1 устройство принцип действия электромагнитных трансформаторов. Что такое трансформатор: устройство, принцип работы, схема и назначение

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Электромагнитные статические устройства используются для создания и применения магнитного поля. Случаев, зачем нужен трансформатор в электронных, электрических цепях и радиотехнике, существует много. Устройство оснащено индуктивными обмотками, взаимно связанными на магнитопроводе. Сеть способствует возникновению переменного поля, а трансформатор с помощью электромагнитной индукции придает току постоянные значения без изменения частоты.

Определение и назначение

Для питания приборов нужны напряжения различных характеристик. Трансформатор – это конструкция для использования индукционной работы магнитного поля. Ленточные или проволочные катушки, объединенные общим потоком, понижают или увеличивают напряжение. В телевизоре применяется 5 В для работы транзисторов и микросхем, питание кинескопа требует нескольких киловольт при использовании каскадного генератора.

Изолированные обмотки располагаются на сердечнике из спонтанно намагниченного материала с определенным значением напряженности. Старые агрегаты использовали существующую частоту сети, около 60 Гц. В современных схемах питания электроприборов применяют импульсные трансформаторы с высокой частотой. Переменное напряжение выпрямляется и преобразовывается при помощи генератора в величину с заданными параметрами.

Напряжение стабилизируется благодаря управляющей установке с импульсно-широтной модуляцией. Высокочастотные всплески передаются трансформатору, на выходе получают стабильные показатели. Массивность и тяжесть приборов прошлых лет сменяется легкостью и небольшими размерами. Линейные показатели агрегата пропорциональны мощности в отношении 1:4, для уменьшения габаритов устройства увеличивается частота тока.

Массивные приборы используют в схемах электроснабжения, если требуется создать минимальный уровень рассеяния помех с высокой частотой, например при обеспечении качественного звука.


Устройство и принцип работы

Производитель выбирает базовые правила функционирования агрегата, но это не влияет на надежность эксплуатации. Отличаются концепции процессом изготовления. Принцип действия трансформатора основывается на двух положениях:

  • изменяющееся движение направленных носителей заряда создает переменное магнитное силовое поле;
  • влияние на силовой поток, передаваемый через катушку, продуцирует электродвижущую силу и индукцию.

Устройство состоит из следующих частей:

  • магнитный привод;
  • катушки или обмотки;
  • основа для расположения витков;
  • изолирующий материал;
  • охладительная система;
  • другие элементы крепления, доступа, защиты.

Работа трансформатора осуществляется по виду конструкции и сочетания сердечника и обмоток. В стержневом типе проводник заключен в обмотках, его трудно рассмотреть. Витки спирали видны, просматривается верх и низ сердечника, ось располагается вертикально. Материал, из чего состоит виток, должен хорошо проводить электричество.

В изделиях броневого типа стержень скрывает большую часть оборотов, он ставится горизонтально или отвесно. Тороидальная конструкция трансформаторов предусматривает расположение на магнитопроводе двух независимых обмоток без электрической связи между собой.

Магнитная система

Выполняется из легированной трансформаторной стали, феррита, пермаллоя с сохранением геометрической формы для продуцирования магнитного поля агрегата. Проводник конструируется из пластин, лент, подков, его изготавливают на прессе. Часть, на которой располагается обмотка, называются стержнем. Ярмо – это элемент без витков, выполняющий замыкания цепи.

Принцип действия трансформатора зависит от схемы стоек, которая бывает:

  • плоская – оси ярм и сердечников находятся в единой плоскости;
  • пространственная – продольные элементы устраиваются в разных поверхностях;
  • симметричная – одинаковые по форме, размеру и конструкции проводники расположены ко всем ярмам аналогично другим;
  • несимметричная – отдельные стойки отличаются по виду, габаритам и ставятся в разных положениях.

Если предполагается, что через обмотку, которую называют первичной, протекает постоянный ток, то магнитный провод делают разомкнутым. В остальных случаях сердечник закрытый, он служит для замыкания силовых линий.

Обмотки

Делают в виде совокупности витков, устраиваемых на проводниках квадратного сечения. Форма используется для эффективной работы и повышения коэффициента заполнения в окне магнитопровода. Если требуется увеличить сечение сердечника, то его выполняют в виде двух параллельных элементов, чтобы уменьшить возникновение вихревых токов. Каждый такой проводник называется жилой.

Стержень оборачивается бумагой, покрывается эмалевым лаком. Иногда два сердечника, расположенных параллельно, заключают в общую изоляцию, комплект называется кабелем. Обмотки различают по назначению:

  • основные – к ним подводится переменный ток, выходит преобразованный электроток;
  • регулирующие – в них предусмотрены отводы для трансформации напряжения при невысокой силе тока;
  • вспомогательные – служат для снабжения своей сети с мощностью меньше номинального показателя трансформатора и подмагничивания схемы постоянным током.


Способы обкручивания:

  • рядовая обмотка – обороты делают в направлении оси по всей длине проводника, последующие витки наматывают плотно, без промежутков;
  • винтовое обматывание – многослойная обвивка с просветами между кольцами или заходом на соседние элементы;
  • дисковая накрутка – спиральный ряд выполняется последовательно, в круге обвивание производится в радиальном порядке по внутреннему и наружному направлению;
  • фольговая спираль ставится из алюминиевого и медного широкого листа, толщина которого колеблется в пределах 0,1-2 мм.

Условные обозначения

Чтобы удобно читалась схема трансформатора, есть специальные знаки. Сердечник вычерчивается толстой линией, цифра 1 показывает первичную обмотку, вторичные витки обозначаются цифрами 2 и 3.

В некоторых схемах линия сердечника аналогична по толщине черте полуокружностей обвивки. Обозначение материала стержня различается:

  • магнитопровод из феррита чертят толстой линией;
  • стальной сердечник с магнитным зазором рисуют тонкой чертой с разрывом в середине;
  • ось из намагниченного диэлектрика обозначают тонким пунктиром;
  • медный стержень имеет на схеме вид узкой линии с условным обозначением материала по таблице Менделеева.

Для выделения катушечного вывода применяют жирные точки, обозначение мгновеннодействующей индукции одинаково. Используется для обозначения промежуточных агрегатов в каскадных генераторах для показания противофазности. Ставят точки, если требуется установить полярность при сборке и направление расположения обмоток. Число витков в первичной обмотке определяется условно, как не нормируется и количество полуокружностей, пропорциональность есть, но строго не соблюдается.

Основные характеристики

Холостой режим применяется при разомкнутом вторичном контуре трансформатора, в нем отсутствует напряжение. Ток проходит по первичной обвивке, возникает реактивное намагничивание. При помощи холостой работы определяют КПД, показатель трансформации и потери в сердечнике.

Функционирование под нагрузкой подразумевает подключение источника питания к первичной цепи, где протекает суммарный ток функционирования и холостого хода. Нагрузка подсоединяется к вторичному контуру трансформатора. Этот режим является распространенным.

Фаза короткого замыкания возникает, если сопротивление вторичной спирали составляет единственную нагрузку. В этом режиме определяются потери на нагревание катушки в цепи. Параметры трансформаторов учитываются в системе замещения прибора с помощью установки сопротивления.

Отношением потребляемой и отдаваемой мощности определяется коэффициент полезного действия трансформатора.

Область применения

Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

Инвертирующие агрегаты имеют транзисторы одинаковой проводимости и на выходе усиливают только часть сигнала. Для полного преобразования напряжения импульс подается на оба транзистора.

Согласующее оборудование используют для подсоединения к электронным приборам с высоким сопротивлением на входе и выходе нагрузки с низким показателем прохождения электричества. Агрегаты полезны в высокочастотных линиях, где разница величин ведет к потерям энергии.

Типы трансформаторов

От номинального значения тока в первичном и вторичном контуре зависит классификация трансформаторов. В распространенных видах показатель находится в пределах 1-5 А.

Разделительный агрегат не предусматривает связь обеих спиралей. Оборудование обеспечивает гальваническую развязку, т. е. передачу импульса бесконтактным способом. Без нее протекающий между цепями ток ограничивается только сопротивлением, которое не принимается во внимание из-за малого значения.

Согласующий трансформатор обеспечивает согласование различных показателей сопротивления для минимизации искажения формы импульса на выходе. Служит для организации гальванической развязки.

Прежде чем выяснить, какие бывают трансформаторы силового направления, отмечают, что их выпускают для работы с сетями большой мощности. Приборы переменного тока изменяют показатели энергии в приемных установках и работают в местах с большой пропускной способностью и скоростью изменения электроэнергии.

Вращающий трансформатор не следует путать с вращающимся оборудованием – машиной для преобразования угла поворота в напряжение цепи, где эффективность зависит от частоты вращения. Прибор передает электроимпульс на подвижные части техники, например на головку видеомагнитофона. Двойной сердечник с отдельными обмотками, одна из которых поворачивается вокруг другой.

Масляный агрегат использует охлаждение катушек специальным трансформаторным маслом. Имеют магнитопровод замкнутого типа. В отличие от воздушных видов могут взаимодействовать с сетями большой мощности.

Сварочные трансформаторы для оптимизации работы оборудования, понижения напряжения и создания тока высокой частоты. Это происходит из-за изменения индуктивного сопротивления или показателей холостого хода. Ступенчатое регулирование выполняется компоновкой электрообмотки на проводниках.


ТРАНСФОРМАТОРЫ

НАЗНАЧЕНИЕ ТРАНСФОРМАТОРОВ И ИХ ПРИМЕНЕНИЕ

Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение — понижающих.

Трансформаторы применяют в линиях электропередачи, в технике связи, в автоматике, измерительной технике и других областях.

В соответствии с назначением различают:

Силовые трансформаторы для питания электрических двигателей и осветительных сетей;

Специальные трансформаторы для питания сварочных аппаратов, электропечей и других потребителей особого назначения;

Измерительные трансформаторы для подключения измерительных приборов.

По числу фаз трансформаторы делятся на одно- и трехфазные. Трансформаторы, используемые в технике связи, подразделяют на низко- и высокочастотные.

Расчетные мощности трансформаторов различны — от долей вольт-ампер до десятков тысяч киловольт-ампер; рабочие частоты — от единиц герц до сотен килогерц.

Трансформатор — простой, надежный и экономичный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%. КПД трансформатора η, определяемый как отношение мощности на выходе Р 2 к мощности на входе Р 1 , зависит от нагрузки.

УСТРОЙСТВО ТРАНСФОРМАТОРА

Трансформатор представляет собой замкнутый магнитопровод, на котором расположены две или несколько обмоток. В маломощных высокочастотных трансформаторах, используемых в радиотехнических схемах, магнитопроводом может являться воздушная среда.

Для уменьшения потерь на гистерезис магнитопровод изготовляют из магнитомягкого материала — трансформаторной стали, имеющей узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35—0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.

Различают трансформаторы стержневого (рис. 7.1, а) и броневого (рис. 7.1, б) типов.

Рис. 7.1. Конструкция однофазного маломощного трансформатора стержневого (а) и броневого (б) типов

Последний хорошо защищает обмотки катушек от механических повреждений. Верхнюю часть магнитопровода, называемую ярмом, крепят после насадки на стержень катушек (обмоток). Стержни и ярмо соединяют очень плотно, чтобы исключить воздушные зазоры на стыках. В маломощных трансформаторах находят широкое применение кольцевые магнитопроводы, которые собирают из штампованных колец или навивают из длинной ленты. В этих магнитопроводах отсутствует воздушный зазор, поэтому магнитный поток рассеяния мал. В трансформаторах, рассчитанных на повышенные частоты, кольцевые магнитопроводы часто прессуют из ферромагнитного порошка, смешанного с изоляционным лаком.

Обмотки трансформаторов изготовляют из медного провода и располагают на одном и том же или на разных стержнях, рядом или одну под другой. В последнем случае непосредственно к стержню примыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения.

Обмотку трансформатора, к которой подводится напряжение питающей сети, называют первичной , а обмотку, к которой подсоединяется нагрузка,— вторичной . На сердечнике может быть размещено несколько вторичных обмоток с разным числом витков, что позволяет получить различные по значению вторичные напряжения.

При работе трансформатора за счет токов в обмотках, а также вследствие перемагничивания магнитопровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10 кВ-А), для которых достаточно воздушного охлаждения, называют сухими.

Рис. 7.2. Трехфазный силовой трансформатор Рис. 7.3. Общий вид автотрансформатора

I — ручка скользящего контакта; 2— скользящий контакт; 3 — обмотка

В мощных трансформаторах применяют масляное охлаждение (рис. 7.2). Магнитопровод 1 с обмотками 2, 3 размещается в баке 4, заполненном минеральным (трансформаторным) маслом. Масло не только отводит теплоту за счет конвекции или принудительной циркуляции, но и является хорошим диэлектриком (изолятором). Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. При изменении температуры объем масла меняется. При повышении температуры излишек масла поглощается расширителем 5, а при понижении температуры масло из расширителя возвращается в основной бак.

В тех случаях, когда требуется плавно изменять вторичное напряжение, применяют скользящий контакт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в автотрансформаторах, рассчитанных на регулирование напряжения в небольших пределах (рис. 7.3).

ФОРМУЛА ТРАНСФОРМАТОРНОЙ ЭДС

Рассмотрим катушку (рис. 7.4), к зажимам которой подведено синусоидальное напряжение. Пренебрежем сопротивлением катушки и потерями на гистерезис и вихревые токи. Тогда приложенное к катушке напряжение u = U m sinωt будет уравновешиваться только ЭДС самоиндукции e = E m sin ω t .

Это очевидно, так как полностью уравновешивать друг друга могут только равные и одинаково изменяющиеся во времени величины.

В соответствии с законом электромагнитной индукции е = — w ; следовательно, Е m sin ωt= —ω.

Это дифференциальное уравнение позволяет найти зависимость между ЭДС обмотки и магнитным потоком в магнитопроводе:

d Ф= - sin ωt dt

Проинтегрируем левую и правую части этого выражения:

Ф = - ∫ sin ω t dt= cos ωt +A

Здесь постоянная интегрирования A = 0, так как синусоидальная ЭДС не может создать постоянную составляющую магнитного потока. Таким образом,

E= cos ω t = Ф m cos ω t,

где Ф m = Е m /ω w —амплитудное значение переменного магнитного потока в магнитопроводе катушки. Подставив в последнее равенство Е m = √2 E и ω = 2πf, получим

Ф m =, или Е=

т. е. Е = 4,44 fw Ф m . Это выражение, связывающее действующее значение ЭДС в обмотке с амплитудой магнитного потока в магнитопроводе, принято называть формулой трансформаторной ЭДС. Она играет важную роль в теории трансформаторов и электрических машин переменного тока.

Рис. 7.4. Схема катушки с ферромагнитным сердечником в цепи переменного тока

ПРИНЦИП ДЕЙСТВИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА.

КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ.

Работа трансформатора основана на явлении взаимной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения.

При подключении первичной обмотки трансформатора к сети переменного тока напряжением U 1 по обмотке начнет проходить ток I 1 (рис. 7.5), который создаст в магнитопроводе переменный магнитный поток Ф. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС E 2 , которую можно использовать для питания нагрузки.

Поскольку первичная и вторичная обмотки трансформатора пронизываются одним и тем же магнитным потоком Ф, выражения индуцируемых в обмотке ЭДС можно записать в виде

Е 1 = 4,44fw 1 Ф m

Е 2 = 4,44 fw 2 Ф m

где f — частота переменного тока; w 1 , w 2 — число витков обмоток.

Е 2 /Е 1 = w 2 / w 2 = k .

Отношение чисел витков обмоток трансформатора называют коэффициентом трансформации k .

Таким образом, коэффициент трансформации показывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

На основании закона электромагнитной индукции можно написать

e 1 = — w 1 , e 2 = — w 2

Поделив одно равенство на другое, получим e 2 / e 1 = w 2 / w 1 = k

Следовательно, в любой момент времени отношение мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации. Нетрудно понять, что это возможно только при полном совпадении по фазе ЭДС е 1 и е 2 .

Если цепь вторичной обмотки трансформатора разомкнута (режим холостого хода), то напряжение на зажимах обмотки равно ее ЭДС: U 2 = E 2 , а напряжение источника питания почти полностью уравновешивается ЭДС первичной обмотки U ≈ E 1 . Следовательно, можно написать, что k = E 2 / E 1 ≈U 2 /U 1 .

Рис. 7.5. Принципиальная схема однофазного трансформатора

Таким образом, коэффициент трансформации может быть определен на основании измерений напряжения на входе и выходе ненагруженного трансформатора. Отношение напряжений на обмотках ненагруженного трансформатора указывается в его паспорте.

Учитывая высокий КПД трансформатора, можно полагать, что S t ≈ S 2 , где S 1 = U 1 I 1 — мощность, потребляемая из сети; S 2 = U 2 I 2 — мощность, отдаваемая в нагрузку.

Таким образом, U 1 I 1 ≈ U 2 I 2 , откуда I 1 / I 2 ≈ U 2 / U 1 = k .

Отношение токов первичной и вторичной обмоток приближенно равно коэффициенту трансформации, поэтому ток I 2 во столько раз увеличивается (уменьшается), во сколько раз уменьшается (увеличивается) U 2 .

ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

В линиях электропередачи используют в основном трехфазные силовые трансформаторы. Внешний вид, конструктивные особенности и компоновка основных элементов этого трансформатора представлены на рис. 7.2. Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещаются две обмотки одной фазы (рис. 7.6).

Рис. 7.6. Размещение обмоток на сердечнике трехфазного трансформатора

Для подключения трансформатора к линиям электропередачи на крышке бака имеются вводы, представляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низшего напряжения — буквами а, b , с. Ввод нулевого провода располагают слева от ввода а и обозначают О (рис. 7.7).

Принцип работы и электромагнитные процессы в трехфазном трансформаторе аналогичны рассмотренным ранее. Особенностью трехфазного трансформатора является зависимость коэффициента трансформации линейных напряжений от способа соединения обмоток.

Применяются главным образом три способа соединения обмоток трехфазного трансформатора: 1) соединение первичных и вторичных обмоток звездой (рис. 7.8, а); 2) соединение первичных обмоток звездой, вторичных — треугольником (рис. 7.8, б); 3) соединение первичных обмоток треугольником, вторичных—звездой (рис. 7.8, в).

Рис. 7.8. Способы соединения обмоток трехфазного трансформатора

Обозначим отношение чисел витков обмоток одной фазы буквой k , что соответствует коэффициенту трансформации однофазного трансформатора и может быть выражено через отношение фазных напряжений: k = w 2 / w 1 ≈ U 2ф / U 1ф

Обозначим коэффициент трансформации линейных напряжений буквой с.

При соединении обмоток по схеме звезда — звезда

При соединении обмоток по схеме звезда — треугольник

с =.

При соединении обмоток по схеме треугольник— звезда

Таким образом, при одном и том же числе витков обмоток трансформатора можно в √3 раза увеличить или уменьшить его коэффициент трансформации, выбирая соответствующую схему соединения обмоток.

АВТОТРАНСФОРМАТОРЫ И ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Принципиальная схема автотрансформатора изображена на рис. 7.9.

У автотрансформатора часть витков первичной обмотки используется в качестве вторичной обмотки, поэтому помимо магнитной связи имеется электрическая связь между первичной и вторичной цепями. В соответствии с этим энергия из первичной цепи во вторичную передается как с помощью магнитного потока, замыкающегося по магнитопроводу, так и непосредственно по проводам. Поскольку формула трансформаторной ЭДС применима к обмоткам автотрансформатора так же, как и к обмоткам трансформатора, коэффициент трансформации автотрансформатора выражается известными отношениями

k = w 2 /w l =E 2 /E l ≈ U 2 /U 1 ≈I 1 /I 2

Вследствие электрического соединения обмоток через часть витков, принадлежащую одновременно первичной и вторичной цепям, проходят токи I 1 и I 2 , которые направлены встречно и при небольшом коэффициенте трансформации мало отличаются друг от друга по значению. Поэтому их разность оказывается небольшой и обмотку w 2 можно выполнить из тонкого провода. Таким образом, при k = 0,5 - 2 экономится значительное количество меди. При больших или меньших коэффициентах трансформации это преимущество автотрансформатора исчезает, так как та часть обмотки, по которой проходят встречные токи I 1 и I 2 , уменьшается до нескольких витков, а сама разность токов увеличивается.

Электрическое соединение первичной и вторичной цепей повышает опасность при эксплуатации аппарата, так как при пробое изоляции в понижающем автотрансформаторе оператор может оказаться под высоким напряжением первичной цепи.

Автотрансформаторы применяют для пуска мощных двигателей переменного тока, регулирования напряжения в осветительных сетях, а также в других случаях, когда необходимо регулировать напряжение в небольших пределах.

Измерительные трансформаторы напряжения и тока используют для включения измерительных приборов, аппаратуры автоматического регулирования и защиты в высоковольтные цепи. Они позволяют уменьшить размеры и массу измерительных устройств, повысить безопасность обслуживающего персонала, расширить пределы измерения приборов переменного тока.

Измерительные трансформаторы напряжения служат для включения вольтметров и обмоток напряжения измерительных приборов (рис. 7.10). Поскольку эти обмотки имеют большое сопротивление и потребляют маленькую мощность, можно считать, что трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы тока используют для включения амперметров и токовых катушек измерительных приборов (рис. 7.11). Эти катушки имеют очень маленькое сопротивление, поэтому трансформаторы тока практически работают в режиме короткого замыкания.

Рис. 7.10. Схема включения и Рис. 7.11. Схема включения и

условное обозначение измери- условное обозначение изме-

тельного трансформатора напря- рительного трансформатора тока
жения

Результирующий магнитный поток в магнитопроводе трансформатора равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора тока он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя. Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединенного к нему измерительного прибора. Для повышения безопасности обслуживающего персонала кожух измерительного трансформатора должен быть тщательно заземлен.

СВАРОЧНЫЕ ТРАНСФОРМАТОРЫ

К источникам питания сварочных аппаратов предъявляются специфические требования: при заданной мощности они должны создавать большие токи в нагрузке, причем резкое изменение сопротивления нагрузки не должно существенно сказываться на значении сварочного тока.

Относительно невысокие напряжения при больших токах обеспечивают не только эффективное тепловыделение в сварочном контакте, но и безопасность сварщика, работающего обычно среди металлических конструкций с высокой электропроводностью.

В соответствии с рассмотренными требованиями сварочные трансформаторы обеспечивают понижение напряжения от 220 или 380 В до 60—70 В. Такое напряжение на зажимах вторичной обмотки устанавливается при холостом ходе сварочного трансформатора. В процессе сварки оно колеблется от максимального значения 60—70 В до значений, близких к нулю. Сопротивление электрической дуги, возникающей при сварке, изменяется при перемещениях руки сварщика. Если бы напряжение на зажимах вторичной обмотки трансформатора поддерживалось постоянным, возникали бы резкие колебания тока в цепи и регулировать тепловыделение было бы невозможно. Поэтому сварочный трансформатор устроен так, что при резком уменьшении сопротивления дуги ток в цепи увеличивается незначительно, а произведение I 2 R , определяющее количество теплоты, сохраняется на требуемом уровне.

В соответствии с законом Ома при резком уменьшении сопротивления и незначительном увеличении тока напряжение на дуге снижается. Сварочный трансформатор имеет крутопадающую внешнюю характеристику.

Сварочный трансформатор выдерживает короткие замыкания, возникающие в случае прикосновения электрода к сварочному шву. Ток короткого замыкания, как показывает внешняя характеристика, ограничен. Вторичная обмотка трансформатора рассчитана на достаточно длительное протекание этого тока.

При постоянном напряжении питающей сети быстрое снижение выходного напряжения трансформатора при незначительном возрастании тока может быть достигнуто только за счет увеличения внутреннего падения напряжения в обмотках трансформатора. Для этого нужно увеличить сопротивление обмоток.

Сварочные трансформаторы изготовляют с большим регулируемым индуктивным сопротивлением обмоток. При этом увеличивают не активное сопротивление проводов, а индуктивное сопротивление рассеяния обмоток, так как увеличение активного сопротивления привело бы к возрастанию потерь энергии и перегреву трансформатора.

Для увеличения индуктивного сопротивления рассеяния обмоток увеличивают поток рассеяния, вводя в магнитопровод трансформатора шунтирующий магнитопроводящий стержень, через который замыкается часть основного магнитного потока. Изменяя значение воздушного зазора в шунтирующем стержне, можно изменять магнитный поток рассеяния. Средний подвижный стержень, выполняющий функции магнитного шунта, предусмотрен, например, в конструкции отечественного сварочного трансформатора СТАН-1.

Применяют и другие способы изменения индуктивного сопротивления рассеяния обмоток. Так, в трансформаторе СТЭ в цепь вторичной обмотки включают специальный дроссель с регулируемым воздушным зазором, а в трансформаторе ТС-500 изменяют расстояние между первичной и вторичной обмотками.

Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора .

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции .

Если на первичную обмотку подать переменное напряжение U1 , то по виткам обмотки потечет переменный ток Io , который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле . Магнитное поле образует магнитный поток Фo , который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2 . И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2 , которое будет приблизительно равно наведенной ЭДС е2 .

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1 , образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1 . Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2 , создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2 , стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1 , т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2 , под воздействием которой во вторичной цепи течет ток I2 . Именно благодаря наличию магнитного потока Фo и существует ток I2 , который будет тем больше, чем больше Фo . Но и в то же время чем больше ток I2 , тем больше противодействующий поток Ф2 и, следовательно, меньше Фo .

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2 , тока I2 и потока Ф2 , обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo , а без него не мог бы существовать поток Ф2 и ток I2 . Следовательно, магнитный поток Ф1 , создаваемый первичным током I1 , всегда больше магнитного потока Ф2 , создаваемого вторичным током I2 .

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках . При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным .

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим .

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим .

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2 . Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока . Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы , используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями .
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали , имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы , которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые , броневые и тороидальные . При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые .

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые .

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные .

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во .
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n<1), например, применяется в ламповых усилителях;
  3. согласующий – трансформатор параметры напряжения не изменяет, происходит только гальваническая развязка цепей (n~1), например, применяется в звуковых усилителях.

В основе работы трансформатора лежит принцип электромагнитной индукции и для наиболее полной передачи энергии, для уменьшения потерь при трансформации, устройство обычно выполняется на магнитопроводе.

Как правило, первичная катушка одна, а вот вторичных может быть несколько, все зависит от назначения трансформатора.

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести . Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Статьи по теме: