Тестовая модель и как работать со структурой. Новое качество, которое обещают новые инструменты

  • Тестирование веб-сервисов
  • Самый лучший способ оценить, хорошо ли мы протестировали продукт – проанализировать пропущенные дефекты. Те, с которыми столкнулись наши пользователи, внедренцы, бизнес. По ним можно многое оценить: что мы проверили недостаточно тщательно, каким областям продукта стоит уделить больше внимания, какой вообще процент пропусков и какова динамика его изменений. С этой метрикой (пожалуй, самой распространённой в тестировании) всё хорошо, но… Когда мы выпустили продукт, и узнали о пропущенных ошибках, может быть уже слишком поздно: на “хабре” появилась про нас гневная статья, конкуренты стремительно распространяют критику, клиенты потеряли к нам доверие, руководство недовольно.

    Чтобы такого не происходило, мы обычно заранее, до релиза, стараемся оценивать качество тестирования: насколько хорошо и тщательно мы проверяем продукт? Каким областям не хватает внимания, где основные риски, какой прогресс? И чтобы ответить на все эти вопросы, мы оцениваем тестовое покрытие.

    Зачем оценивать?

    Любые метрики оценки – трата времени. В это время можно тестировать, заводить баги, готовить автотесты. Какую такую магическую пользу мы получаем благодаря метрикам тестового покрытия, чтобы пожертвовать временем на тестирование?
    1. Поиск своих слабых зон. Естественно, это нам нужно? не чтобы просто погоревать, а чтобы знать, где требуются улучшения. Какие функциональные области не покрыты тестами? Что мы не проверили? Где наибольшие риски пропуска ошибок?
    2. Редко по результатам оценки покрытия мы получаем 100%. Что улучшать? Куда идти? Какой сейчас процент? Как мы его повысим какой-либо задачей? Как быстро мы дойдём до 100? Все эти вопросы приносят прозрачности и понятности нашему процессу , а ответы на них даёт оценка покрытия.
    3. Фокус внимания. Допустим, в нашем продукте около 50 различных функциональных зон. Выходит новая версия, и мы начинаем тестировать 1-ю из них, и находим там опечатки, и съехавшие на пару пикселей кнопки, и прочую мелочь… И вот время на тестирование завершено, и эта функциональность проверена детально… А остальные 50? Оценка покрытия позволяет нам приоритезировать задачи исходя из текущих реалий и сроков.

    Как оценивать?

    Прежде, чем внедрять любую метрику, важно определиться, как вы её будете использовать. Начните с ответа именно на этот вопрос – скорее всего, вы сразу поймёте, как её лучше всего считать. А я только поделюсь в этой статье некоторыми примерами и своим опытом, как это можно сделать. Не для того, чтобы слепо копировать решения – а для того, чтобы ваша фантазия опиралась на этот опыт, продумывая идеально подходящее именно вам решение.

    Оцениваем покрытие требований тестами

    Допустим, у вас в команде есть аналитики, и они не зря тратят своё рабочее время. По результатам их работы созданы требования в RMS (Requirements Management System) – HP QC, MS TFS, IBM Doors, Jira (с доп. плагинами) и т.д. В эту систему они вносят требования, соответствующие требованиям к требованиям (простите за тавтологию). Эти требования атомарны, трассируемы, конкретны… В общем, идеальные условия для тестирования. Что мы можем сделать в таком случае? При использовании скриптового подхода – связывать требования и тесты. Ведём в той же системе тесты, делаем связку требование-тест, и в любой момент можем посмотреть отчёт, по каким требованиям тесты есть, по каким – нет, когда эти тесты были пройдены, и с каким результатом.
    Получаем карту покрытия, все непокрытые требования покрываем, все счастливы и довольны, ошибок не пропускаем…

    Ладно, давайте вернёмся с небес на землю. Скорее всего, детальных требований у вас нет, они не атомарны, часть требований вообще утеряны, а времени документировать каждый тест, ну или хотя бы каждый второй, тоже нет. Можно отчаяться и поплакать, а можно признать, что тестирование – процесс компенсаторный, и чем хуже у нас с аналитикой и разработкой на проекте, тем больше стараться должны мы сами, и компенсировать проблемы других участников процесса. Разберём проблемы по отдельности.

    Проблема: требования не атомарны.

    Аналитики тоже иногда грешат винегретом в голове, и обычно это чревато проблемами со всем проектом. Например, вы разрабатываете текстовый редактор, и у вас могут быть в системе (в числе прочих) заведены два требования: «должно поддерживаться html-форматирование» и «при открытии файла неподдерживаемого формата, должно появляться всплывающее окно с вопросом». Сколько тестов требуется для базовой проверки 1-го требования? А для 2-го? Разница в ответах, скорее всего, примерно в сто раз!!! Мы не можем сказать, что при наличии хотя бы 1-го теста по 1-му требованию, этого достаточно – а вот про 2-е, скорее всего, вполне.

    Таким образом, наличие теста на требование нам вообще ничего не гарантирует! Что значит в таком случае наша статистика покрытия? Примерно ничего! Придётся решать!

    1. Автоматический расчёт покрытия требований тестами в таком случае можно убрать – он смысловой нагрузки всё равно не несёт.
    2. По каждому требованию, начиная с наиболее приоритетных, готовим тесты. При подготовке анализируем, какие тесты потребуются этому требованию, сколько будет достаточно? Проводим полноценный тест-анализ, а не отмахиваемся «один тест есть, ну и ладно».
    3. В зависимости от используемой системы, делаем экспорт/выгрузку тестов по требованию и… проводим тестирование этих тестов! Достаточно ли их? В идеале, конечно, такое тестирование нужно проводить с аналитиком и разработчиком этой функциональности. Распечатайте тесты, заприте коллег в переговорке, и не отпускайте, пока они не скажут «да, этих тестов достаточно» (такое бывает только при письменном согласовании, когда эти слова говорятся для отписки, даже без анализа тестов. При устном обсуждении ваши коллеги выльют ушат критики, пропущенных тестов, неправильно понятых требований и т.д. – это не всегда приятно, но для тестирования очень полезно!)
    4. После доработки тестов по требованию и согласования их полноты, в системе этому требованию можно проставить статус «покрыто тестами». Эта информация будет значить значительно больше, чем «тут есть хотя бы 1 тест».

    Конечно, такой процесс согласования требует немало ресурсов и времени, особенно поначалу, до наработки практики. Поэтому проводите по нему только высокоприоритетные требования, и новые доработки. Со временем и остальные требования подтянете, и все будут счастливы! Но… а если требований нет вообще?

    Проблема: требований нет вообще.

    Они на проекте отсутствуют, обсуждаются устно, каждый делает, что хочет/может и как он понимает. Тестируем так же. Как результат, получаем огромное количество проблем не только в тестировании и разработке, но и изначально некорректной реализации фич – хотели совсем другого! Здесь я могу посоветовать вариант «определите и задокументируйте требования сами», и даже пару раз в своей практике использовала эту стратегию, но в 99% случаев таких ресурсов в команде тестирования нет – так что пойдём значительно менее ресурсоёмким путём:
    1. Создаём фичелист (feature list). Сами! В виде google-таблички, в формате PBI в TFS – выбирайте любой, лишь бы не текстовый формат. Нам ещё статусы собирать надо будет! В этот список вносим все функциональные области продукта, и постарайтесь выбрать один общий уровень декомпозиции (вы можете выписать объекты ПО, или пользовательские сценарии, или модули, или веб-страницы, или методы API, или экранные формы…) – только не всё это сразу! ОДИН формат декомпозиции, который вам проще и нагляднее всего позволит не пропустить важное.
    2. Согласовываем ПОЛНОТУ этого списка с аналитиками, разработчиками, бизнесом, внутри своей команды… Постарайтесь сделать всё, чтобы не потерять важные части продукта! Насколько глубоко проводить анализ – решать вам. В моей практике всего несколько раз были продукты, на которые мы создали более 100 страниц в таблице, и это были продукты-гиганты. Чаще всего, 30-50 строк – достижимый результат для последующей тщательной обработки. В небольшой команде без выделенных тест-аналитиков большее число элементов фичелиста будет слишком сложным в поддержке.
    3. После этого, идём по приоритетам, и обрабатываем каждую строку фичелиста как в описанном выше разделе с требованиями. Пишем тесты, обсуждаем, согласовываем достаточность. Помечаем статусы, по какой фиче тестов хватает. Получаем и статус, и прогресс, и расширение тестов за счёт общения с командой. Все счастливы!

    Но… Что делать, если требования ведутся, но не в трассируемом формате?

    Проблема: требования не трассируемы.

    На проекте есть огромное количество документации, аналитики печатают со скоростью 400 знаков в минуту, у вас есть спецификации, ТЗ, инструкции, справки (чаще всего это происходит по просьбе заказчика), и всё это выступает в роли требований, и на проекте уже все давно запутались, где какую информацию искать?
    Повторяем предыдущий раздел, помогая всей команде навести порядок!
    1. Создаём фичелист (см. выше), но без детального описания требований.
    2. По каждой фиче собираем воедино ссылки на ТЗ, спецификации, инструкции, и прочие документы.
    3. Идём по приоритетам, готовим тесты, согласовываем их полноту. Всё то же самое, только благодаря объединению всех документов в одну табличку повышаем простоту доступа к ним, прозрачные статусы и согласованность тестов. В итоге, у нас всё супер, и все счастливы!

    Но… Ненадолго… Кажется, за прошлую неделю аналитики по обращениям заказчиков обновили 4 разные спецификации!!!

    Проблема: требования всё время меняются.

    Конечно, хорошо бы тестировать некую фиксированную систему, но наши продукты обычно живые. Что-то попросил заказчик, что-то изменилось во внешнем к нашему продукту законодательстве, а где-то аналитики нашли ошибку анализа позапрошлого года… Требования живут своей жизнью! Что же делать?
    1. Допустим, у вас уже собраны ссылки на ТЗ и спецификации в виде фичелиста-таблицы, PBI, требований, заметок в Wiki и т.д. Допустим, у вас уже есть тесты на эти требования. И вот, требование меняется! Это может означать изменение в RMS, или задачу в TMS (Task Management System), или письмо в почте. В любом случае, это ведёт к одному и тому же следствию: ваши тесты неактуальны! Или могут быть неактуальны. А значит, требуют обновления (покрытие тестами старой версии продукта как-то не очень считается, да?)
    2. В фичелисте, в RMS, в TMS (Test Management System – testrails, sitechco, etc) тесты должны быть обязательно и незамедлительно помечены как неактуальные! В HP QC или MS TFS это можно делать автоматически при обновлении требований, а в google-табличке или wiki придётся проставлять ручками. Но вы должны видеть сразу: тесты неактуальны! А значит, нас ждёт полный повторный путь: обновить, провести заново тест-анализ, переписать тесты, согласовать изменения, и только после этого пометить фичу/требование снова как «покрыто тестами».

    В этом случае мы получаем все бенефиты оценки тестового покрытия, да ещё и в динамике! Все счастливы!!! Но…
    Но вы так много внимания уделяли работе с требованиями, что теперь вам не хватает времени либо на тестирование, либо на документирование тестов. На мой взгляд (и тут есть место религиозному спору!) требования важнее тестов, и уж лучше так! Хотя бы они в порядке, и вся команда в курсе, и разработчики делают именно то, что нужно. НО НА ДОКУМЕНТИРОВАНИЕ ТЕСТОВ ВРЕМЕНИ НЕ ОСТАЁТСЯ!

    Проблема: не хватает времени документировать тесты.

    На самом деле, источником этой проблемы может быть не только нехватка времени, но и ваш вполне осознанный выбор их не документировать (не любим, избегаем эффекта пестицида, слишком часто меняется продукт и т.д.). Но как оценивать покрытие тестами в таком случае?
    1. Вам всё равно нужны требования, как полноценные требования или как фиче-лист, поэтому какой-то из вышеописанных разделов, в зависимости от работы аналитиков на проекте, будет всё равно необходим. Получили требования / фичелист?
    2. Описываем и устно согласовываем вкратце стратегию тестирования, без документирования конкретных тестов! Эта стратегия может быть указана в столбце таблицы, на странице вики или в требовании в RMS, и она должна быть опять же согласована. В рамках этой стратегии проверки будут проводиться по-разному, но вы будете знать: когда это последний раз тестировалось и по какой стратегии? А это уже, согласитесь, тоже неплохо! И все будут счастливы.

    Но… Какое ещё «но»? Какое???

    Говорите, все обойдём, и да пребудут с нами качественные продукты!

    | Планирование уроков на учебный год | Основные этапы моделирования

    Урок 2
    Основные этапы моделирования





    Изучив эту тему, вы узнаете:

    Что такое моделирование;
    - что может служить прототипом для моделирования;
    - какое место занимает моделирование в деятельности человека;
    - каковы основные этапы моделирования;
    - что такое компьютерная модель;
    - что такое компьютерный эксперимент.

    Компьютерный эксперимент

    Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. Эксперимент - это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий и определении, как реагирует экспериментальный образец на эти действия.

    В школе вы проводите опыты на уроках биологии, химии, физики, географии.

    Эксперименты проводят при испытании новых образцов продукции на предприятиях. Обычно для этого используется специально создаваемая установка, позволяющая провести эксперимент в лабораторных условиях, либо сам реальный продукт подвергается всякого рода испытаниям (натурный эксперимент). Для исследования, к примеру, эксплуатационных свойств какого-либо агрегата или узла его помещают в термостат, замораживают в специальных камерах, испытывают на вибростендах, роняют и т. п. Хорошо, если это новые часы или пылесос - не велика потеря при разрушении. А если самолет или ракета?

    Лабораторные и натурные эксперименты требуют больших материальных затрат и времени, но их значение, тем не менее, очень велико.

    С развитием компьютерной техники появился новый уникальный метод исследования - компьютерный эксперимент. В помощь, а иногда и на смену экспериментальным образцам и испытательным стендам во многих случаях пришли компьютерные исследования моделей. Этап проведения компьютерного эксперимента включает две стадии: составление плана эксперимента и проведение исследования.

    План эксперимента

    План эксперимента должен четко отражать последовательность работы с моделью. Первым пунктом такого плана всегда является тестирование модели. 

    Тестирование - процесс проверки правильности построенной модели.

    Тест - набор исходных данных, позволяющий определить пра- - вильность построения мЪдели.

    Чтобы быть уверенным в правильности получаемых результатов моделирования, надо: ♦ проверить разработанный алгоритм построения модели; ♦ убедиться, что построенная модель правильно отражает свойства оригинала, которые учитывались при моделировании.

    Для проверки правильности алгоритма построения модели используется тестовый набор исходных данных, для которых конечный результат заранее известен или предварительно определен другими способами.

    Например, если вы используете при моделировании расчетные формулы, то надо подобрать несколько вариантов исходных данных и просчитать их «вручную». Это тестовые задания. Когда модель построена, вы проводите тестирование с теми же вариантами исходных данных и сравниваете результаты моделирования с выводами, полученными расчетным путем. Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину их расхождения. Тестовые данные могут совершенно не отражать реальную ситуацию и не нести смыслового содержания. Однако полученные в процессе тестирования результаты могут натолкнуть вас на мысль об изменении исходной информационной или знаковой модели, прежде всего в той ее части, где заложено смысловое содержание.

    Чтобы убедиться, что построенная модель отражает свойства оригинала, которые учитывались при моделировании, надо подобрать тестовый пример с реальными исходными данными.

    Проведение исследования

    После тестирования, когда у вас появилась уверенность в правильности построенной модели, можно переходить непосредственно к проведению исследования. 

    В плане должен быть предусмотрен эксперимент или серия экспериментов, удовлетворяющих целям моделирования. Каждый эксперимент должен сопровождаться осмыслением итогов, что служит основой анализа результатов моделирования и принятия решений.

    Схема подготовки и проведения компьютерного эксперимента приведена на рисунке 11.7.

    Рис. 11.7. Схема компьютерного эксперимента

    Анализ результатов моделирования

    Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа результатов моделирования. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. На рисунке 11.2 видно, что этап анализа результатов не может существовать автономно. Полученные выводы часто способствуют проведению дополнительной серии экспериментов, а подчас и изменению задачи.

    Основой выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. Это может быть либо неправильная постановка задачи, либо слишком упрощённое построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели у то есть возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

    Главное, надо всегда помнить: выявленная ошибка - тоже результат. Как гласит народная мудрость, на ошибках учатся. Об этом писал и великий русский поэт А. С. Пушкин:

    О, сколько нам открытий чудных Готовят просвещенья дух И опыт, сын ошибок трудных, И гений, парадоксов друг, И случай, бог изобретатель...

    Контрольные вопросы и задания

    1. Назовите два основных типа постановки задач моделирования.

    2. В известном «Задачнике» Г. Остера есть следущая задача:

    Злая колдунья, работая не покладая рук, превращает в гусениц по 30 принцесс в день. Сколько дней ей понадобится, чтобы превратить в гусениц 810 принцесс? Сколько принцесс в день придется превращать в гусениц, чтобы управиться с работой за 15 дней?
    Какой вопрос можно отнести к типу «что будет, если...», а какой - к типу «как сделать, чтобы...»?

    3. Перечислите наиболее известные цели моделирования.

    4. Формализуйте шутливую задачу из «Задачника» Г. Остера:

    Из двух будок, находящихся на расстоянии 27 км одна от другой, навстречу друг другу выскочили в одно и то же время две драчливые собачки. Первая бежит со скоростью 4 км/час, а вторая - 5 км/час.
    Через сколько времени начнется драка? 

    5. Назовите как можно больше характеристик объекта «пара ботинок ». Составьте информационную модель объекта для разных целей:

    ■ выбор обуви для туристского похода; ■ подбор подходящей коробки для обуви; ■ покупка крема для ухода за обувью.


    6. Какие характеристики подростка существенны для рекомендации по выбору профессии?

    7. По каким причинам компьютер широко используется в моделировании?

    8. Назовите известные вам инструменты компьютерного моделирования.

    9. Что такое компьютерный эксперимент? Приведите пример.

    10. Что такое тестирование модели?

    11. Какие ошибки встречаются в процессе моделирования? Что надо делать, когда ошибка обнаружена?

    12. В чем заключается анализ результатов моделирования? Какие выводы обычно делаются?

    Почему тестирование необходимо?

    В этом разделе мы рассмотрим самые базовые понятия и принципы, которые используются в процессе тестирования. Мы узнаем, что же, собственно, собой представляет тестирование, зачем оно нужно и кто им занимается. Рассмотрим цели, принципы и основные этапы тестирования. Почувствуем, каким должен быть психологический настрой настоящего тестировщика и развенчаем напоследок несколько мифов о тестировании. Уверены, Вам будет интересно.
    Начнем с того, что же такое «тестирование». Для начала, давайте абстрагируемся от сухих академических определений и посмотрим на это понятие с точки зрения повседневного использования.
    Когда мы что-то тестируем, то задаем себе простой вопрос: «работает ли это так, как мы ожидаем?» или, другими словами: соответствует ли реальное поведение объекта тестирования нашим ожиданиям? Если ответ положительный – замечательно, если нет, – мы обмануты в своих ожиданиях, а значит что-то нужно исправлять.
    Тестирование необходимо потому, что все мы совершаем ошибки. Некоторые из них могут быть незначительными, в то время как другие – иметь самые разрушительные последствия. Все, что производится человеком, может содержать ошибки (так уж мы, люди, устроены). Именно поэтому любой продукт нуждается в проверке – тестировании, прежде чем его можно будет эффективно и безопасно использовать.
    То же самое справедливо и для программного обеспечения (англ. Software).
    Программное обеспечение (Software) – компьютерные программы, функции, а также сопровождающая их документация и данные, имеющие отношение к эксплуатации компьютерной системы.
    Компьютерные технологии все глубже проникают в нашу повседневную жизнь. Программное обеспечение управляет работой множества окружающих нас вещей – от мобильных телефонов и компьютеров до стиральных машин и кредитных карт. В любом случае, все мы сталкивались с теми или иными ошибками в программах: текстовый редактор, намертво зависший при работе над дипломным проектом, банкомат, «съевший» карточку или просто сайт, который никак не загрузится – все это отнюдь не облегчает нам жизнь.
    Однако не все ошибки одинаково опасны – для разных программных систем уровни риска могут отличаться.
    Риск (risk):
    – фактор, который может привести к негативным последствиям в будущем; как правило, выражается через вероятность наступления таких последствий и их влияние на систему.
    – то, что еще не произошло, и может вообще не произойти; потенциальная проблема.
    Кроме того, уровень риска будет зависеть от вероятности наступления негативных последствий.
    К примеру, одна и та же незначительная ошибка, скажем опечатка, может иметь совершенно разные уровни риска для разных программ:
    – опечатка в описании интересов на персональной страничке в социальной сети вряд ли будет иметь существенные последствия, разве что вызовет улыбку у Ваших друзей;
    – такая же простая опечатка, допущенная в описании деятельности крупной компании, размещенном на ее сайте, уже опасна, так как косвенно свидетельствует о непрофессионализме ее сотрудников;
    – опечатка в коде программы, которая подсчитывает уровни облучения при работе рентгеновского аппарата (например, 100 вместо 10) может иметь самые печальные последствия – вред, нанесенный здоровью и безопасности людей, выльется в потерю доверия к компании и судебные иски со многими нулями.

    В главе вводится понятие качества, описывается технологический процесс тестирования и обсуждается связь качества и тестирования с различными технологическими процессами. Приводится традиционный взгляд на тестирование как на механизм оценки качества продукта, а также описывается, как на ранних этапах цикла разработки тестирование помогает усилить и упрочить архитектуру.

    Цель

    Целью тестирования является оценка качества продукта. Под этим подразумевается не только оценка окончательного продукта, но и оценка архитектуры с ранних этапов процесса и вплоть до окончательной передачи продукта раказчикам. включает следующее.

    Проверку взаимодействий компонентов

    Проверку правильности интеграции компонентов

    Проверку точности реализации всех требований

    Выявление дефектов и принятие мер, необходимых для их устранения до
    развертывания программного обеспечения

    Качество

    Стандартное употребление термина качество включает в себя многое: как правило, этим словом обозначают отсутствие дефектов и (что гораздо важнее!) соответствие поставленной цели; с понятием качества мы связываем то, что нам нужно от продукта. В продукте (или его компоненте) могут отсутствовать дефекты, но если он не делает то, что необходимо нам, то он так же бесполезен, как и несовершенный продукт. Основной целью тестирования является оценка качества конечного продукта, а также оценка качества компонентов, составляющих его, и архитектуры, определяющей форму этих компонентов. Это нужно для того, чтобы убедиться, что продукт со-

    Глава 12. Г67

    ответствует определенным требованиям или превышает их (оценка производится согласно мерам и критериям приемлемости).

    Качество продукта невозможно полностью оценить само по себе; программное обеспечение разрабатывается организацией с использованием технологического процесса, поэтому причиной плохого качества может стать некачественный процесс или процесс, которого трудно придерживаться. Как следствие, при оценке качества часто рассматривается не только качество самого продукта, но и организационные факторы и качество процесса.

    Кто отвечает за качество продукта

    За производство качественного продукта отвечают все члены проектной команды. Если качество не было изначально заложено в продукт, то его уже нельзя будет "добавить позднее" посредством выполнения некоторых активных действий, гарантирующих качество.

    Задача тестирования - не гарантировать качество, а оценить его, одновременно обеспечивая обратную связь, позволяющую разрешить вопросы качества за разумную цену и в приемлемое время. Задача испытателя, выполняющего тестирование, - это оценивать качество и организовывать обратную связь, а задача проектной команды - создавать артефакты, удовлетворяющие требованиям и заданным параметрам качества.

    Тестирование в итеративном жизненном цикле

    Тестирование - это не обособленный вид деятельности и не фаза проекта, в которой выполняется оценка качества. Если разработчикам нужна своевременная обратная связь по вопросам качества продукта, то тестирование должно производиться в течение всего жизненного цикла: тестировать можно функциональные возможности ранних прототипов; устойчивость, охват и производительность архитектуры (при этом всегда можно подкорректировать неудачные решения); кроме того, можно протестировать конечный продукт и оценить его готовность к передаче в руки заказчиков. Существует распространенная точка зрения, что тестирование- это финальная проверка глобальной работоспособности; однако в данной ситуации упускается основное преимущество тестирования: возможность организации обратной связи, когда еще есть время (и ресурсы) для принятия необходимых мер.

    Классификация тестов

    Для оценки качества продукта требуются тесты различных типов. Для классификации тестов можно использовать следующие характеристики.

    Тестируемый параметр качества - какой параметр качества проходит испытания

    Этап тестирования- момент жизненного цикла, в котором выполняется
    тестирование

    Тип теста - конкретная задача отдельного теста, как правило, связанная с одним
    параметром качества

    Параметры качества

    Существуют шаблоны, позволяющие выявить проблемы, связанные с качеством (как правило, практически во всех системах возникают однотипные проблемы). В результате для каждого продукта следует оценивать следующее.

    Надежность

    Программное обеспечение "сопротивляется" появлению ошибок в процессе выполнения: отсутствуют аварийные отказы, зависания, утечка памяти и т. п.

    Функциональные возможности

    Программное обеспечение реализует требуемые прецеденты или имеет ожидаемое поведение.

    Я Производительность

    Программное обеспечение и система работают, своевременно реагируют на предопределенные события и продолжают приемлемо функционировать в условиях реальных операционных характеристик (например, при значительной нагрузке, продолжительных периодах работы и т. д.). При тестировании производительности основное внимание уделяется обеспечению требуемых функциональных возможностей при удовлетворении нефункциональных требований системы.

    Для каждого из указанных параметров качества требуется проведение одного или нескольких тестов на одном или нескольких этапах тестирования. Кроме того, существуют и другие параметры качества, оценка которых может быть более субъективной: удобство эксплуатации, расширяемость, гибкость и т.д. Качественную оценку этих параметров качества следует производить при каждой благоприятной возможности.

    Этапы тестирования

    Тестирование не следует считать обособленным видом деятельности, выполняемым целиком и сразу. Тестирование производится на разных этапах разработки программного обеспечения и направлено на проверку различных объектов (целевых объектов тестирования). Этапы тестирования прогрессируют - от тестирования небольших элементов системы, таких как компоненты (блочное тестирование), до тес- . тирования завершенных систем (системное тестирование). Перечислим существующие этапы тестирования и их задачи.

    Блочное тестирование

    Тестируются минимальные элементы системы. Время тестирования, как правило, совпадает со временем реализации элементов.

    Интегральное тестирование

    Тестируются интегральные блоки (или компоненты, или подсистемы).

    Системное тестирование

    Тестируются завершенные приложения и системы (состоящие из одного или нескольких приложений).

    Приемочное тестирование

    Конечными пользователями (или представителями конечных пользователей) тестируется завершенное приложение (или система). Цель тестирования: определить готовность к развертыванию продукта.

    Следует помнить, что в разное время жизненного цикла этапы тестирования проходят с различными акцентами. Ранний концептуальный прототип, используемый в фазе исследования для оценки жизнеспособности видения продукта, будет подвергаться различным приемочным испытаниям. Архитектурный прототип, разрабатываемый в фазе уточнения плана, будет подвержен интегральным и системным испытаниям, направленным на проверку архитектурной целостности и производительности ключевых архитектурных элементов, несмотря на то что в это время большая часть кода системы имеет форму программ-суррогатов. Этапы тестирования - это не предопределенные "фазы", последовательно выполняемые ближе к концу проекта; наоборот, при итеративном жизненном цикле тестирование начинается рано и выполняется часто.

    Типы тестов

    Существует много типов тестов, каждый из которых акцентирует внимание на определенной задаче тестирования и тестирует только один параметр качества программного обеспечения. Поскольку тестирование производится в течение всего жизненного цикла, тестируемым программным обеспечением может быть отдельный фрагмент кода, интегральный блок или завершенное приложение (или система). Назовем наиболее распространенные типы тестов.

    Аттестационный тест

    Сравнивает производительность целевого объекта тестирования и некоторого стандартного объекта, например существующего программного обеспечения, или оценивает производительность согласно некоторой системе мер.

    Конфигурационный тест

    Проверяет приемлемость функционирования целевого объекта тестирования при различных конфигурациях (программных или аппаратных).

    Функциональные испытания

    Проверяется функционирование целевого объекта тестирования в общем, т.е. должная реализация требуемых прецедентов.

    Установочные испытания

    Проверяется правильность установки целевого объекта тестирования, возможность успешной установки при различных конфигурациях или в различных условиях (например, при недостатке дискового пространства).

    Тестирование целостности

    Проверяется надежность целевого объекта тестирования, его устойчивость и сопротивляемость ошибкам в процессе выполнения.

    Испытание под нагрузкой

    Проверяется приемлемость производительности целевого объекта тестирования в различных операционных условиях (включающих различное число пользователей, транзакций и т. д.) при неизменяемой конфигурации.

    Эксплуатационные испытания

    Проверяется приемлемость производительности целевого объекта тестирования в различных конфигурациях при постоянных операционных характеристиках.

    Испытания в жестком режиме

    Проверяется приемлемость производительности целевого объекта тестирования в аварийных или критических условиях, таких как ограниченные ресурсы или крайне большое число пользователей.

    Регрессивное тестирование

    Регрессивное тестирование - это методика испытаний, при которой тесты, производимые ранее, повторно выполняются на новой версии целевого объекта. Цель такого типа тестирования - обеспечить, чтобы качество целевого объекта не ухудшалось (не регрессировало) при добавлении к этому объекту новых функций. Регрессивное тестирование необходимо для

    Максимально раннего выявления дефектов;

    Проверки того, что изменения кода не приводят к новым дефектам или не
    восстанавливают старые.

    Регрессивное тестирование может включать повторное выполнение тестов любого типа. Как правило, такое тестирование выполняется в каждой итерации и состоит в повторном запуске тестов, произведенных при предыдущих итерациях.

    Модель тестирования

    Модель тестирования- это представление того, что будет тестироваться и как будет производиться тестирование. Эта модель является представлением моделей проектирования и реализации, изображающим собственно тесты и параметры целевых объектов, относящиеся к тестированию. Модель тестирования включает набор контрольных задач, методик испытания, сценариев испытаний и ожидаемых результатов тестирования, а также описание их взаимосвязи.

    Рассмотрим подробнее составляющие модели тестирования.

    Контрольные задачи

    Набор тестовых данных, условий выполнения тестов и ожидаемых результатов, разработанный для конкретной задачи тестирования. Контрольные задачи могут определяться из прецедентов, проектной документации или программного кода. Контрольная задача может реализовываться с помощью одной или нескольких методик испытания.

    Методики испытания

    Набор подробных указаний по настройке и выполнению контрольных задач и оценке результатов, полученных при этом. С помощью одной методики испытаний может реализовываться одна или несколько контрольных задач. Методика испытаний также может использоваться для реализации только части контрольной задачи, например альтернативного потока прецедента.

    Сценарии испытаний

    Инструкции, автоматизирующие реализацию части или всей методики испытания (или методик испытания).

    Классы и компоненты испытаний

    Классы и компоненты, реализующие проекты тестов, в том числе драйверы и программы-суррогаты.

    Взаимодействия тестов

    Взаимодействия представляются в форме диаграммы взаимодействий или диаграммы последовательностей и отражают упорядоченный по времени поток сообщений между компонентами тестов и целевым объектом тестирования, имеющий место в процессе тестирования.

    Примечания

    Текстовая информация, описывающая ограничения, или дополнительная информация, используемая в модели тестирования. Примечания могут присоединяться к любому элементу модели тестирования.

    Основные элементы модели тестирования и их взаимоотношения показаны на рис. 12.1.

    Рис. 12.1. Контрольные задачи, методики испытаний и сценарии испытаний для банкомата

    Исполнители и артефакты

    В технологическом процессе тестирования задействованы два основных исполнителя.

    Разработчик тестов отвечает за планирование, разработку, реализацию тестов и
    оценку тестирования. В его обязанности входит создание плана и модели тести
    рования, реализация методик испытания и оценка тестового покрытия, резуль
    татов и эффективности теста.

    Испытатель отвечает за выполнение системного тестирования. В его обязан
    ности входит настройка и выполнение тестов, оценка выполнения теста, вос
    становление после ошибок, оценка результатов тестирования и регистрация
    выявленных дефектов.

    Если для поддержки тестирования необходим специфический код (например, должны разрабатываться драйверы или программы-суррогаты), то в процессе должны участвовать еще разработчик и конструктор, исполняющие роли, подобные определенным в главах 10 и 11.

    Исполнители и артефакты технологического процесса тестирования представлены на рис. 12.2. Давайте рассмотрим ключевые артефакты этого процесса.

    План тестирования, содержащий информацию о целях и задачах тестирования.
    План тестирования определяет, какие стратегии будут использоваться и какие
    ресурсы требуются для выполнения тестирования.

    Модель тестирования описывалась ранее.

    Результаты тестирования и данные, собранные в процессе выполнения тестов.

    Модель рабочей нагрузки для эксплуатационных испытаний; она определяет
    переменные и их значения, используемые в различных эксплуатационных
    испытаниях для моделирования или имитации характеристик внешних
    исполнителей, функций, выполняемых конечными пользователями, объема
    этих функций и нагрузки, создаваемой этими функциями.

    Дефекты, полученные в результате "проваленных тестов" являются одним из
    типов запросов на внесение изменений (см. главу 13).

    Помимо перечисленных артефактов, при разработке программной поддержки теста должны создаваться следующие артефакты.

    Пакеты и классы тестов

    Подсистемы и компоненты тестов

    Заключительная оценка тестов используется как часть оценки итерации проекта и периодической оценки состояния (см. главу 7, "Технологический процесс управления проектом").

    Технологический процесс

    Типичный технологический процесс тестирования, его основные элементы и зависимости между ними показаны на рис. 12.3.

    Подготовка к тестированию

    Целью этого элемента технологического процесса является определение и описание тестирования, которое будет выполняться. Для этого создается план тестирования, содержащий требования к тесту и стратегиям тестирования. Может разрабатываться единый план тестирования, в котором описаны все типы выполняемых тестов, или для каждого типа теста может создаваться отдельный план. Подготовка к тестированию выполняется таким образом, чтобы работы по тестированию были измеримыми и управляемыми.

    Разработка теста

    Целью этого элемента технологического процесса является определение, описание и создание модели тестирования и связанных с нею артефактов. Проект теста создается для того, чтобы убедиться в должной организации программного обеспечения, ис-пользуемого для тестирования, и в соответствии его заданным требованиям. При выполнении этого элемента технологического процесса разработчик тестов анализирует целевой объект тестирования, разрабатывает модель тестирования и (в случае эксплуатационных испытаний) модель рабочей нагрузки. Проект теста преобразовывает прецеденты в приемочные и системные контрольные задачи, которые затем направляют проектирование программных элементов, выполняющих тестирование.

    Реализация теста

    Цель этого элемента технологического процесса состоит в реализации методик испытания, определенных в разделе Подготовка к тестированию. Создание методик испытания производится, как правило, в среде средств автоматизации тестов или в среде программирования. Результирующим артефактом является электронная версия методики испытания, называемая сценарием испытания.

    Если для поддержки или выполнения тестирования необходим специфический код (например, должны разрабатываться средства тестирования, драйверы или программы-суррогаты), то в работе по его созданию участвуют разработчик, конструктор и разработчик тестов.

    Выполнение тестов на этапе интегрального тестирования

    Цель этого элемента технологического процесса - обеспечение корректного объединения системных компонентов, а также проверка наличия у этого объединения правильного поведения. За компиляцию и объединение системы в увеличивающиеся функциональные блоки отвечает системный интегратор. Для каждого такого блока тестируются добавленные функции, выполняются регрессивные тесты и извлекаются результаты тестирования.

    В ходе одной итерации интегральное тестирование выполняется несколько раз, пока не будет успешно интегрирована вся система (определяется целью итерации).

    Выполнение тестов на этапе системного тестирования

    Целью данного элемента технологического процесса является обеспечение должного функционирования всей системы. Системный интегратор компилирует и объединяет системы в увеличивающиеся функциональные блоки. Каждый добавляемый элемент

    должен пройти тестирование функциональных возможностей; кроме того, выполняются все тесты, произведенные ранее над каждой конструкцией (регрессивные тесты).

    В течение одной итерации системное тестирование выполняется несколько раз, пока не будет успешно интегрирована вся система (определяется целью итерации) и пока не будут удовлетворены критерии успеха тестирования или завершенности системы.

    Оценка тестирования

    Цель данного элемента технологического процесса - выработка и оценка количественных мер тестирования, позволяющих определить качество целевого объекта теста и процесса тестирования. Это выполняется посредством рецензирования и оценки результатов тестирования, определения и регистрации запросов на внесение изменений, а также вычисления основных мер теста.

    Инструментальная поддержка

    Поскольку тестирование - это итеративная работа, выполняемая в течение всего цикла разработки, инструментальная поддержка необходима для того, чтобы тестирование начать рано и выполнять часто; ручное тестирование недостаточно эффективно и не позволяет тщательно оценить разрабатываемое программное обеспечение. Последнее утверждение особенно справедливо для эксплуатационных испытаний и испытаний под нагрузкой, в которых должна моделироваться рабочая нагрузка и должен накапливаться значительный объем данных.

    Корпорация Rational Software предлагает следующие инструментальные средства, поддерживающие автоматизацию тестов и процесс тестирования в целом.

    TestStudio - это набор инструментальных средств, поддерживающих выполне
    ние тестов и оценку результатов тестирования. Средства TestStudio позволяй
    испытателю создавать сценарии тестирования, имеющие графический интер
    фейс пользователя. Эти сценарии акцентируют внимание на таких параметра
    качества, как надежность, функционирование и производительность. В набор
    TestStudio входят следующие инструменты.

    Robot поддерживает выполнение тестов, позволяя испытателям создавать и воспроизводить сценарии тестирования с графическим интерфейсом пользователя и сравнивать полученные и ожидаемые результаты.

    LogViewer фиксирует результаты тестирования и представляет отчет для оценки выполнения теста.

    TestManager поддерживает планирование, проектирование и оценку тестов, позволяет определить тестовое покрытие и генерирует отчеты о состоянии тестов.

    TestFactory поддерживает тестирование надежности путем автоматического создания и выполнения сценариев тестирования. Кроме того, этот инструмент в программной форме сообщает о тестовом покрытии.

    PerformanceStudio выполняет сценарии тестирования виртуального пользова
    теля, используя для этого эксплуатационные испытания и некоторые функци
    ональные испытания.

    DevelopmentStudio поддерживает технологический процесс тестирования и
    включает следующие инструментальные средства.

    Rational Purify для локализации труднообнаруживаемых ошибок времени выполнения.

    Rational PureCoverage* для определения участков кода, не прошедших тестирование, и выполнения анализа покрытия кода.

    Rational Quantify* для выявления фрагментов кода, ограничивающих производительность.

    Кроме того, для большинства из названных средств Rational Unified Process предлагает инструментальные наставники.

    Резюме

    Тестирование позволяет оценить качество производимого продукта.

    Тестирование - это итеративный процесс, выполняемый во всех фазах жизнен
    ного цикла; он позволяет рано организовать обратную связь по вопросам качест
    ва, используемую для улучшения продукта в процессе его разработки и построе
    ния. Тестирование должно выполняться не только в конце жизненного цикла
    (для принятия или отклонения конечного продукта); оно должно быть неотъем
    лемой частью механизма постоянной обратной связи.

    За качество отвечают все. Качество не может вноситься тестирующей органи
    зацией. Тестирование направлено только на оценку качества и организацию
    своевременной обратной связи, позволяющей повысить качество системы.

    Предлагает механизм обратной связи,
    позволяющий измерять качество и определять дефекты. Тестирование выпол
    няется на ранних стадиях проекта - начинается с планирования тестов и неко
    торой оценки (иногда производимых даже в фазе исследования) и продол
    жается по ходу реализации проекта.

    Традиционный подход к автоматическим тестам выглядит примерно так - тестописатель изучает тестируемую систему и после этого руками пишет каждый отдельный сценарий для проверки искомой системы. Кто-то может написать тут гордое слово "handcrafted", а я называю это словом "handjob". А все потому, что обычно этот подход к созданию и написанию тестов страдает от двух проблем:

    • "Парадокс пестицида", описанный Борисом Бейзером в 1990-м году. Заключается он в том, что тесты все менее и менее эффективны в отлове багов, так как баги, для обнаружения которых эти тесты написаны, уже найдены и починены. Если же этого не происходит, то возникают серьезные вопросы к написанному коду и к рабочим процессам
    • Тесты статичны и их сложно менять, в то время как тестируемая система имеет свойство постоянно эволюционировать, обрастать новым функционалом и менять поведение старого. И тесты нужно менять каждый раз, когда функционал изменяет внешний вид программы или ее поведение. И с ростом сложности обновления тестов оправдывать чудовищные издержки на поддержку тестов становиться все сложнее.

    Model-Based Testing данные проблемы практически полностью игнорирует, поскольку тесты создаются автоматически из точной модели приложения. Это сильно упрощает как поддержку уже существующих, так и генерацию новых, крайне полезных и гибких тестов.

    Что такое модель?

    Модель - это описание тестируемой системы. Формальная спецификация вполне сойдет. Модель должна быть сильно проще описываемой системы и как-то помогать нам понимать и предсказывать поведение тестируемого продукта.

    Обычно в качестве модели используется или граф состояний или какой-нибудь конечный автомат. При этом граф состояний уже третий десяток лет используется в тестировании для представления тестируемого софта и дизайна тестов. Подробнее про эту технику дизайна тестов можно почитать . А лучше в целой куче книжек по тестированию, которые были выпущены за последние 25 лет.

    Если вкратце, то можно описать так: тестируемое ПО начинает работу в каком-то состоянии ("главная страничка открыта"), принимает какой-то пользовательский ввод ("посмотреть фоточки котяток") и, в зависимости от этого ввода, переходит в новое состояние ("альбом с фоточками котяток появился"). Мы используем модели все время чтобы понять поведение того куска софта с которым работаем ("Хм... если я нахожусь тут и делаю вот это , то я окажусь вон там "). Да в общем-то все тестирование можно рассматривать как перемещение тестировщика через различные состояния системы и проверку того, что эти перемещения происходят корректно (что значит "корректно" это отдельная тема, так что пока мы ее пропустим).

    Что такое Model-Based Testing?

    Это довольно немолодая идея использовать формально описанные модели для того, чтобы сделать тестирование ПО более дешевым и простым занятием. Само Model-Based Testing это такая "продвинутая" техника тестирования через "черный ящик". У нее есть ряд бонусов перед традиционными методами:

    • Модель можно начинать собирать еще до того, как появятся первые строчки кода
    • Моделирование подразумевает основательную работу над спецификацией и архитектурой разрабатываемого ПО, что, как правило, позволяет на ранних этапах избавляться от фундаментальных проблем и банальных разночтений
    • Модель будет содержать информацию, которую можно будет переиспользовать в нуждах тестирования в будущем, даже если спецификация изменится
    • Модель сильно проще поддерживать, чем огромную кучу разрозненных тестов

    И самое важное - формально описанные модели в комбинации с зачатками теории графов помогает легко и непринужденно генерировать сотни тестов.

    Зоркий поклонник Agile может воскликнуть "эй! у нас есть BDD и оно покрывает первые три пункта и еще это спецификация!". Я же отвечу "нихрена подобного - ваши примеры станут нормальной спецификацией только тогда, когда короля Шака Зулу можно будет считать спецификацией на все человечество".

    А теперь отбросим споры и посмотрим, как при помощи теории графов выбивать из модели то, что вам нужно для тестов.

    Короткий ликбез по теории графов

    Теория графов зародилась в 1736-м году в стареньком Прусском городе Кёнингсберге. Город стоял на двух берегах реки и попутно занимал еще и пару островов посреди этой самой реки. Жители этого города от безделья пытались придумать как посетить все семь мостов не проходя ни по одному дважды. Решали на практике, во время прогулок, и в теории, во время кухонных посиделок. Долгое время никто не мог доказать или опровергнуть возможность существования данного маршрута, пока не пришел зануда Эйлер и не испортил горожанам праздник.

    Эйлер придумал изобразить каждый кусок суши как вершину графа, а мосты - ребрами графа.

    И тут внезапно стало понятно, что нужного маршрута не существует. И все потому, что все вершины имеют нечетное число ребер. Ведь если у вершины четное число ребер, то гуляющий гражданин каждый раз заходя на этот кусок суши может выйти оттуда по новому мосту. Таким образом получается, что прогуляться по всем мостам не пересекая какой-то мост дважды не получится.

    С тех пор граф, в котором все вершины имеют четное количество ребер называется "Эйлеровым Графом". А полный обход этого графа носит гордое имя "Эйлерова пути".

    И после этого жителям Кёнингсберга пришлось найти себе другое развлечение. Только один китайский математик Мэй-Ку Куан все морочил себе голову этими мостами. А беспокоил его следующий вопрос:

    Если нельзя построить маршрут так, чтобы каждый мост пересекался ровно один раз, то какое минимальное количество дополнительных пересечений моста нужно совершить для полного обхода.

    А это уже сильно похоже на проблему, с которой встречаются почтальоны. Допустим, каждая вершина это почтовый ящик, куда нужно вкинуть писем. И, допустим, наш постальон должен вкинуть писем в каждый ящик не совершая лишних движений.

    Куан предложил считать повторное пересечение моста добавлением еще одного ребра графа. Добавление ребер должно привести к тому, что у всех вершин графа будет четное количество ребер. Эту процедуру принято называть "Эйлеризацией" графа. И после того как граф "Эйлеризован" мы можем построить Эйлеров путь по нему.

    И в честь Куана эту задачку назвали "задачей китайского почтальона".

    Несколько лет спустя нашлись еще зануды, которым стало интересно что будет, если по ребрам графа можно будет ходить только в одну сторону. Как раз получается проблема, похожая на головную боль таксиста в Нью-Йорке, строящего маршрут по односторонним улочкам.

    Тут мы введем еще один термин - орграф. Или ориентированный граф. Это такой граф, ребра которого можно пересекать только в указанном направлении. Направленные же ребра так же называются "дугами".

    И если в случае Эйлерова Пути или Проблемы Китайского Почтальона мы оперировали дугами касающимися вершин, то тут приходится принимать во внимание еще и направление движения. И доля "Эйлеризации" такого графа нам требуется чтобы количество входящих в вершину дуг равнялось количеству исходящих. И считая каждую входящую дугу как "+1", а исходящую как "-1" мы можем вычислять "полярность" каждой вершины орграфа. Например вершина в двумя входящими и одной исходящей дугой имеет полярность "2 - 1 = 1".

    Для того чтобы Эйлеризовать орграф нам нужно пририсовывать дуги между положительными и отрицательными вершинами. Это "выравнивание" числа входящих и исходящих дуг нам нужно для того же, для чего мы добивались четного числа ребер в неориентированном графе - любой посетитель вершины графа должен иметь возможность ее покинуть.

    Причем тут тестирование?

    Предположим, что у тестировщика есть модель поведения тестируемой системы. Так же предположим, что эта модель выглядит как диграф, где вершины представляют собой состояние системы, а дуги являются действиями, которые тестировщик может предпринять для изменения состояния системы.

    Первое что захочет селать тестировщик - выполнить все возможные действия с тестируемой системой. Но как мы можем это выполнить эффективно? Тут сообразительному тестировщику в голову приходит задачка про таксиста из Нью-Йорка, которая просто слегка замаскировалась. И поскольку у нас уже есть модель тестируемой системы в виде графа, то нам нужно просто применить к ней подходящий алгоритм его обхода, который может быть сгенерирован автоматически.

    С другой стороны, исполнение всех возможных действий это хорошо, но даже самый недалекий тест-менеджер понимает, что это банальное "покрытие состояний" в терминах тестирования сырого кода. Но у множителей есть одно неприятное свойство - у них, как правило, очень много "следующих" состояний у каждой вершины. Что же нам делать, если мы хотим проверить все возможные комбинации действий? Решения задач вроде задачи Китайского Почтальона не подходят, поскольку они гарантируют только посещение каждой дуги, но никак не посещение всех возможных комбинаций дуг.

    Такой подход как раз активно использовался для тестирования конечных автоматов. К тому же это требование естественно вытекает из комбинаторной техники дизайна тестов под названием "все пары".

    Решение предложил некий де Брюийн. Алгоритм выглядит примерно так:

    • Рисуем сбоку граф, где каждое ребро исходного графа является вершиной.
    • Там где у исходного графа дуга "1" входит в вершину, откуда выходит дуга "2" рисуем в свежеиспеченном графе дугу из вершины "1" в вершину "2".
    • Эйлеризуем полученный граф.
    • Рисуем Эйлеров путь на данном графе.

    В принципе можно не напрягаться и просто сделать случайный обход графа. Что примечательно - такая стратегия достаточно устойчива к "парадоксу пестицида". С другой стороны, у любого мало-мальски сложного приложения довольно развесистый граф состояний, на которых можно потратить кучу времени, прежде чем получить хоть какое-то покрытие "случайным обходом".

    Про то, зачем сюда добавляют Цепи Маркова, и как обычно решается распараллеливание таких тестов я напишу позже. А пока подведем краткие итоги.

    Итого

    Модели - это отличный способ представления и осмысления тестируемого приложения, но еще они дают нам довольно простой способ обновлять тесты и поспевать за постоянно эволюционирующим приложением.

    Тестирование приложения мы можем рассматривать как обход графа, построенного на основе модели приложения. В свою очередь Теория Графов дает достаточный инструментарий для того, чтобы использовать информацию о поведении системы, описанную в модели, для генерации новых блестящих тестов.

    И, поскольку Теория Графов позволяет нам работать непосредственно с моделью:

    • Новые обходы можно автоматически генерировать при изменении модели
    • Наши тесты могут легко и непринужденно меняться в рамках одной и той же модели
    • Различные алгоритмы обхода могут удовлетворять различным потребностям тестирования
    • Полученные алгоритмы обхода легко можно переиспользовать в совершенно новой среде
    Статьи по теме: