и IP- адреса компьютеров или маршрутизаторов, через которые прошел пакет.

Статьи по теме: