Фрактальная графика основана на принципе. Фрактальная графика как цифровое беспредметное искусство

ФГБОУ ВО «МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ ИМЕНИ М. Е. ЕВСЕВЬЕВА»

Факультет физико-математический

Кафедра информатики и вычислительной техники

ФРАКТАЛЬНАЯ ГРАФИКА В СПЕЦИАЛЬНЫХ ПРОГРАММНЫХ СРЕДСТВАХ

Реферат выполнила

студентка 5 курса группы МДИ-113 Тимошина Светлана

Направление подготовки 050100 «Педагогическое образование».

Профили подготовки «Математика» и «Информатика».

Реферат проверила ______________________ Т. В. Кормилицина

Саранск 2017

Содержание

Введение………………………………………………………………………...…31. …......………..…….3-5

2. Специальные программные средства..........………..………………..….…5-13

Заключение……………………………………………………….……………...13

Список использованной литературы…………………………………………...14

Введение

На сегодняшний день Фрактальная графика является второй по росту популярности из четырёх видов компьютерной графики.

Так же есть . Одна – для создания фотореалистичных изображений; Другая – для создания сложных геометрических объектов; и – как отдельный вид от предыдущих для создания объёмных зрительно-подобных изображений и объектов.

Фрактальные изображения применяются в самых разных сферах, начиная от создания обычных текстур и фоновых изображений и кончая фантастическими ландшафтами для компьютерных игр или книжных иллюстраций. Создаются фрактальные изображения путем математических расчетов. Базовым элементом фрактальной графики является сама математическая формула - это означает, что никаких объектов в памяти компьютера не хранится, и изображение строится исключительно на основе уравнений.
Таинство фрактального изображения не кроется лишь в одной удачной формуле. Не менее важны и иные аспекты. Например, цветовая настройка, фильтры трансформации и др.
Существует очень много программ по созданию фрактальных изображений. Эти программы имеют свои достоинства и недостатки. С развитием технологий количество программ увеличивается, а их качество и возможности улучшаются.

    Общие сведения о фракталах и фрактальной графике

Фрактал (лат. fractus - дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Фрактальная графика, как и векторная, основана на математических вычислениях. Базовыми элементами фрактальной графики являются сами математические формулы, описывающие линии и линейные поверхности, то есть никаких объектов в памяти ЭВМ не хранится и изображение строится исключительно по формулам (уравнениям).

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

Одним из первых описал динамические фракталы в 1918 году французский математик Гастон Жюлиа в своем объемном труде в несколько сотен страниц. Но в нем отсутствовали какие-либо изображения. Компьютеры сделали видимым то, что не могло быть изображено во времена Жюлиа. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Квазифрактал отличается от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур (границы облаков, линия берега, деревья, листья растений, кораллы, …) являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул.

Мультифрактал - комплексный фрактал, который может детерминироваться не одним единственным алгоритмом построения, а несколькими последовательно сменяющими друг друга алгоритмами. Каждый из них генерирует паттерн со своей фрактальной размерностью. Для описания мультифрактала вычисляют мультифрактальный спектр включающий в себя ряд фрактальных размерностей присущих элементам данного мультифрактала.

Предфрактал - это самоподобная геометрическая фигура, каждый фрагмент которой повторяется в упрощённом виде при уменьшении масштаба конечное число раз. Количество уровней масштаба, на которых наблюдается подобие, называется порядком предфрактала. При порядке, стремящемся к бесконечности, предфрактал переходит в фрактал.

Фрактальный подход нашел широкое применение во многих областях компьютерной графики, науки и искусства.

Фрактальная графика не является, строго говоря, частью векторной графики, поскольку широко использует и растровые объекты. Фракталы широко используются в растровых (AdobePhotoshop) и векторных (CorelDraw) редакторах и трехмерной (CorelBryce) графике.

  1. Специальные программные средства

1. Программа Fractal Editor

Знакомство с основами фрактальной графики лучше всего начать с пакета Fractal Editor . Этот редактор (созданный фирмой Fractal Design, а теперь принадлежащий Corel) фактически представляет собой усеченный вариант программы Painter. Это отличная программа для обучения не только компьютерной графике, но прежде всего азам рисования. Малый объем требуемой памяти (для его установки необходимо всего 10 Мбайт), а также простой интерфейс, доступный даже ребенку, позволяют использовать его в школьной программе.

2. Программа Ultra Fractal


Ultra Fractal - лучшее решение для создания уникальных фрактальных изображений профессионального качества. Пакет отличается дружественным интерфейсом, многие элементы которого напоминают интерфейс Photoshop (что упрощает изучение), и сопровождается невероятно подробной и прекрасно иллюстрированной документацией с серией туториалов, в которых поэтапно рассматриваются все аспекты работы с программой. Ultra Fractal представлен двумя редакциями: Standard Edition и расширенной Animation Edition, возможности которой позволяют не только генерировать фрактальные изображения, но и создавать анимацию на их основе. Созданные изображения можно визуализировать в высоком разрешении, пригодном для полиграфии, и сохранить в собственном формате программы или в одном из популярных фрактальных форматов. Визуализированные изображения также могут быть экспортированы в один из растровых графических форматов (jpg, bmp, png и psd), а готовые фрактальные анимации - в AVI-формат.
Принцип создания фрактальных изображений достаточно традиционен, самое простое - воспользоваться одной из прилагаемых в поставке формул (сориентироваться относительно возможного вида генерируемого по выбранной формуле изображения поможет встроенный браузер), а затем подредактировать параметры формулы желаемым образом. А если эксперимент оказался неудачен, то последние действия легко отменить. Готовых фрактальных формул очень много, и число их может быть расширено путем скачивания новых формул с сайта программы. Подготовленные пользователи могут попытать счастья и в создании собственной формулы, для чего в пакете имеется встроенный текстовый редактор с поддержкой базовых шаблонов, основанных на стандартных конструкциях языка программирования фрактальных формул.
Однако не стоит думать, что таинство фрактального изображения кроется лишь в удачной формуле. Не менее важны и иные аспекты. Например, цветовая настройка, предполагающая выбор варианта окраски и точную настройку ее параметров. Настройка цвета реализована на уровне солидных графических пакетов, например градиенты можно создавать и настраивать самостоятельно, корректируя множество параметров, включая полупрозрачность, и сохранять их в библиотеке для дальнейшего использования. Применение слоев с возможностью изменения режимов их смешивания и корректировкой полупрозрачности позволяет генерировать многослойные фракталы и за счет наложения фрактальных изображений друг на друга добиваться уникальных эффектов. Использование масок непрозрачности обеспечивает маскирование определенных областей изображения. Фильтры трансформации позволяют выполнять в отношении выделенных фрагментов изображения разнообразные преобразования: масштабировать, зеркально отражать, обрезать по шаблону, искажать посредством завихрения или ряби, размножать по принципу калейдоскопа и т.д.

3. Программа Fractal Explorer


Fractal Explorer - программа для создания изображений фракталов и трехмерных аттракторов с достаточно впечатляющими возможностями. Имеет интуитивно понятный классический интерфейс, который может быть настроен в соответствии с пользовательскими предпочтениями, и поддерживает стандартные форматы фрактальных изображений (*.frp; *.frs; *.fri; *.fro; *.fr3, *.fr4 и др.). Готовые фрактальные изображения сохраняются в формате *.frs и могут быть экспортированы в один из растровых графических форматов (jpg, bmp, png и gif), а фрактальные анимации сохраняются как AVI-файлы.
Генерация фракталов возможна двумя способами - на основе базовых фрактальных изображений, построенных по входящим в поставку формулам, или с нуля. Первый вариант позволяет получить интересные результаты сравнительно просто, ведь выбрать подходящую формулу несложно, тем более что удобный файловый браузер позволит оценить качество фрактала из базы еще до создания на его основе фрактального изображения. У полученного таким путем фрактального изображения можно сменить цветовую палитру, добавить к нему фоновое изображение и определить режим смешивания фрактального и фонового слоев, а также степень прозрачности фрактального слоя. Затем можно будет подвергнуть фрактальное изображение трансформации, при необходимости масштабировать, определить размеры изображения и провести рендеринг. Создание изображения с нуля гораздо сложнее и предполагает выбор одного из двух способов. Можно выбрать тип фрактала почти из 150 вариантов. А затем уже перейти к изменению разнообразных параметров: настройке палитры, фона и пр. А можно попробовать создать свою пользовательскую формулу, воспользовавшись встроенным компилятором. Перед рендерингом готового изображения может потребоваться проведение автоматической коррекции цветового баланса и/или ручной коррекции яркости, контрастности и насыщенности.
4. Программа ChaosPro


ChaosPro - один из лучших бесплатных генераторов фрактальных изображений, с помощью которого нетрудно создать бесконечное множество удивительных по красоте фрактальных изображений. Программа имеет очень простой и удобный интерфейс и наряду с возможностью автоматического построения фракталов позволяет полностью управлять данным процессом за счет изменения большого количества настроек (число итераций, цветовая палитра, степень размытия, особенности проецирования, размер изображения и др.). Кроме того, создаваемые изображения могут быть многослойными (режимом смешивания слоев можно управлять) и к ним можно применить целую серию фильтров. Все накладываемые на строящиеся фракталы изменения тут же отражаются в окне просмотра. Созданные фракталы могут быть сохранены в собственном формате программы, либо в одном из основных фрактальных типов благодаря наличию встроенного компилятора. Или экспортированы в растровые изображения или 3D-объекты (если предварительно было получено трехмерное представление фрактала).
В списке возможностей программы:

точная цветовая настройка, обеспечивающая плавные градиентные переходы цветов друг в друга;

одновременное построение нескольких фракталов в разных окнах;

возможность создания анимации на основе фрактальных изображений с определением ключевых анимационных фаз, которые могут отличаться по любому изменяемому параметру: углам поворота и вращения, цветовым параметрам и пр.;

создание трехмерных представлений фракталов на основе обычных двумерных изображений;

поддержка многих стандартных форматов фрактальных изображений, изображения в которых могут быть импортированы и отредактированы в среде ChaosPro.

5. Программа Apophysis


Apophysis - интересный инструмент для генерации фракталов на основе базовых фрактальных формул. Созданные по готовым формулам фракталы можно редактировать и неузнаваемо изменять, регулируя разнообразные параметры. Так, например, в редакторе их можно трансформировать, либо изменив лежащие в основе фракталов треугольники, либо применив понравившийся метод преобразования: волнообразное искажение, перспективу, размытие по Гауссу и др. Затем стоит поэкспериментировать с цветами, выбрав один из базовых вариантов градиентной заливки. Список встроенных заливок достаточно внушителен, и при необходимости можно автоматически подобрать наиболее подходящую заливку к имеющемуся растровому изображению, что актуально, например, при создании фрактального фона в том же стиле, что и иные изображения некоего проекта. При необходимости несложно подрегулировать гамму и яркость, изменить фон, масштабировать фрактальный объект и уточнить его расположение на фоне. Можно также подвергнуть результат разнообразным мутациям в нужном стиле. По окончании следует задать размеры конечного фрактального изображения и записать его визуализированный вариант в виде графического файла (jpg, bmp, png).

6. Программа Mystica


Mystica - универсальный генератор уникальных фантастических двумерных и трехмерных изображений и текстур, которые в дальнейшем можно использовать в разных проектах, например в качестве реальных текстур для Web-страниц, фонов Рабочего стола или фантастических фоновых изображений, которые могут быть задействованы, например, при оформлении детских книг. Пакет отличается нестандартным и достаточно сложным интерфейсом и может работать в двух режимах: Sample (ориентирован на новичков и содержит минимум настроек) и Expert (предназначен для профессионалов). Создаваемые изображения могут иметь любой размер и затем экспортироваться в популярные графические 2D-форматы. Прямо из окна программы их можно отправить по электронной почте, опубликовать в Html-галерее или создать на их основе видеоролик в форматах divx, mpeg4 и др. Встроенный трехмерный движок программы может быть использован при создании трехмерных сцен для компьютерных игр, например фантастических фонов и ландшафтов.
Генерация изображений осуществляется на основе заложенных в пакете фрактальных формул, а система подготовки изображения многоуровневая и включает очень подробную настройку цветов, возможность простейших трансформаций генерируемых элементов и массу прочих преобразований. В их числе применение фильтров, изменение освещения, корректировка цветовой гаммы, яркости и контрастности, изменение использованного при генерации материала, добавление к изображению "хаотических" структур и пр.

Заключение

Данный вид графики незаменим при создании таких сложных повторяющихся объектов, состоящих из самоподобных частей, как облака, горы, вода и т.д. Фактически, благодаря фракталу, найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Позволим заметить, что кроме графики, так же есть и живопись, и музыка. Все они построены на технологии фрактала.

Бесспорными достоинствами фрактала являются:

    Малый размер исполняемого файла при большом изображении.

    Бесконечная масштабируемость и увеличение сложности картинки.

    Незаменимость в построении сложных фигур, состоящих из однотипных элементов (облака, вода и т.д.).

    Относительная легкость в создании сложных композиций.

    Фотореалистичность.

Недостатки:

    Все вычисления делаются компьютером, чем сложнее изображение, тем больше загруженность ЦП и ОЗУ.

    Неосвоенность технологии.

    Плохое распространение и поддержка различными системами.

    Небольшой спектр создания объектов изображений.

    Ограниченность материнских математических фигур.

В общем то, как всегда. У всего есть достоинства и недостатки. Графика тем более грешит и тем, и тем.

Литература

    Мандельброт, Б. Фрактальная геометрия природы / Б. Мандельборт.−

М.: «Институт компьютерных исследований», 2002.

    Федер, Е. Фракталы / Е. Федер. − М: «Мир», 1991.

На сегодня фрактальная графика очень быстро развивается и весьма популярна и перспективна. Основой фрактальной графики является геометрия. Основным методом создания изображений является принцип наследственности от геометрического свойства наследников.

Фрактал - это структура, которая состоит из частей, подобных целому. Его основное свойство - самоподобие. Объекты, называют самоподобными, если части объекта после увеличения, остаются похожими друг на друга.

Центром фрактальной фигуры является её простейший элемент - треугольник с равными сторонами, который назвали «фрактальный». На середине сторон треугольника строят такие же равносторонние треугольники, которые равны одной третьей стороны исходной фигуры. Затем, на треугольниках первого поколения выстраивают треугольники второго поколения, но уже со стороной равно одной девятой от стороны центрального треугольника. Этот процесс можно продолжать нескончаемое число раз.

Изменение и комбинируя окраски фрактальных фигур, возможно, проектировать живые или неживые природные образы, такие как снег или же деревья, ветви, листья. Составлять фрактальную композицию. Изображения фрактальной графики состоят из уравнений или по системе уравнений. Фрактальная графика - это вычисление. Для того, что выполнять изображения такой графики, компьютеру нужно хранить только формулу или алгоритм, по которой производятся вычисления. Заменив коэффициенты уравнения, можем создать абсолютно другое изображение, а при использовании сразу нескольких коэффициентов одновременно, можно создать линии или поверхность самого сложной формы.

Фрактальная графика 21 века стала популярной совсем недавно, в ней используются такие понятия, как: фрактальные треугольники, фигуры, объекты прямые и композиции. А так же «Объекты-родители» и «Объекты-наследники». Все эти понятия играют свою роль в создании изображения.

При помощи фрактальной компьютерной графики создаются абстрактные композиции, реализующие такие приемы композиции как линии горизонтальные и вертикальные, любые направления диагоналей, различные симметричные и асимметричные. Немногие российские и зарубежные программисты, и компьютерные дизайнеры знакомы с фрактальной графикой.

Объекты фрактальной графики по структуре можно сравнивать со сложными структурами кристалликов льда или снежинок. Используя эти уникальные свойства фрактальной графики можно создавать декоративные орнаменты. Разработанные великими умами алгоритмы и уравнения для синтеза коэффициентов фрактальных рисунков, позволяют создать картинки, близкие по сходству с оригиналом, то есть клонировать картинку, причем неограниченное количество раз.

В машинной графике использование фрактальной геометрии незаменимо при создании искусственных облаков, поверхности моря или гор. Только благодаря фрактальной графике был создан способ реализации сложных объектов, которые по образу очень похожи на природу. Геометрические фракталы на мониторе компьютера - это построенные по заданной программе узоры.

Создателями фракталов является человек разносторонний, владеющий несколькими профессиями сразу. Он должен быть одновременно и художником, и скульптором, и фотографом. Создавая рисунок свои руками, вы пользуясь математической формулой сам задаете ту форму изображения, которая вам нужна. Подстраиваете параметры, выбираете, каким рисунок будет по виду, какого цвета. Отличие фрактальной графики от других редакторов графики, например Photoshop, заключается в том, что вы создаете свой уникальный рисунок с «ноля».

В Photoshop невозможно создать рисунок, его можно лишь отредактировать или отформатировать, придать ему необходимый цвет, размер, улучшить качество и сгладить недостатки. Отличительной чертой редактора Painter считается то, что художник, в реале работающий без помощи компьютера, не сможет, используя кисть, перо или карандаш, тех же возможностей, что даны в Painter.

В век цифровых технологий компьютерной графикой никого не удивишь. Однако, про такое направление как фрактальная графика слышали далеко не все. Что же такое фрактальная графика? Что такое фрактал и как его нарисовать?

Принцип фрактала

Прежде чем ответить на эти вопросы, давайте немного заглянем в историю. Термин «фрактал» появился в 1975 году благодаря математику, создателю фрактальной геометрии Бенуа Мандельброту. Он внёс огромный вклад в понимание этого явления в природе и жизни. Много интересной информации на эту тему можно найти в его известной книге «Фрактальная геометрия природы».

А теперь рассмотрим что же такое фрактал? Если вкратце, то фрактал — это повторяющееся самоподобие. Происходит это слово от латинского fractus - что значит дроблёный, разбитый. То есть фигура, состоящая из частей, которые похожи на неё — и есть фрактал.

Если брать примеры из природы, то фракталами являются снежинки, извилистая линия побережья, кроны деревьев. Свойства фрактала очень хорошо демонстрирует снежинка. Мельчайшие кристаллики из которых она состоит, повторяются и образуют такие же кристаллы, но уже большего размера. То же самое можно увидеть и в деревьях. Из ветки крупного размера вырастает такая же ветка, но уже меньшего размера, а из этой ветки растет ещё меньшая веточка и т. д. То есть одинаковые по форме ветви повторяются, уменьшаясь в размерах. А это и есть фрактал — повторяющееся самоподобие.

Кстати, если мы захотим увеличить картинку с фрактальной структурой, то это будет «бегом по кругу», так как фрактал станет увеличиваться бесконечно. Мы будем видеть ту же самую картинку, несмотря на увеличение. Бесконечность при увеличении или уменьшении является удивительным свойством фракталов.

Как строится фрактал?

Чтобы нарисовать фрактал, воспользуемся треугольником Серпинского. Предложенный польским математиком Вацлавом Серпинским ещё в 1915 году, этот фрактал стал широко известен и замечательно иллюстрирует принцип построения фракталов. Вот схема его построения:

В качестве основной фигуры здесь используется равносторонний треугольник. Отмечаем середину на каждой из его сторон. Затем соединяем линиями эти три точки. В результате, внутри нашего треугольника образуются ещё три треугольника, но уже меньшего размера. Далее повторяем дробление каждого из этих трёх треугольников. Получаем уже девять новых фигур, затем — двадцать семь… И так до бесконечности. И всё это множество находится внутри первоначального треугольника. Поэтому при приближении картинки в электронном виде возникает ощущение бесконечности.

Фрактальная графика

Итак, что же из себя представляет фрактальная графика? Мы неслучайно рассмотрели суть фрактала и принцип его построения, потому что на этом и основывается фрактальная графика. Чтобы создать такое графическое изображение художники используют специальные редакторы. Фрактальное изображение в них формируется из объектов-родителей и объектов-наследников и рассчитывается посредством математических формул. Поэтому графические файлы в этих программах весят немного (в отличие от растровой графики). В качестве примера редактора фрактальной графики, можно назвать ChaosPro. Это бесплатный генератор фракталов, работающий в режиме реального времени. Вот ряд интересных изображений сгенерированных в ChaosPro:

Посредством фрактальной геометрии можно генерировать поверхность воды, облака, горы. Можно с помощью нескольких коэффициентов рассчитать поверхности сложной формы. Таким способом создаются удивительные абстрактные картины, похожие на фантастический инопланетный мир. Свойства фракталов можно использовать и в технической компьютерной графике. Но если отвлечься от практического применения и сосредоточиться на красоте фрактальной графики, то разве это не фантастическое творчество, достойное быть самостоятельным направлением в изобразительном искусстве и просто радовать глаз?

Фрактальная графика, как и векторная, основана на математических вычислениях. Базовыми элементами фрактальной графики являются сами математические формулы, описывающие линии и линейные поверхности, то есть никаких объектов в памяти ЭВМ не хранится и изображение строится исключительно по формулам (уравнениям).

Установлено, что при любом уровне разрешения, сложная кривая (например, береговая линия), поверхность могут быть аппроксимированы (смоделированы) и прорисованы посредством объединения участков небольших прямолинейных (плоских) сегментов. При переходе на более высокий уровень разрешения аппроксимирующий сегмент вероятностным способом разбивается на новую последовательность новых линейных сегментов и так далее. На основании этого свойства – закона статистического постоянства порождения деталей природных образований при переходе от низких к более высоким уровням разрешения и построен метод использования фрактальных поверхностей

В

Рис. 1.4Пример фрактального объекта

переводе с английского “фрактальный” означает состоящий из частиц, частей. Такими поверхностями называют класс нерегулярных геометрических форм, задаваемых вероятностным способом на основе исходного описания низкого уровня. Закон дробления линии (поверхности) подбирается опытным путем по критерию визуального согласования синтезируемого (моделируемого) изображения с реальным объектом, изображение которого стремятся получить.

Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие ландшафты и трехмерные объекты. Наиболее часто фрактальные поверхности используют для моделирования горных ландшафтов. Горный массив (рис. 1.4) предварительно, очень приближенно, описывают полигональной поверхностью, составленной из плоских четырехугольников. Далее каждый четырехугольник разбивается с помощью случайной функции на четыре фигуры меньших размеров, при этом все фигуры вероятностным образом сдвигаются относительно исходной плоскости, сохраняя для каждой фигуры по одной общей вершине с исходным четырехугольником. Деление продолжается до достижения желаемого уровня изрезанности поверхности. Удаляются скрытые поверхности и закрашиваются сгенерированные четырехугольники. Изображения, созданные на основе фрактальных поверхностей, только статистически идентичны реальным объектам.

Фрактальный подход нашел широкое применение во многих областях компьютерной графики, науки и искусства.

Фрактальная графика не является, строго говоря, частью векторной графики, поскольку широко использует и растровые объекты. Фракталы широко используются в растровых (AdobePhotoshop) и векторных (CorelDraw) редакторах и трехмерной (CorelBryce) графике.

Форматы файлов компьютерной графики.

Работа со средствами компьютерной графики предполагает использование при создании графической информации (рисунков, чертежей, иллюстраций) разнообразных графических пакетов растровой и векторной графики (PhotoShop,CorelDraw,bCad,AutoCad, Компас и др.). Все эти пакеты работают в соответствующих форматах, позволяющих не только сохранить созданную информацию, экспортировать ее в другие пакеты, но и импортировать графическую информацию других пакетов. В компьютерной графике применяется большое количество форматов, но лишь небольшая их часть стала стандартом де-факто и применяется в подавляющем множестве программ. Разнообразие в подходах (алгоритмах) и средствах в решении традиционных задач компьютерной графики приводит к несовместимости выходных данных. Как правило, несовместимые форматы выходных файлов имеют векторные, растровые, трехмерные изображения, хотя существуют форматы файлов, позволяющие хранить данные разных классов. Многие приложения ориентированы на задачи с собственными специфическими форматами, но стремление интегрироваться в общую информационную структуру, вынуждает их использовать специальные приемы, фильтры или экспортировать изображение в стандартный обменный формат.

TIFF (Tagget Image File Format ) предназначен для хранения растровых изображений высокого качества (расширение файла . TIF ) в графических пакетах, работающих MS - DOS , PC IBM , Unix , Macintosh платформах. Широта использования этого формата объясняется его возможностями: поддержка множества цветовых моделей, наличие восьмибитного альфа-канала 3 , сохранение обтравочных контуров, различные алгоритмы сжатия без потери информации. Формат обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских, растровых и векторных программ. Цветовые модели GIF CMYK и Pantone , поддерживаемые TIFF , обеспечивают верную цветопередачу при выводе изображений на полиграфическую печать; допускает запись в файл цветовой профиль ICC . Последние версии TIFF поддерживают несколько алгоритмов сжатия изображения: LZW – без потери информации; ZIP –без потери информации, JPED -- с частичной потерей информацией. Универсальным принято считать метод сжатия LZW , обеспечивающий меньший размер выходного файла. Формат широко используется для хранения и обмена графической информацией между различными графическими платформами.

GIF (CompuServe Graphics Interchange Format ) -Графический растровый обменный формат. Разработан фирмой CompuServe . Поддерживается MS - DOS , PC IBM , Unix , Macintosh и Amiga операционными системами. Формат разработан для поддержки графики в Интернете, независимой от аппаратного обеспечения. Поддерживает функции прозрачности цветов и некоторые виды анимации. Поддерживает кодировку 256 цветов. Один из цветов может получить свойство прозрачности через двухбитовый альфа-канал. Допускает включение в файл нескольких растровых изображений, воспроизводимых с заданной периодичностью, что обеспечивает показ на экране простейшей анимации.

Получил большую популярность в Интернете, благодаря большой степени сжатия (метод LZW ). Ограниченные возможности по работе с цветными изображениями обусловливают его применение исключительно для электронных публикаций.

BMP (Windows Device Independent Bitmap ) - растровый формат обмена изображениями между приложениями, работающихми в операционной системе Windows (расширение файла. BMP ) . Формат поддерживает большое количество цветных моделей вплоть до 24 – битного пространства RGB . Полиграфический формат CMYK не поддерживается, что ограничивает сферу применения BMP для электронных публикаций. Размер графического изображения неограничен. В качестве алгоритма сжатия используется метод RLE (компрессия без потери информации). Файлы в формате BMP имеют значительный объем.

PSD (PhotoShop Document) - обственный растровый формат пакета Adobe PhotoShop , один из наиболее мощных по возможностям хранения графической информации. Поддерживает платформы операционных систем Macintosh и Window s. Запоминает параметры слоев, каналов, степени прозрачности, множество и разнообразие масок. Максимальный размер записываемого изображения 30000 х 30000 пикселей. Поддерживает 48-битное кодирование цвета, цветоделение, различные цветовые модели. Применяемый метод сжатия (RLE ) не обеспечивает достаточное сжатие, объем сохраняемой информации достаточно высок.

PhotoCD - растровый формат, разработанный фирмой Kodak , для хранения цифровых изображений высокого качества. Поддерживается платформами всех операционных систем. Формат хранения данных в файле именуется Image Pac , внутренняя структура которого обеспечивает хранение изображения с фиксированными величинами разрешений, и поэтому размеры любых файлов лишь незначительно отличаются друг от друга и находятся в диапазоне 4-5 Мбайт. Каждому разрешению присвоен собственный уровень, отсчитываемый от так называемого базового ( Base ), составляющего 512 х 768 точек.

В файле предусмотрено пять уровней – от Base/16 (128 х 192 точек) до Baseх 16(2048 х 3072 точек). Работает с 24-битовой кодировкой цветов. Для работы с цветовой информацией используется цветовая модельYCC . Формат обеспечивает хранение высоко качественных полутоновых изображений и записи высококачественных фото - изображений наCD - ROM .

JPEG (Joint Photographic Expects Group ) - формат растровых изображений (расширение файла.JPG ), разработанный фирмой C-Cube Microsystems, ориентирован на все графические платформы. Работает с 24 – битной кодировкой цвета. Независимо от исходной цветовой модели изображения все пиксели переводятся в цветовое пространство CIE Lab . Допустимый максимальный размер изображения 64000 х 64000 точек.

По существу является методом сжатия изображения с частичной потерей информации. Применение компрессии JPEG позволяет уменьшить объем занимаемый файлом до 500 раз по сравнению обычнымbitmap . Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применяемые методы сжатия основаны на удалении «избыточной» информации. Используется в основном для электронных публикаций.

CDR (CorelDraw ) - векторный формат. Рабочий формат графического пакета CorelDraw фирмы Corel Corporation.

EPS (Encapsulated PostScript ) - Фирма Adobe разработала формат описания как векторных, так и растровых изображений на упрощенной версии языка PostScript , который де-факто является стандартом в области допечатных процессов и полиграфии (файл с расширением.EPS ). Это самый надежный и универсальный способ хранения и передачи графических данных. Файл не поддерживает многостраничные документы, но в нем могут одновременно храниться растровые и векторные графические изображения, все необходимые данные о свойствах самого изображения: любая цветовая модель и профили (параметры калибровки оборудования), канал прозрачности, обтравочный контур, треппинг (перекрытие цветов на границе), внедренные шрифты.

В зависимости от потребности при отображении на экране векторного изображения используется формат WMF , а для растрового –TIFF . Открыть файл. EPS для просмотра и редактирования можно при помощи ограниченного перечня программ (например,Adobe Illustrator , CorelDraw ). Кроме того, существенным недостаткомEPS является то, что экранная копия лишь в общих чертах отображает реальное изображение. Действительное изображение можно увидеть на выходе выводного устройства с помощью специальных программ просмотра или после преобразования файла в форматPDF в приложенияхAcrobat Reader , Acrobat Exchange .

WMF (Windows MetaFile ) - файл обменного формата векторных данных относится к категории метафайлов 4 . Является «внутренним» форматом операционной системы Windows на платформеIBM PC для всех ее графических приложений (расширение имени файла.WMF ) через буфер обмена. Однако «универсальность» формата годится далеко не для всех программ. Типичными ошибками при переносе изображения являются искажение цветов, неправильная установка толщины контура и свойств заливки. В формат нельзя включить растровое изображение. Рекомендуется для переноса самых простых объектов.

CGM (Computer Graphics Metafile )- Графический метафайл. Формат файла разработан Международной организацией по стандартизации и Американским национальным институтом стандартов. Поддерживается всеми графическими платформами. Работает с неограниченным числом цветов и не имеет ограничение на размер графического изображения. Используются RLE и CCITT Group 3 и Group 4 методы сжатия информации. Широко используется для обмена векторной и растровой графической информацией между графическими приложениями, работающими на различных платформах.

DXF (Data eXchange Format ) – Специальный символьный формат обмена информацией, разработанный компанией Autodesk Inc. (США) для своих программных продуктов, в первую очередь AutoCAD. Может работать в операционной системе MS - DOS . Поддерживает 8-битную кодировку цвета, сохраняет трехмерные изображения. Формат не предусматривает сжатие информации.

Этот формат обмена стал фактическим стандартом для чеpтежно-гpaфических систем и поддерживается практически всеми разработчиками программных продуктов САПР.

Фрактальная графика , как и векторная, основана на математических вычислениях . Однако её базовым элементом является сама математическая формула , то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям либосистемам уравнений . Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Определение . Фрактал - это объект, отдельные элементарные части которого повторяют (наследуют) свойства своих «родительских » структур.

Понятия фрактал и фрактальная геометрия (от лат. fractus - состоящий из фрагментов ) впервые были предложены в 1975 г. математиком Б.Мандельбротом для обозначения нерегулярных , но самоподобных структур . Рождение фрактальной геометрии связывают с выходом в 1977 г. его книги «Фрактальная геометрия природы», в которой были объединены в единую систему научные разработки учёных, работавших в этой области (Пуанкаре, Жюлиа, Кантор и др.). С точки зрения компьютерной графики фрактальная геометрия незаменима при задании линий и поверхностей достаточно сложной формы, а также при генерации объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является их самоподобие . В самом простом случае небольшая часть фрактала содержит информацию обо всём фрактале в целом. Существует большое разнообразие фракталов. Потенциально наиболее полезным их видом являются фракталы на основе системы итеративных функций (Iterated Function System – IFS ). Метод IFS , изобретённый Майклом Барнсли и его коллегами из Технологического института шт. Джорджия (США), применительно к построению фрактальных изображений базируется на самоподобии их отдельных элементов и заключается в моделировании всего рисунка несколькими меньшими его фрагментами . Специальные уравнения позволяют переносить, поворачивать и изменять масштаб отдельных участков изображения, служащих компоновочными блоками для остальной части картины в целом.

Самыми известными природными фрактальными объектами являются деревья , от каждой ветки которых ответвляются меньшие, похожие на нее, от тех - еще меньшие и так далее. Появление новых элементов меньшего масштаба происходит по достаточно простому алгоритму. Очевидно, что описать такой объект можно всего лишь несколькими математическими уравнениями. Фрактальными свойствами обладают также и многие другие природные объекты: снежинка при увеличении тоже оказывается фракталом, по фрактальным алгоритмам растут кристаллы, растения и т.д.

Посмотрим, как строится простейший фрактал - фрактальный треугольник, его еще называют «снежинка Коха » (рис. 8.2.). Используя простейший алгоритм, треугольники можно достраивать аналогичным образом до бесконечности, что приведёт к получению объекта любого уровня сложности. При этом в отличие от векторной графики, ничего кроме самих уравнений в памяти ком-пьютера хранить не нужно. Вся информация, необходимая для воспроизведения этого фрактала, будет занимать всего лишь несколько десятков байт. Возникает вопрос - а можно ли сжимать данные, подобрав для этого подходящий фрактальный алгоритм? Принципиально - можно, и в этом направлении в настоящее время ведутся активные исследования. Некоторые уже разработанные фрактальные алгоритмы позволяют сжимать определенные типы файлов в 30 раз и более.

8.6.Трехмерная (3D) графика.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов и т.п. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования - создание подвижного изображения реального физического тела . В упрощенном виде для пространственного моделирования объекта требуется:

§ Спроектировать и создать виртуальный каркас скелет ») объекта, наиболее полно соответствующий его реальной форме;

§ Спроектировать и создать виртуальные материалы (текстуры ), по физическим свойствам визуализации похожие на реальные;

§ Наложить виртуальные материалы на различные части поверхности объекта (спроецировать текстуры на объект );

§ Настроить физические параметры пространства , в котором будет находиться объект, т.е. задать освещение, гравитацию, свойства атмосферы и т.д.;

§ Задать траекторию движения объекта;

§ Наложить поверхностные эффекты на итоговый анимационный сюжет.

Для создания реалистичной каркасной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие , так назы­ваемые сплайновые поверхности . В последнем случае вид поверхности определя­ется расположенной в пространстве сеткой опор­ных точек , каждой из которых присваивается коэф­фициент , задающий степень её влиянии на часть поверхности , расположенной вблизи опорной точки . От взаимного распо­ложения точек и величины коэффициентов зависит форма и гладкость поверх­ности в целом. Деформация объекта в общем случае обеспечивается перемещением отдельных контрольных точек каркаса , связанных с близлежащими опорными точками и влияющих на них в соответствии с удаленностью друг от друга. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое с учетом их взаимодействия на основе заданной физической модели.

После формирования «скелета » объекта необходимо покрыть его поверхность требуемыми материалами (текстурами). При этом осуществляется так называемая визуализация поверхности , т.е. расчет коэффициента её прозрачности, угла преломления лучей света на границе материала и окружающего пространства и т.д. Закраска поверхностей объекта осуществляется, как правило, метода­ми Гуро или Фонга,) представляющими собой специальные алгоритмы расчета и формирования цветовых оттенков отдельных частей этих поверхностей.

Из всех параметров пространства, в котором будет существовать создаваемый объект, с точки зрения визуализации самым важным является определение источников света . В трехмерной графике принято использовать виртуальные эквиваленты реальных физичес­ких световых источников, таких как, например, Солнце (удаленный неточечный источник ), электри­ческая лампочка (точечный источник ), естественная освещенность вне видимости Солнца и Луны (растворен­ный свет ), прожектор (направленный источник ).

После завершения конструирования и визуализации объекта приступают к его «оживлению », то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах изображения . В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в пятом кадре) задается новая ориентация объекта и так далее до конечного положения. Промежуточные кадры вычисляются программно по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями, определяемыми законами взаимодействия объектов между собой, разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей и т.д. Такой подход называют методом инверсной кинематики движения . Он хорошо работает при моделировании различных механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели , когда создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения этих точек просчитываются предыдущим методом, затем на каркас накладывается оболочка из смоделированных поверхностей и осуществляется их визуализация путем наложения текстур с учетом условий освещенности.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Для этого на объекте закрепляют в контрольных точках источники света и снимают заданное движение на видео- или кинопленку. Затем координаты этих точек по кадрам переводят в компьютер и присваивают соответствующим опорным точкам каркасной модели . В результате движе­ния смоделированного объекта оказываются практически неотличимыми от движений живого прототипа.

Процесс расчета реалистичных изображений в компьютерной графике называют рендерингом (визуализацией ). Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман и т.д. Однако их применение в полном объеме требует достаточно больших вычислитель­ных ресурсов и поэтому в персональных компьютерах обычно реализуется лишь в упро­щенных вариантах. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров других продуктов.

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств - автомобилей, судов, летательных и кос­мических аппаратов. В них очень точно должны быть смоделированы технические параметры реальных объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры могут быть реализованы и на персональных компьютерах.

Среди программных средств создания и обработки трехмерной графики для персональных компьютеров можно выделить три пакета:

§ 3D Studio Max (фирмаKinetix). Пакет считается полупрофессиональным, однако его ресурсов вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Его отличительными особенностями являются поддержка большинства существующих аппаратных ускорителей 3D -графики, мощные световые эффекты и большое число программных дополнений от сторонних фирм. Сравнительная нетребовательность к аппаратным ресурсам позволяет использовать 3D Studio Max даже на ПК среднего уровня. Вместе с тем по средствам моделирования и анимации он все же уступает более разви­тым современным программным средствам.

§ Softimage 3D (фирмаMicrosoft). Программа изначально создавалась для специализированных графических станций и лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Её отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров, качественный и достаточно быстрый модуль для рендеринга и множество программных дополнений, значительно расширяющих функции пакета. Однако на платформе IBM PC Softimage 3D выглядит несколько тяжеловато и требует достаточно мощных аппаратных ресурсов.

§ Maya (фирмыAlias, Wavefront, TDI). Один из наиболее передовых пакетов в классе средств создания и обработки трехмерной графики для персональных компьютеров с точки зрения интерфейса и функциональных возможностей. Существует в вариантах для различных операционных систем, в том числе и Windows NT. Весь инструментарий Maya сведен в четыре группы: анимация (Animation ), моделирование (Modeling ), физическое моделирование (Dynamic ) и визуализация (Rendering ). Пакет имеет модульное построение и включает в себя программные блоки, обеспечивающие имитацию физических твердых тел, захват движения, обработку звука, обработку вирту­альных моделей методами, характерными для реальной работы скульпторов и художников, а также сопряжение реальных натурных съемок с компьютерной анимацией и т.д.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Издательство СПбГПУ
УДК 681.3 (075) Рекомендовано к изданию Научно-методическим советом Псковского государственного политехнического института Рецензенты: - Ил

Основы информатики
1. Информация и информационные процессы Основные понятия: информация, информационные процессы, информационное общество, и

Информационные технологии
7. Технологии обработки текстовой информации Основные понятия: текстовый редактор и процессор, Формат текстового файла, Т


Типовая структура пользовательского интерфейса текстового процессора приведена на рис. 7.1 и она включает следующие элементы: § Строка главного меню содержит имена групп к

Текстовый файл. Основные элементы текстового документа
Утверждение. Текстовые файлы - наиболее простая и наглядная форма представления алфавитно-цифровой информации, позволяющая вводить, хранить, редактировать, читать на экране и печат

Этапы формирования текстового электронного документа
Любой текстовый документ в процессе своего формирования проходит следующие этапы (рис.7.2):) 1. Создание документа. 2. Вво

Редактирование текста
Операция редактированиятекста состоит в замене или корректировке неправильно введенных текстовых фрагментов, изменении некоторых атрибутов этих фрагментов и прочее. При выполнении

Выделение, удаление, копированиеи перемещение текста
Все эти перечисленные операции выполняются над отдельными символами, словами, фрагментами текста, абзацами целиком, страницами, несколькими страницами и даже документом в целом. Однако, необходимо

Поиск и замена фрагментов текста
Зачастую при форматировании текста возникает необходимость оперативного поиска и замены по всему набранному тексту документа неправильно набранных слов или словосочетаний, отдельных служебных симво

Стили и шаблоны
Наиболее мощным средством автоматизации форматирования в текстовых редакторах является механизм под названием «стиль». Известно два основных подхода к оформлению текстовог

Средства автоматизации ввода текста
При вводе текста эффективными средствами автоматизации являютсяавтозамена, автотекст, автопроверка орфографии и грамматики. Функция автозамена позволяет с

Автоматическое форматирование текстового документа
Под автоформатированиемпонимается автоматическое оформление текстового документа либо сразу при вводе текста, либо по окончании в случае активизации соответствующей команды. Систем

Создание таблиц
Определение. Таблица- это совокупность ячеек, расположенных в строках и столбцах, которые можно заполнять произвольным текстом или графикой.Ячейкойназывается прямо

Создание графических объектов с помощью встроенных средств
В современных текстовых процессорах можно создавать рисованные объекты, не закрывая документа, в который они должны быть, вставлены. Рисование происходит прямо в документе с использованием внутренн

Вставка объектов из других приложений
Как уже упоминалось, главным принципиальным достоинством современных текстовых процессоров является возможность создания сложных составных документов. Под сложным составным докумен

Основы издательского делопроизводства
Подготовка сложных составных документов к их изданию в виде брошюр, технических отчетов, сборников документов, журналов, книг и иной печатной продукции до недавнего времени достаточно сложным, труд

Теоретические основы представления графических данных
Представление компьютерных данных в графическом виде впервые было реализовано еще в середине 50-х годов 20-го века в задачах научных и военных исследований. С тех пор графический способ отображения

Форматы графических данных
В компьютерной графике используется несколько десятков различных форматов файлов для хранения изображений, но лишь часть из них стала стандартом и применяется в подавляющем большин

Растровая графика
Растровые изображения формируются в процессе преобразования графической инфор­мации из аналоговой формы в цифровую, например, при сканировании существующих на бумаге или фотоплен­к

Векторная графика
Векторные изображения формируются из объектов (точка, линия, окружность, треугольник, прямоугольник и пр.), которые хра­нятся в памяти компьютера в виде графических примити

Цвет и способы его описания
8.7.1. Понятие цвета и его характеристики.) Цвет чрезвычайно важен в компьютерной графике как средство усиления зритель

Способы описания цвета
Цвета в природе образуются различным образом. С одной стороны, световые источники (Солнце, лампочки, экраны компьютеров и телевизоров) излучают свет различных длин волн, воспринима

Цветовая палитра
Электронная цветовая палитра в компьютерной графике по предназначению подобна палитре художника, но включает в себя гораздо большее число цветов. Это своеобразная таблица данных, в

Системы управления цветом
При создании и обработке элементов компьютерной графики необходимо стремиться к тому, чтобы изображение выглядело практически одинаково на всех стадиях этого процесса, на любом устройстве отображен

Цветовая модель RGB
Цветовая модель RGB (Рис. 8.3.) является аддитивной, т.е. в ней любой цвет представляет собой сочетание в

Цветовая модель CMYK
Несветящиеся объекты поглощают часть спектра белого света, отражая цвета, определяющие окраску этих объектов. Цвета, которые образуются из белого света путем вычитания из него определенных участков

Цветовая модель CIE Lab
Модели RGB и CMYK являются аппаратно-зависимыми (в RGB значения базовых цветов определяются, как правило, качеством монит

Видеосистема персонального компьютера
Основным техническим средством для оперативного формирования и отображения как текстовой, так и графической информации в компьютере является видеосистема. Видеосистема ком

Графические редакторы и их возможности
Для созда­ния, просмотра и редактирования графических изображений на компьютере используют­ся специальные программы - графические редакторы, подразделяемые, как правило, на две кат

Растровые графические редакторы
Среди растровых графических редакторов есть простые, на­пример приложение Windows Paint, и мощные профессио­нальные графические системы, такие как пакет Ad

Векторные графические редакторы
К простейшим векторным графическим редакторам относятся, например, графические программные приложения в составе текстового процессора Microsoft Word и редактора эл

Редакторы электронных таблиц и табличные процессоры
9.1.1.Назначение, Основные функции, Классификация, Ценность любой информации в значительной мере определяется качеством её организации, и, более того, существенная

Форматы табличных файлов
Электронные таблицы, также как и другие электронные документы (текстовые, графические, комплексные), хранятся на внешних носителях в виде файлов. Как правило, при сохранении файлов электронных табл

Типовая структура пользовательского интерфейса
При работе с электронной таблицей на экране монитора выводятся рабочее поле таблицы и панель управления (рис.9.1). Панель управления обычно включа

Этапы формирования электронной таблицы
Любой табличный документ в процессе своего формирования проходит следующие этапы:) 1. Создание таблицы или ее загрузка. 2.

Ввод данных в ячейки
Ввод данных в ячейки таблицы производится стандартным технологическим приемом - путемнабора данных (чисел, текста, формул) с помощью клавиатуры. Ввод может осущест

Редактирование электронной таблицы
Редактирование электронной таблицы состоит в замене или корректировке неправильно введенных данных, изменении некоторых их атрибутов, изменении содержимого отдельных ячеек, их удал

Форматирование таблицы
Легкость восприятия информации в электронных таблицах резко улучшается при применении различных приемов форматирования, т.е. при оформлении таблицы в определенномпрофессиональном стиле

Сортировка, поиск и замена данных
Электронные таблицы позволяют осуществлять сортировку данных. Данные в электронных таблицах можно сортировать по возрастанию или по убыванию. Стро

Относительная и абсолютная адресация ячеек
При копировании или перемещении формулы в другое место таблицы необходимо организовать управление формированием адресов исходных данных. Очевидно, что в зависимости от внутренней логики выражений в

Средства автоматизации ввода данных
При вводе данных обычно используются следующие приемы автоматизации: · Повторный ввод (копирование)уже существующих данных путем использования буфера обме

Автоматическое форматирование электронных таблиц
Для обеспечения быстрого форматирования как содержимого ячеек, так и внешнего вида таблицы используются средства автоматического форматирования. К этим средствам можно отнести: · С

Автоматизация циклических вычислений и создания формул
Как уже отмечалось, современные табличные процессоры представляют собой мощные программные системы, ориентированные в первую очередь на эффективную математическую обработку разнообразной числовой и

Деловая графика в табличных процессорах
Деловая графика состоит в визуализации больших массивов числовых данных, т.е. в пред­ставлении их в наглядной графической форме, в виде диаграмм. Определение. Диаг

Агрегирование данных
Агрегирование данных состоит в формировании промежуточных итогов, а также создании сводных и консолидированных таблиц.

Использование электронных таблиц для решения задач
Качественная и глубокая проработка математических и алгоритмических возможностей современных табличных процессоров превратила их мощный математический инструмент подготовки и проведения прикладных

Статистическая обработка данных и решение задач прогнозирования
Статистическая обработка данных - это самый распространенный прием анализа числовой информации, с помощью которого вычисляются разнообразные статистические оценки рядов данных, которые в общем случ

Решение задач моделирования объектов, процессов, явлений
Кроме рассмотренных в пп. 9.8.1 и 9.8.2 задач, табличные процессоры позволяют решить и много других задач моделирования финансово-экономи-ческих, управленч

Базы данных
С самого начала развития вычислительной техники образовались два основных направления ее использования: § Первое - это применение вычислительной техники для выполнения численных ра

Требования, предъявляемые к БД и информации, хранящейся в ней
Для того, чтобы компьютерная БД приносила людям пользу, она должна отвечать следующему ряду требований: § Адекватность

Типы баз данных
За время использования компьютерных БД было предложено несколько типовых структур (по-другому называемых видами или типами БД), н

Основные объекты в базах данных
К основным объектам баз данныхотносятсятаблицы (отношения, relations), метаданные (metadata), индексы (indexes) и представления (view) )

Виды запросов и способы их организации
Определение. Любые манипуляции с данными в базах данных, такие как выбор, вставка, удаление, обновление данных, изменение или выбор метаданных, называются запросами к базе данных (query)

Понятие мультимедиа. Гипертекст и гипермедиа. Объекты мультимедиа
Термин мультимедиа (от англ. multimedia) можно перевести как «много сред» или «много носителей», т.е.: Определение.

Схемы хранения и воспроизведения мультимедиа-файлов
Для реализации мультимедиа компьютер должен быть оснащен следующими компонентами: § Аппаратными средствами, реализующими доступ к мультимедиа-данным, их создание и воспроизведение - иными

Средства создания мультимедиа документов (обзор)
В настоящее мультимедиа-технологии нашли широкое применение при создании разнообразных документов делового и развлекательного характера, презентационного назначения, когда возникает необходимость п

Компьютерные сети
Телекоммуникации в широком смысле этого понятия - это общение между субъектами, которыми могут быть люди, приборы, компьютеры, любые технические системы, находящимися на таком

Топология сети
Определение. Структура связей абонентов (узлов) вычислительной сети или, иными словами, метод их соединения в распределенную вычислительную среду, образующий некоторую физическую г

Архитектура сети
Определение. Системное описание вычислительной сети, определяющее функциональное назначение сетевых узлов при взаимодействии их друг с другом с целью обмена данными и организации у

Средства реализации сетей
В структуре сети любого масштаба легко выделить основные компоненты, без которых она не может быть реализована. Это, прежде всего: · Аппаратные средства, которые включают:

Основные пользовательские функции Internet
Развивая глобальные распределенные вычислительные среды (РВС) человечество создает на планете Земля новую универсальную интеллектуальную информационную среду. Одним из самых ярких

Структура Internet
Определение. Internet- это объединенная сеть, использующая технологию статистического мультиплексирования и устройства маршрутизации пакетов типа

Адресация в Internet
С точки зрения пользователя Internet - это совокупность крупных сетевых узлов (хостов или информационных серверов), объединенных между собой

Базовые информационные службы Интернет
Изначально сеть Internet была задумана и построена с целью автоматизациипроцессов обработки данных. Термин «обработка данных» озн

Off-line-сервисы Internet
§ Служба электронной почты e-mail, предоставляющая пользователю возможность обмена сообщения с другими абонентами по электронными коммуникациям. Можно пересылать текстовые сообщени

On-line-сервисs Internet
§ Служба удаленного файлового обмена FTP (File Transfer Protocol), предоставляющая FTP-клиенту механизм интерактивного доступа к файлохран

Internet-провайдеры
Интернет-провайдерами (от англ. to provide - предоставлять) называются сетевые компании, предоставляющие доступ к услугам глобальной сети Интернет

Web-браузеры
Как уже упоминалось ранее для просмотра WWW-ресурсовглобальной сетиИнтернет необходимо на клиентских станциях, подключенных к сети, установить клиентские программн

Основы технологии WWW
12.6.1.Архитектура распределенной Web-системы. Фундаментом Web-систем являются четыре компоненты:)

Пособие для поступающих в вуз
Под общей редакцией доцента, к.т.н. В.С. Белова Технический редактор В.С. Белов Компьютерная верстка: авторский коллектив

Статьи по теме: