Что такое активная и реактивная электро энергия. Активная и реактивная электроэнергия

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.


Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.


Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Q L = U L I = I 2 x L

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: x L = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL – QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит :

  • Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  • У сигнальных и радиоустройств уменьшаются помехи;
  • На порядок уменьшаются гармоники в электрической сети.
  • В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

    Физический аспект процесса и практическое значение использования установок компенсации реактивной мощности

    Чтобы понять, что заключает в себе термин «реактивная мощность»,

    вспомним определение понятия электрической мощности. Это физическая величина, которая выражает скорость передачи, потребления или генерации электроэнергии в определённое время.

    Чем больше уровень мощности, тем большую производительность может иметь электрическая установка в определённую единицу времени. Под термином «мгновенная мощность» понимают произведение силы тока и напряжения за один из моментов на каком-либо участке электроцепи.

    Рассмотрим же физический аспект процесса.

    Если брать цепи в которых происходит постоянный ток, то там величина средней и мгновенной мощности за определённый отрезок времени являются равными, а реактивной мощности нет. А в цепях где происходит явление переменного тока вышеописанная ситуация имеет место только в том случае, если нагрузка там является чисто активной. Это бывает, например, в таком электроприборе, как электронагреватель. При чисто активной нагрузке в цепи в условиях переменного тока фазы тока и напряжения совпадают и вся мощность отдаётся в нагрузку.

    В случае индуктивной нагрузки, как например, в электродвигателях, то у тока происходит отставание по фазе от напряжения, а если она ёмкостная, что имеет случай в разнообразных электроустройствах, тогда ток наоборот, по фазе опережает напряжение. Так как у напряжения и тока нет совпадения по фазе (при реактивной нагрузке), то в нагрузку полная мощность отходит только частично, полностью она могла бы перейти, если сдвиг фаз был бы нулевым, то есть активная нагрузка.

    Чем отличаются реактивная и активная мощность

    Та часть полной мощности, что передалась в нагрузку в условиях периода переменного тока, носит название активной мощности . Её величина высчитывается в результате произведения значений напряжения и тока на косинус угла сдвига фаз, которые лежат между ними

    А та мощность, которая не передалась в нагрузку, и из-за которой произошли потери излучения и нагрева, именуется реактивной мощностью . Её же величина – это произведение значений напряжения и тока на синус угла сдвига фаз, которые лежат между ними.

    Следовательно, реактивная мощность – это термин, характеризующий нагрузку . Единица её измерения называется – реактивные вольт амперы, сокращённо вар или var. Но в жизни чаще встречается другая величина измерения – косинус фи, как величины, измеряющей качество электрической установки с аспекта экономии электроэнергии. На самом деле, от величины cos φ , зависит та величина энергии, которая когда подаётся от источника, идёт в нагрузку. Следовательно, вполне возможно пользоваться не очень мощным источником, тогда, соответственно меньшее количество энергии уйдёт в никуда.

    Как можно компенсировать реактивную мощность

    Как следует из вышесказанного, в случае, когда нагрузка является индуктивной, тогда нужно выполнить её компенсацию, используя конденсаторы, конденсаторов, а емкостную нагрузку следует компенсировать с применением реакторов и дросселей. Таким способом можно поднять косинус фи до достаточных величин в размере 0.7-0.9. Так и выполняется компенсация реактивной мощности .

    Чем выгодна компенсация реактивной мощности?

    Установки компенсации реактивной мощности могут принести огромную экономическую выгоду. Как гласит статистика, они могут экономить до 50% от счетов за электроэнергию в разных частях РФ. Там где они устанавливаются, деньги потраченные на них, окупаются меньше чем за год.

    На стадии проектирования объектов внедрение конденсаторных установок помогает удешевить приобретение кабелей путём уменьшения их сечения. Как пример, автоматическая конденсаторная установка может дать эффект увеличения косинуса фи с 0.6 до 0.97.

    Подведём черту:

    Как мы поняли, установки по компенсации реактивной мощности помогают существенно экономить финансы, а также увеличивать срок работы оборудования, из-за нижеследующих причин:

    1) уменьшается нагрузка на силовые трансформаторы, что повышает их долговечность.

    2) Уменьшается уровень нагрузки на кабели и провода, а также можно экономить покупая кабели меньшего сечения.

    3) Повышение уровня качества электрической энергии электроприемников.

    4) Нет опасности выплаты штрафовых отчислений за снижение cos φ.

    5) уменьшается величина высших гармоник в сети.

    6) понижается количество расхода электроэнергии.

    Напомним ещё раз, что реактивная энергия и мощность понижают итоги работы энергосистемы, из-за того, что загрузка реактивными токами генераторов электростанций ведёт к повышению объёма употребляемого топлива, а также возрастает размер потерь в подводящих сетях и приемниках, и наконец возрастает уровень падения напряжения в сетях.

    Чтобы правильно рассчитать нагрузку потребителей по мощности необходимо знать: какие бывают приемники напряжения. Что такое активная, реактивная и линейная нагрузка? Треугольник мощностей. Что такое пусковой ток? Все это разберем по порядку.

    К приемникам напряжения относятся все устройства, которые подключаются к источникам напряжения. К ним относятся: электровентилятор, электроплита, стиральная машина, компьютер, телевизор, электродвигатель, бытовой электроинструмент и другие электропотребители.
    В цепях переменного тока нагрузки разделяются на активные, реактивные и нелинейные. В цепях постоянного тока деления на типы нагрузок нет.

    Активная нагрузка

    К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.

    Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.

    Треугольник мощностей

    Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

    где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

    Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

    S – полная мощность используется для расчета электрических цепей.

    Для расчета полной мощности применяем теорему Пифагора: S 2 =P 2 +Q 2 . Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

    Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

    Нелинейная нагрузка

    Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.

    В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.

    Пусковой ток

    При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

    В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

    В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.

    В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.

    Общая зависимость электрической мощности от электрического тока и напряжения известна давно: это произведение. Помножим ток на напряжение – получим значение этой величины, потребляемой цепью из сети.

    Но на деле все может оказаться не так просто. Потому что, просто умножив напряжение на ток, мы получим значение полной мощности. Казалось бы – это то, что нужно! Ведь обычно нас интересует именно полное значение любой величины.

    Однако на электрическую мощность такое отношение распространять нельзя, так как электроэнергия и мощность, на основании которых изменяются показания нашего квартирного счетчика – не полные, а активные.

    Активная мощность – это та мощность, которая потребляется в тот момент, когда в сети в один и тот же момент есть и напряжение, и синхронный с ним электрический ток. На самом деле, в цепях постоянного тока за исключением переходных процессов при включении-выключении так оно и бывает.

    Постоянно «жмет» напряжение, если цепь замкнута – постоянно «давит» некоторый ток. В итоге полная и активная мощность становятся равны, поскольку ток и напряжение действуют согласованно.

    Иное дело – цепи переменного тока. Напряжение в них меняет свое направление пятьдесят раз в секунду, а ток… иногда приотстает, а иногда опережает напряжение. К примеру, если в цепи имеется «индуктивность», то есть, катушка из провода, имеющая множество витков, то ток на таком элементе цепи «отстанет» от напряжения.

    Причина заключается в противо-ЭДС самоиндукции, сопротивляющейся изменению тока в катушке. Получается, что напряжение к индуктивности уже приложено, а ток еще никак не может возрасти из-за помех со стороны противо-ЭДС.

    В среде учащихся многих электротехнических ВУЗов бытует такое художественное сравнение: «Для тока требуется время, чтобы он мог пробежать через каждый виток, а напряжение – вот оно, уже на концах катушки».

    ЭДС противоиндукции вызывает падение напряжения и снижение тока в цепи. То есть, катушка является источником индуктивного сопротивления. Но оно отличается от активного сопротивления тем, что на нем не выделяется никакого тепла и вообще не потребляется никакой мощности в привычном понимании.

    Происходит просто «пустопорожнее» переливание электроэнергии от источника к индуктивности. И энергия, перенаправляемая туда и обратно как мяч в настольном теннисе, никуда из сети не уходит. Это реактивная энергия и потребителю в быту за нее не приходится платить энергосбытовой компании.

    Реактивная энергия , производимая в сети в единицу времени, может считаться реактивной мощностью. Вычисляется она так же, как и активная – произведением реактивной составляющей тока на напряжение.

    Реактивной же составляющей тока является та, которая не совпадает с напряжением по своей фазе. Величина «несовпадения» характеризуется углом сдвига фаз. В случае с чистой индуктивностью сдвиг фаз составляет максимум – 90°. Это означает, что когда напряжение достигает самого большого своего значения, ток только начинает расти.

    А если в цепи расположен конденсатор (емкость), то напряжение, напротив, будет отставать от тока на 90 градусов по причине того, что для возникновения падения напряжения конденсатору требуется зарядить свои обкладки.

    Точно так же источник и конденсатор в одной цепи будут обмениваться реактивной энергией, которая ни на что не будет тратиться.

    В реальной цепи не бывает чисто активной или чисто реактивной нагрузки, поэтому полная мощность всегда состоит из активной и реактивной составляющей, а угол сдвига фаз находится в пределах между нулем и 90°.

    Реактивная составляющая тока равна его произведению на синус угла сдвига фаз, а активная – произведению на косинус этого угла:

    Q=I*sin⁡φ; P=I*cosφ

    Полную мощность можно найти по теореме Пифагора:

    S=√(P^2+Q^2);

    При этом, реактивную мощность, в отличие от активной, нельзя исчислять в ваттах, потому что она неэффективна. Поэтому для реактивной мощности придумали особую единицу измерения – вольт-амперы реактивные (ВАРы). А полная измеряется в вольт-амперах, без уточнения характера нагрузки.


    Из письма клиента:
    Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
    Алексей. 21 июнь 2007

    В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

    Мощность не всех приборов указана в Вт, например:

    • Мощность трансформаторов указывается в ВА:
      http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
      http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
    • Мощность конденсаторов указывается в Варах:
      http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
      http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
    • Примеры других нагрузок - см. приложения ниже.

    Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

    Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

    Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

    Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

    Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

    1. Активная мощность: обозначение P , единица измерения: Ватт
    2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
    3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
    4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

    Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

    Также cosФ называется коэффициентом мощности (Power Factor PF )

    Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

    Например, электромоторы, лампы (разрядные) - в тех. данных указаны P[кВт] и cosФ:
    http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
    http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
    (примеры технических данных разных нагрузок см. приложение ниже)

    То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

    Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

    См. учебники по электротехнике, например:

    1. Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

    2. Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

    3. Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

    Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
    (перевод: http://electron287.narod.ru/pages/page1.html)

    Приложение

    Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

    Однофазные автотрансформаторы

    TDGC2-0.5 kVa, 2A
    АОСН-2-220-82
    TDGC2-1.0 kVa, 4A Латр 1.25 АОСН-4-220-82
    TDGC2-2.0 kVa, 8A Латр 2.5 АОСН-8-220-82
    TDGC2-3.0 kVa, 12A

    TDGC2-4.0 kVa, 16A

    TDGC2-5.0 kVa, 20A
    АОСН-20-220
    TDGC2-7.0 kVa, 28A

    TDGC2-10 kVa, 40A
    АОМН-40-220
    TDGC2-15 kVa, 60A

    TDGC2-20 kVa, 80A

    http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

    Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

    Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

    Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. - в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

    http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
    (комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

    http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

    Дополнение 1

    Если нагрузка имеет высокий коэффициент мощности (0.8 ... 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

    Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

    Дополнение 2

    Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 ... 1.0, что соответствует нормативным стандартам.

    Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

    Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

    В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

    Дополнение 4

    Наглядные примеры чистой активной и чистой реактивных нагрузок:

    • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
    • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
    Дополнение 5

    Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

    + (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

    - (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

    Дополнение 6

    Дополнительные вопросы

    Вопрос 1:
    Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

    Ответ:
    Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

    Замечание:
    Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

    1. Полное сопротивление (импеданс) Z=R+iX
    2. Полная мощность S=P+iQ
    3. Диэлектрическая проницаемость e=e"+ie"
    4. Магнитная проницаемость m=m"+im"
    5. и др.

    Вопрос 2:

    На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

    Ответ:
    Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

    Вопрос 3:
    Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

    Ответ:
    Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

    См. дополнительную литературу, например:

    Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

    Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

    Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

    AC power, Power factor, Electrical resistance, Reactance
    http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

    Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

    Статьи по теме: