Как выбирать пассивные оптические компоненты? Виды оптических разъемов

Оптические коннекторы применяются при оконцовке оптических волокон и для их стыковки с пассивным или активным телекоммуникационным оборудованием.

По мере развития ВОЛС было разработано более 70 типов оптических разъёмов для различных условий применения.

Соединение станционного оптоволокна с линейным происходит на оптическом кроссе при помощи оптических разъемов, представляющие собой оптические коннекторы и оптические адаптеры (вилки и розетки соответственно).
Оптический адаптер представляет собой розетку, в которую с обеих сторон вставляются коннекторы. Таким же образом патч корд присоединяется к активному оборудованию ВОСП, лицевая панель которых имеет оптический адаптер, соответствующий типу коннектора.
Оптические разъёмные соединители (коннекторы) предназначены для того, чтобы обеспечить прохождение света от одного элемента ВОСП к другому, например, из среды передачи в линейное и оконечное оборудование, с минимально возможными потерями при воздействии различных внешних факторов. Такое соединение должно быть устойчивым и воспроизводимым при повторном использовании.

Существует 2 вида оптических адаптеров:
1) соединительные, имеющие одинаковые типы разъемов с каждой стороны для соединения коннекторов одного типа. Обозначение соединительных адаптеров соответствует типу подключаемых коннекторов (FC, SC, LC, ST и т. д.);
2) переходные, имеющие разные типы разъемов с каждой стороны адаптера (FC/SC).
Основной концепцией при создании оптических адаптеров является их передача оптического сигнала без каких-либо искажений в разъеме. Отсюда можно выделить основные параметры механического соединения.

Основные параметры оптических разъемов:
Вносимые потери (затухание, вызванное утратой концентричности торцов) представляют собой разницу уровней средней мощности сигнала на входе оптического разъема и на выходе.
Затухание отражения (передаваемое излучение частично отражается обратно в волокно к источнику (лазеру)). Достаточно сильное обратное отражение (RL - Return Loss) приведёт к нарушению функционирования лазера и изменению структуры транслируемого сигнала. Для уменьшения этого явления придумали несколько типов полировки.

FC- коннектор - коннекторы типа FC были разработаны компанией NTT и ориентированы в основном на применение в одномодовых линиях дальней связи, специализированных системах и сетях кабельного телевидения. Керамический наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Наконечник изготавливается со строгими допусками на геометрические параметры, что гарантирует низкий уровень потерь и минимум обратных отражений. Радиус наконечника обеспечивает физический контакт стыкуемых световодов.




Коннектор FC с металлической феррулой

Для фиксации коннектора FC на розетке используется накидная гайка с резьбой М8х0,75. В данной конструкции подпружиненный наконечник жестко не связан с корпусом и хвостовиком, что усложняет и удорожает коннектор, однако такое дополнение окупается повышением надежности.
Коннекторы типа FC устойчивы к воздействию вибраций и ударов, что позволяет применять их на соответствующих сетях, например, непосредственно на подвижных объектах, а также на сооружениях, расположенных вблизи железных дорог.

Адаптер для FC с аттенюатором

Особенности

  • Совместимость с IEC 61 754-143, TIA/EIA, NTT, спецификациям Belcore
  • Коррозийно-резистентный корпус
  • Высокая надежность
  • 2,5 мм керамическая ферула
  • Устойчивость к вибрации и одиночным ударам

Область применения

  • Кабельные системы, CATV, LAN, WAN
  • Медицинское и контрольно-измерительное оборудование
  • Телекоммуникационные и бортовые сети

Технические характеристики


ST-коннектор - рекомендуется использовать в первую очередь для многомодовых применений. Наконечник коннектора не развязан с корпусом и оболочкой кабеля, что делает конструкцию проще, надежнее и дешевле, в тоже время такая конструкция полностью удовлетворяет многомодовому применению. Моноблочная конструкция ST коннектора разработана для быстрого оконцевания. Коннекторы имеют керамические наконечники диаметром 2,5 мм.

Коннекторы ST фиксируются байонетным замком

Особенности

  • Используются коннекторы с керамическим наконечником
  • Быстрая, легкая сборка, высокие оптические характеристики
  • Надежность в эксплуатации
  • Взаимосочленяемые соединители по технологиям Lucent Technology ST Connector
  • Удобное соединение при помощи байонетного крепежа
  • Полная совместимость с IEC 61 754-2

Область применения

  • LAN системы и оборудование
  • Оптические подсистемы локальных сетей
  • Телекоммуникационные сети
  • Сетевая обработка данных

Технические характеристики


SС-коннектор - одним из недостатков коннекторов типов FC и ST считается необходимость вращательного движения при подключении к адаптеру. Для устранения этого недостатка, препятствующего увеличению плотности монтажа на лицевой панели, разработаны коннекторы типа SC. Корпус коннектора SC в поперечном сечении прямоугольный. Наконечник не связан жестко с корпусом и хвостовиком.

При подключении коннектора SC происходит проворачивание наконечника

SC коннектор duplex

Подключение и отключение коннектора SC производится линейно (push-pull), что предохраняет наконечники коннекторов от прокручивания друг относительно друга в момент фиксации в адаптере. Фиксирующий механизм открывается только при вытягивании коннектора за корпус. К недостаткам коннекторов SC следует отнести несколько более высокую цену и меньшую механическую прочность относительно рассмотренных ранее коннекторов типов FC и ST. Сила, выдергивающая коннектор SC из адаптера, регламентируется в пределах 40 Н, в то время как для серии FC это значение практически может равняться прочности миникабеля. Как и в случае с коннекторами ST, этот недостаток ограничивает применение коннекторов типа SC на подвижных объектах.

Особенности

  • Низкая стоимость,
  • Корпус типа push-pull,
  • Конструкция предварительной сборки,
  • Совместимость с IEC, TIA/EIA-568A TIA/EIA, NTT,
  • Низкие прямые потери

Область применения

  • Кабельные системы, CATV, LAN, WAN,
  • Медицинское и контрольно-измерительное оборудование,
  • Телекоммуникации

Технические характеристики

LС-коннектор - популярный компактный волоконно-оптический коннектор нового поколения, доминирующий на рынке телекоммуникационного оборудования, это уменьшенный вариант SC-коннекторов. Он также имеет прямоугольное сечение корпуса. Конструкция коннектора сравнительно проста: керамический сердечник диаметром 1,25 мм, не связанный с пластмассовым корпусом. Механизм фиксации – защелка (аналогично RJ-45) Вследствие этого и подключение коннектора производится схожим образом. Пара коннекторов легко объединяется в дуплекс. Использование данного коннектора позволяет увеличить плотность портов активного оборудования, патч-панелей и настенных розеток в два раза по сравнению со стандартными коннекторами, скажем, SC, без каких-либо компромиссов с качеством.

Коннектор LC широко используются при изготовлении оптических шнуров и пигтейлов, оконцевании многожильных оптических кабелей, изготовлении аттенюаторов, разветвителей, коллиматоров.

Существуют модели коннекторов, специально адаптированные для установки на микрокабель 900 мкм и кабели с диаметрами внешней оболочки 1,6, 2,0, 2,4 и 3 мм. Ферул в коннекторе может вращаться, последовательно занимая шесть позиций, что позволяет добиваться прямых потерь <0,1 дБ.

Особенности

  • Оптимальные оптические характеристики в связи с использованием высококачественных ферул
  • Широкий выбор ферул
  • Малогабаритная форма
  • Высокая концентрация при использовании
  • Перестраиваемость
  • Совместимость с Telcordia, ANSI/EIA/TIA, IEC
  • Адаптация к кабелю 1,6/1,8/2,0мм

Область применения

  • Gigabit Ethernet
  • Телекоммуникационные сети
  • Базовые инсталляции
  • Многопортовые оптические системы

Технические характеристики

MU-коннектор - разъемы MU волокна представляют тенденции нового поколения, они представляют собой уменьшенный приблизительно вдвое аналог SC коннектора. Механизм фиксации за счет уменьшения габаритов в коннекторах этого типа может быть менее надежен.

Наконечник и центратор – керамические, диаметром 1,25 мм. Корпус выполнен из пластмассы, детали – полимерные и металлические.

Доля оборудования, выпускаемого с коннекторами типа MU, относительно невелика, однако есть перспективы роста, в первую очередь за счет снижения доли использования в оборудовании коннекторов более ранних разработок.

Особенности

  • Разъем с пылезащитной заглушкой
  • Соответвие требованиям ROHS
  • Аппаратная совместимость NTT-MU
  • NTT&JIS соответствие
  • Соединение типа push-pull (толчок-рывок)
  • Высокая точность выравнивания
  • Материал ферул – цирконий
  • Полная совместимость с IEC 61 754-6

Область применения

  • Сфера телекоммуникаций
  • Кабельное телевидение (CATV)
  • LAN (FITL, FTTH and FTTD)
  • SONET / SDH
  • ATM и WDM приложений
  • Цифровая сеть

Технические характеристики


MT-RJ-коннектор - коннекторы MT-RJ разработаны консорциумом производителей в составе AMp Hewlett-Packard, Siecor LIN, Fujikura и USConnec. Эти коннекторы изготавливаются исключительно в виде дуплексных пар и поэтому не могут считаться универсальными. Технологически они сложны в производстве.

Корпус коннекторов содержит пару металлических направляющих, в которые предварительно установлены два оптических волокна. Оптические волокна кабеля подвариваются к предустановленным волокнам. После установки кабель фиксируется поворотом запирающего ключа.

Коннекторы типа MT-RJ применяются в коммутаторах, концентраторах и маршрутизаторах многими ведущими производителями оборудования.




Особенности

  • Размер и конструкция защелки аналогичны RJ-45
  • Дуплексный ферул
  • Низкая стоимость
  • Высокая плотность портов
  • Соответствие стандартам ISO/IEC 67754-18 и TIA/EIA 604-12
  • Низкие прямые потери

Использование коннектора MT-RJ увеличивает плотность портов в два раза по сравнению со стандартными коннекторами и делает его идеальным для использования в приложениях типа fiber-to-the-desk. Данный тип разъема позволяет осуществить подключение дуплексных каналов оптической связи при помощи одного шнура, что позволяет сэкономить пространство при монтаже линий связи

Область применения
  • Проводка в зданиях (горизонтальная и backbone)
  • Локальные сети (LAN) и FTT приложения
  • Телекоммуникационные сети

Технические характеристики


MPO - коннектор - MPO («Multi-fiber Push On») коннектор – малогабаритный соединитель, разработанный для ферул типа MT, имеющий размер обычного симплексного SC-соединителя.

MPO (Multiple-Fibre Push-On/Pull-off) – многоволоконный оптический разъем, устанавливаемый в адаптер без вращения, прямым введением. MPO – название первой версии 12-волоконного разъема, которая затем была улучшена и переименована в MTP, хотя эти разъемы сохранили совместимость между собой.

В МPO-коннекторе осуществляется совмещение полосок, содержащих 4, 8 или 12 оптических волокон. Прокладка и подключение волоконно-оптических кабелей с МPO коннекторами установленными производителем, не требуют применения специального инструмента и привлечения квалифицированного персонала, поскольку нет необходимости производить оконцовку кабеля. При этом обеспечиваются высокие характеристики соединения.

Преимуществом данного коннектора (МРО) является объединение 12 волокон в одном коннекторе и соединение с компактным ленточным волокном, что значительно экономит место в патч-панелях и кроссовых шкафах.

В стандартном MPO коннекторе терминируется 12 волокон. Последние разработки позволили увеличить количество волокон в коннекторе с таким интерфейсом до 72. Таким образом система MPO обеспечивает высочайшую плотность монтажа.

МРО упрощенная технология подключения магистральных волоконно-оптических кабелей рlug-and-play («подключил и готово») представляет идеальное готовое решение проблемы инсталляции для небольших проектов при соединении нескольких зданий и реализации вертикальной разводки. Возможность выполнять множество подключений, имея несколько волокон в одном коннекторе, значительно ускоряет процесс инсталляции.

Использование МРО коннектора экономит время и снижает вероятность повреждения хрупких оптических разъемов. MPO система также снижает риск попадания грязи в волокна адаптеров.


Особенности

  • Объединение 12 волокон в одном коннекторе и соединение с компактным ленточным волокном
  • Адаптирован к VSR интерфейсу
  • Низкие потери
  • Обеспечение значительного пространства и экономии средств

Область применения

  • Взаимосвязь с OE модулями
  • Gigabit Ethernet
  • Мультимедиа
  • Телекоммуникационные сети и системы

Технические характеристики

MTP - коннектор - усовершенствованная конструкция 12-волоконного разъема, первоначально носившего обозначение MPO (Мultiple-Fibre Push-On/Pull-off – многоволоконный оптический разъем, устанавливаемый в проходник без вращения, прямым введением). Улучшения затронули конструкцию разъема (разборный корпус, усовершенствованный наконечник) и состав материала, используемого для изготовления коннекторов.

В результате разъемы MTP обладают существенно более высокими характеристиками передачи, чем их предшественники, хотя они по-прежнему совместимы между собой.

Внимание: разъемы MTP делятся на типы male и female!

Тип МТР в основном используется внутри помещений, например, в вычислительных центрах в корпоративных сетях, где используются распределительные шкафы и устройства параллельной оптики. Также МТР коннекторы широко используются в новых технологиях, таких как гибкие оптические мультиплексоры ввода/вывода (ROADM), т.е. там, где высокая плотность соединений крайне важна. Возможность выполнять множество подключений, имея несколько волокон в одном коннекторе, значительно ускоряет процесс инсталляции.



Особенности

  • Объединение до 72 волокон в одном коннекторе и соединение с компактным ленточным волокном
  • Сильнейшая взаимосвязь МТ ферулы с мультиволокном, увеличенная плотность монтажа
  • Адаптирован к VSR интерфейсу
  • Соответствие Telcordia’s GR-326-Core, IEC стандартам
  • Низкие потери
  • Оптимальное сочетание компактности и надежности

Область применения

  • Локальные сети LAN (включая FTTH and FTTD)
  • Gigabit Ethernet
  • Активное обрудование / интерфейс трансивера
  • Мультимедиа

Технические характеристики


SMA - коннектор - волоконно-оптические разъемы и SMA оптическая продукция широко используется в медицине, промышленности, там, где необходимо применение различных сенсоров, датчиков, а также в волоконно-оптических тестовых приложениях. SMA волоконно-оптический коннектор имеет компактный размер, высокую долговечность и надежность.

Разъемы SMA волокна могут быть с керамическим наконечником или ферулой из нержавеющей стали SMA имеет две версии, SMA 905, SMA 906. Разница в том, что в волоконно-оптическом разъеме SMA 905 – обычная (straight) ферула, а волоконно-оптическом разъеме SMA 906 используются «step» наконечник для достижения более низких вносимых потерь. В стандартном волоконно-оптическом SMA коннекторе применяется 3.175 mm ферула.


Особенности

  • Металлическая или керамическая ферула
  • Высокая температурная стабильность
  • Высокая износоустойчивость
  • Соответствие TIA / IEC
  • Соответствие ROHS

Область применения

  • Телекоммуникационные сети и системы передачи данных
  • Локальные сети
  • Лазерные системы
  • Медицина/хирургия
  • Спектрометры

Технические характеристики


E-2000 - коннектор - волоконно-оптический разъем и E2000 продукция становятся все более распространенными в области коммуникаций.

В коннекторах типа Е-2000 реализована одна из наиболее сложных конструкций.

Подключение и отключение коннектора производится линейно (push-pull). Фиксирующий механизм открывается только при вытягивании коннектора за корпус с применением специальной вставки-ключа. Случайное выключение такого коннектора без использования ключа практически невозможно (то есть необходима нагрузка для разрушения защелки корпуса коннектора).

Коннектор Е-2000 – пластиковый коннектор, с верхним замком. Как правило, используется в одномодовых сетях. Большее распространение имеет Е-2000/АРС, в связи с большим количеством оборудования для телевизионных систем, где необходима полировка АРС. Особенность стыковки данного коннектора с адаптером препятствует попаданию пыли на поверхность оптических элементов. Также обеспечивается достаточная жесткость крепления, устойчивость к вибрационным нагрузкам и высокая степень точности сведения световодов. Сечение корпуса – квадратное, что позволяет легко реализовать дуплексные коннекторы.



Особенности

  • Безопасная передача высокоскоростных протоколов
  • Многослойная циркониевая ферула диаметром 2,5 мм
  • Автоматические пластмассовые шторки (spring loaded shutter), выполняющие функции заглушек при отключении адаптера и открывающиеся при включении
  • Конструкция типа push-pull locking (толчок-рывок с верхним замком)
  • Совместимость с европейскими (EN 186270) и международными (IEC 61754-151) стандартами, TIA/EIA 604-16

Область применения

  • Локальные сети LAN
  • Современные DWDM приложения высокой мощности
  • Кабельное телевидение CATV
  • Метрология
  • Железные дороги
  • Промышленность
Технические характеристики
DIN - коннектор - Коннекторы типа DIN нашли применение в тестовой аппаратуре и телекоммуникационном оборудовании, кабельнном телевидении, LAN, WAN, MAN, а также в промышленности, медицине и в лазерных системах.

Этот уникальный разъем обеспечивает превосходную производительность за счет своей конструкции.

Стандартный керамический сердечник диаметром 2,5 мм выступает далеко за пределы корпуса. Пластмассовый корпус снабжен ключом, препятствующим вращению сердечника вокруг своей оси при вкручивании в адаптер.

Особенности

  • Совместимость с DIN47256
  • Специальная конструкция керамической ферулы типа free-floating (свободное плавание)
  • Коррозионно-устойчивый корпус
  • Компактная конструкция
  • Низкие показатели прямых потерь и обратного отражения

Технические характеристики

Biconic - коннектор - с полимерным наконечником обеспечивает максимальную производительность для многомодовых и одномодовых приложений. Этот разъем волоконно-оптический "первого поколения" часто используется при восстановлении устаревшего установленного волоконно-оптического оборудования. Размер волокна 126мкм.
Состоит из конусообразной полимерной манжеты, которая помогает выровнять волокна при подсоединении его к интерфейсу.
Прочная и надежная конструкция позволяет использовать коннекторы такого типа в военных структурах и медицинских учреждениях.



Технические характеристики

ESCON - коннектор - (Enterprise Systems Connection) волоконный канальный интерфейс, обеспечивающий обмен информацией между сервером IBM zSeries и периферийными устройствами (либо другим сервером). Впервые применялся в серверах архитектурыESA/390. Впервые анонсирован компанией IBM в 1990 году. ESCON реализует полудуплексный режим передачи с использованием протоколов типа запрос-ответ.
Физически ESCON канал состоит их двух волоконно-оптических кабелей, каждый из которых предназначен для передачи информации в одну сторону.
Для подключения периферийного устройства используется соединение точка-точка (одиночное или через коммутатор ESCON).



Технические характеристики

Оптические разъемы, которые иногда называют разъемными соединителями, предназначены для обеспечения разъемного подключения соединительных и оконечных шнуров к коммутационному оборудованию в кроссовых, информационным розеткам рабочих мест и к сетевому оборудованию.

В перечень основных функций оптоволоконного разъема входит:

  • обеспечение ввода волокна в точку сращивания с заданным радиусом изгиба;
  • защита волокна от внешних механических и климатических воздействий;
  • фиксация волокна в центрирующей системе.

Оптические разъемы должны отвечать следующим основным техническим требованиям:

  • внесение минимального затухания в сочетании с получением высокого затухания обратного рассеяния;
  • обеспечение долговременной стабильности и гарантия параметров;
  • высокая механическая прочность при минимальных габаритах и массе;
  • простота установки на кабель;
  • простота процесса подключения и отключения;
  • наличие у наконечников выпуклых торцевых поверхностей;
  • предварительная специальная обработка наконечников.

Требования стандартов к оптическим разъемам содержатся в обоих основных нормативных документах (TIA/EIA 568С и ISO/IEC 11801-2008). Стандарты нормируют только самые общие положения и задают:

  • тип разъемов, допустимых для применения в оптоволоконных подсистемах СКС;
  • основные передаточные параметры разъемов различных типов;
  • требования к долговечности разъемов;
  • правила подключения оптических разъемов.

Требования стандартов к предельным значениям затухания, потерь на отражение и долговечности оптических разъемов СКС будут рассмотрены далее.

Разъем должен снабжаться символьной маркировкой в виде букв А и В. Вилку с маркировкой А всегда необходимо подключать к розетке с такой же маркировкой, и наоборот. Двойная вилка SC разъема по стандарту должна иметь разную маркировку своих половин, причем, если смотреть на нее со стороны наконечников так, чтобы ключи были сверху, то левая вилка всегда маркирована буквой А, а правая - буквой В. Маркировка проходной розетки имеет одну особенность. По разным своим сторонам она имеет разную маркировку. Смысл маркировки вилок и розеток разъема SC заключается в том, что она позволяет определить направление «движения» оптоволоконного сигнала. Вилка с маркировкой А всегда является источником, а розетка с такой же маркировкой - приемником, и наоборот. Аналогично на сетевом оборудовании розетка с маркировкой А является входом оптоволоконного приемника, а с маркировкой В выходом оптоволоконного передатчика.

В настоящее время большинство разъемов рассчитано на соединение двух оптоволокон. Существуют конструкции, получившие название групповых (или многоканальных) разъемов, которые обеспечивают одновременное сращивание двух или более пар оптоволокон. При этом доля таких конструкций в общем объеме растет очень быстрыми темпами. Для применения в специальных условиях эксплуатации (повышенная влажность, пары агрессивных материалов и т. д.) используются герметичные разъемы. Известны и конструкции так называемых гибридных разъемов, позволяющих одновременно сращивать как оптические волокна, так и электрические проводники.

Оптические разъемы линзового типа

Существуют линзовые и контактные варианты исполнения оптических разъемов. Разъемы линзового типа были широко распространены на ранних этапах развития техники волоконно-оптической связи и предполагают использование линз или их аналогов. С помощью данного элемента свет, выходящий из передающего световода, сначала преобразуется в параллельный пучок большого диаметра, а затем с помощью второго элемента фокусируется на сердцевину принимающего волокна. Основным преимуществом данного варианта является меньшая чувствительность к осевым и боковым смещениям сращиваемых волокон. Разъемы контактного типа предполагают соединение световодов встык, причем дополнительно контролируется параллельность их осей друг другу и минимально возможное расстояние между торцами. За счет такой конструкции соединители контактного типа позволяют получить существенно лучшие массогабаритные показатели и принципиально меньшее затухание сигнала (отсутствуют потери в линзах и на френелевское отражение). По этой причине подавляющее большинство современных конструкций разъемов реализуют контактную схему соединения.

Оптические разъемы контактного типа

Основой большинства конструкций разъемов контактного типа является штекерный наконечник. Этот наконечник вставляется в юстирующий элемент в виде втулки, а сам разъем содержит два основных компонента: вилку (коннектор) и розетку (каплер).

Основная масса разъемов, выпускаемых промышленностью, реализована по так называемой симметричной схеме, то есть оба сращиваемых световода армируются одинаковыми вилками, которые затем с двух сторон вставляются в соединительную розетку, снабженным специальным центратором. Существует также достаточно немногочисленная группа оптоволоконных разъемов, которые содержат всего два элемента: вилку и розетку. Такие соединители получили название несимметричных.

Для фиксации вилки, установленной в розетку, может использоваться байонетный элемент (так называемый разъем типа ST), защелка, причем данный элемент может быть выполнен как внутренним (разъем типа SC), так и внешним рычажного типа (разъемы LC, Е-2000), а также многогранная или круглая с накатанной поверхностью накидная гайка (разъемы типов FC и SMA). Аналогичным образом производится подключение к оптоволоконному кабелю оконечного активного оборудования, интерфейс которого снабжается ответной частью розетки оптоволоконного разъема.

Разъемы изготавливаются как в многомодовом, так и в одномодовом варианте, причем последний конструктивно оформляется аналогично многомодовому разъему и отличается в основном более жесткими допусками на геометрические размеры наконечника вилки и центрирующих элементов розетки, позволяющими удержать потери при сращивании одномодовых световодов в приемлемых пределах. Так, например, стандартный диаметр отверстия наконечника вилки для армирования одномодовых световодов составляет 126+1/-0 мкм, тогда как в наконечниках вилок для многомодовых волокон значение этого параметра составляет 127+2/-0 мкм.

Многие многомодовые разъемы имеют вилки нескольких разновидностей, рассчитанные для установки на волокно с различным диаметром оболочки (125, 140, 280 мкм и т. д.). Конструктивно они отличаются друг от друга только диаметром отверстия наконечника.

Рабочий температурный диапазон большинства конструкций оптоволоконных разъемов составляет от –40 до +85°С, то есть, совпадает с рабочим температурным диапазоном большинства конструкций кабелей для внешней прокладки.

Принцип работы ОВ разъема достаточно прост: два оптоволоконных коннектора совмещаются вместе внутри специальной втулки по принципу торцевой стыковки. Поэтому, чтобы на практике реализовать принцип соединения торцов ОВ встык, оптоволокно вклеивается с помощью клея по центру в цилиндрический штифт (феррул) с очень малым внутренним диаметром, равным 126-127 мкм для одномодового ОВ и 127-128 мкм для многомодового ОВ с диаметром внешней оболочки 125 мкм. В качестве клея в классической технологии чаще всего используют эпоксидный клей (смолу), которая выполняет одновременно две важные функции. Она защищает очищенное от уретан акрилатной оболочки оптоволокно в коннекторе от воздействия температуры и влажности окружающей среды и придает требуемую гибкость оптоволоконному световоду в процессе полировки. После этого торец феррула полируется до достижения чистой и тонко отполированной поверхности без царапин.

Для получения ОВ разъемного соединения, два ОВ коннектора соединяются предварительно отполированными торцами встык в центрирующей гильзе. Существует множество типов ОВ коннекторов, тем не менее стандартным диаметром штифта считается величина 2,5 мм. Применяемые феррулы часто отличаются друг от друга. Так, некоторые производители делают их из металла, керамики или даже пластмассы. Экспериментально установлено, что характеристики у штифтов из керамики с оксидом циркония значительно лучше, чем у металлических штифтов, изготовленных из никель-серебряного сплава или карбида вольфрама. Поэтому, выбирая ОВ коннекторную сборку, следует особое внимание обратить на то из чего изготовлен ферул или штифт ОВ коннектора. Применение штифтов для ОВ коннекторов, выполненных из пластмассы, даже особо прочного и стойкого типа, даст несомненный выигрыш в цене, но очевидный проигрыш в технических и эксплуатационных характеристиках.

Основные параметры некоторых типов оптоволоконных разъемов приводятся в табл. 1.

Таблица 1. Основные параметры оптических разъемов

Тип разъема

Материал наконечника

Фиксатор

Среднее затухание, дБ

на длине волны 1300 нм

многомодовый

одномодовый

Керамика

Накидная гайка

Керамика

Керамика

Накидная гайка

Керамика

Байонетный

Мельхиор

Основные типы оптических разъемов СКС

1. Разъемы типа SC

Разъем SC (рис.4) (от англ, subscriber connector - «абонентский разъем», иногда используется такая неофициальная расшифровка этого сокращения, как Stick-and-Click - «вставь и защелкни») был разработан в 1986 году японской телекоммуникационной корпорацией NTT для использования в абонентских устройствах различного назначения. В настоящее время нормирован международным стандартом IЕС-874-13. Действующими редакциями стандартов он определен как основной тип разъема для применения в СКС. Может быть выполнен в одинарном и двойном (дуплексном) вариантах. Основная идея, заложенная в его конструкцию, заключается в создании устройства с пластмассовым корпусом, хорошо защищающим наконечник и обеспечивающим плавное подключение и отключение линейным движением. Подавляющее большинство вилок разъемов SC снабжается наконечниками из керамики, имеются также единичные образцы этих изделий с наконечниками, изготовляемыми из нержавеющей стали. Наконечник разъема SC утоплен в корпус вилки, что предохраняет его от загрязнений. Линейное движение при подключении и отключении делает этот разъем особенно удобным для применения в 19-дюймовых полках, так как позволяет увеличить плотность портов за счет сближения розеток. Защелка открывается только при вытягивании за корпус, что увеличивает эксплуатационную надежность.

Рис. 4. Разъем SC

Разъемы SC обеспечивают большую стабильность параметров (выдерживают не менее 500 подключений и отключений), чему в немалой степени способствует отсутствие проворачиваний наконечников друг относительно друга при включении и отключении. Как видно из табл.1, этот разъем по величине вносимого затухания является одним из лучших. На верхней стороне корпуса вилки имеется ключ в виде выступа, который препятствует ее подключению в розетку в неправильном положении.

Для получения дуплексного (двойного) разъема из симплексных (одинарных) используют два способа. Первый из них основан на том, что на корпусе вилок предусмотрены фиксаторы, взаимодействующих между собой в собранном состоянии. Во втором случае применяется внешний фиксатор. Он может быть выполнен в виде состоящей из двух симметричных половин обоймы с гнездами для корпусов вилок или же представлять собой Н-образную деталь, в боковые пазы которой вставляются вилки. По последней схеме реализован, например, фиксатор типа 2А1 компании Lucent Technologies, снабженный штатной символьной маркировкой в виде букв А и В. Расстояние между осями наконечников вилок в двойном разъеме составляет 12,7 мм. Большой пластмассовый корпус вилки и розетки разъема SC позволяет дополнительно к символьной применять также эффективную цветовую маркировку. Одномодовый и многомодовый варианты разъема SC согласно стандарту TIA/EIA-568В имеют, соответственно, голубой и серый (или бежевый) цвет корпуса. Выпускается также одномодовый разъем SC с корпусом зеленого цвета и со скошенной торцевой частью наконечника для уменьшения обратного отражения. Широко распространены также отдельные образцы разъемов SC с корпусом вилок и розеток нестандартной окраски

2. Разъемы типа ST

Оптический разъем типа ST (рис.5) (от англ. straight tip connector, то есть «разъем с прямой установкой»; иногда используется неофициальная расшифровка этого сокращения - Stick-and-Twist -«вставь и поверни») был разработан лабораторией Bell компании AT&T (Lucent Technologies) в 1985 году для замены биконического разъема.

Рис. 5. Разъем ST

До появления разъема SC он был наиболее распространенным в оптических подсистемах СКС и локальных сетях. Конструкция разъема в настоящее время определяется международным стандартом IEC 874-10, который предписывает наличие керамического наконечника диаметром 2,5 мм с выпуклой торцевой поверхностью. Фиксация вилки на розетке выполняется подпружиненным байонетным элементом, поворачивающимся на 1/4 оборота. Поэтому разъем ST иногда называют разъемом типа ВFОС (от англ. bayonet fiber optic connector).

Имеется несколько вариантов конструкций ST-разъемов, отличающихся в основном формой и материалом байонетного фиксатора, а также принципом крепления корпуса вилки к буферным оболочкам и защитным покрытиям световода.

Компания Lucent Technologies разработала три варианта вилок такого разъема: ST, ST11 и ST11+, которые полностью совместимы друг с другом по посадочным местам в розетке и имеют незначительные конструктивные отличия, улучшающие их эксплуатационные свойства по мере перехода к более совершенной модели. Так, в частности, гайка байонетного фиксатора вилки ST имеет открытый в осевом направлении шлиц, тогда как у обоих более поздних вариантов этот шлиц закрыт перемычкой. Важной особенностью вилок Lucent Technologies является отсутствие необходимости применения кримпирующего (обжимного) инструмента при армировании ими волокна в буферном покрытии диаметром 900 мкм.

Металлическое исполнение корпуса вилки и розетки разъема ST обеспечивает высокую механическую прочность, однако существенно затрудняет его кодировку и идентификацию. Иногда на корпусах розеток выдавливаются буквы SM и ММ для одномодового и многомодового вариантов соответственно. Некоторые компании предлагают вилки ST с хвостовиками из пластмассы разного цвета, также достаточно часто применяются на практике различные кольца, гильзы и другие аналогичные изделия, не являющиеся штатными маркирующими элементами.

Конструкция разъема ST не обеспечивает возможность формирования дуплексной вилки. Соответственно, его розетка выпускается основной массой производителей в одиночном варианте. Только Nexans Cabling Solutions предлагает сдвоенные ST-розетки в одном корпусе.

К преимуществам ST-разъема относится низкая стоимость в сочетании с простотой монтажа и подключения, а недостатки можно выделить следующие:

  • сильно выступающий наконечник увеличивает вероятность его загрязнения;
  • отсутствие двойного варианта повышает трудоемкость подключения двойных шнуров и вероятность ошибки при коммутации;
  • отсутствие цветовой или другой заводской маркировки затрудняет их идентификацию;
  • поворачивающее усилие при подключении вызывает трение наконечников вилок, что ведет к повреждению их полировки и, в конечном итоге, к увеличению вносимого затухания после многократных подключений и отключений;
  • принцип фиксации на основе байонетной гайки не обеспечивает необходимой для некоторых приложений стабильности параметров при вибрационных воздействиях.

Для частичной защиты наконечников от трения при подключении в конструкциях вилок ST разъемов предусмотрен специальный выступ, вводимый в паз розетки.

Другие типы оптических разъемов

1. Разъемы типа FC

Разъемы типа FC (рис.6) определены международным стандартом IЕС 874-7 и ориентированы в основном на применение в одномодовой технике. Наибольшее распространение они получили в различного назначения телекоммуникационных системах для сетей связи общего пользования. В целях обеспечения низкого уровня затухания и минимума обратного отражения наконечник разъема изготавливают с округлением на конце (при этом задаются очень жесткие допуски на геометрические размеры). Самый первый вариант вилки разъема имел наконечник с плоским торцом, что не позволяло получить хорошие эксплуатационные параметры. После перехода на наконечник со скругленным торцом, обеспечивающим физический контакт сращиваемых световодов, разъем получил название FC-PC (PC - Physical Contact), позволяющее отличать его от более ранних конструкций. В настоящее время разъемы FC с плоским наконечником не производятся, поэтому названия FC и FC-PC являются эквивалентными.

Рис. 6. Разъем FC

Конструкция разъема обеспечивает надежную защиту керамического наконечника от загрязнений, а применение для фиксации накидной гайки дает большую герметичность зоны соединения и надежность соединения при воздействии вибраций. Главным недостатком конструкции наряду с большими габаритами считается неудобство работы из-за необходимости выполнения нескольких оборотов крепежной гайки во время включения/отключения.

Элемент защиты наконечника разъема от проворачивания выполнен в виде цилиндра диаметром 2 мм. Некоторые компании дополнительно используют другие значения данного параметра (в частности, Molex выпускает вилки с диаметром этого элемента 2 мм) для решения задачи механической блокировки от неправильного подключения.

Оптические разъемы данного типа выпускаются, в основном, для телекоммуникационного оборудования, работающего с технологиями передачи SDH , ATM и аналогичными.

Розетка разъема FC выпускается в двух вариантах: типа SF с квадратным фланцем и креплением двумя винтами М2 и типа RF с круглым фланцем и креплением под гайку.

Оптические разъемы малых форм-факторов (SFF). Конструкции оптических разъемов с наконечниками уменьшенного диаметра.

1. Разъемы типа LC

Наиболее известным представителем первого направления совершенствования разъемов с увеличенной плотностью установки по состоянию на 2005-2006 г.г. является разъем типа LC (рис.7) (от англ, link control, также очень распространена расшифровка этой аббревиатуры как Lucent Connector), который был разработан американской компанией Lucent Technologies в 1997 году. (по другим данным, в 1996 году). Разъем может выпускаться как в одномодовом, так и в многомодовом вариантах. Его конструкция основана на применении керамического наконечника с уменьшенным до 1,25 мм диаметром и пластмассового корпуса с внешней защелкой рычажного типа для фиксации в гнезде соединительной розетки. Разъем допускает как симплексное, так и дуплексное использование.

Рис. 7. Разъем LC

Разработчики этого типа оптоволоконного соединителя в соответствии с действующими и перспективными редакциями стандартов СКС гарантируют до 500 циклов включения-отключения без ухудшения характеристик потерь. Этому, наряду с использованием керамического наконечника, способствует принцип линейного включения вилки в гнездо (push-pull).

Для установки вилки LC применяются стандартные процедуры заклейки на эпоксидной смоле. Конструкция вилки допускает ее монтаж как на волокне в буферном покрытии 0,9 мм, так и на соединительных шнурах со шлангом 2,4 мм. При этом монтаж на 900 мкм волокно может производиться в полевых условиях, тогда как наклейка на кабель в шланге 2,4 мм в процессе изготовления соединительных шнуров из-за малых габаритов выполняется только на производстве.

Основные технические характеристики разъемов типа LC приводятся в табл. 2.

Таблица 2. Основные технические характеристики разъемов с наконечниками уменьшенного диаметра

Таблица 2. Основные технические характеристики разъемов с наконечниками уменьшенного диаметра

Параметр/Разъем

Средние потери, дБ

Среднеквадратичное отклонение потерь, дБ

Коэффициент отражения, дБ

Изменение потерь после 500 циклов соединения-разъединения, дБ, не более

Изменение потерь в диапазоне температур -40…+75 °С, дБ, не более

Материал наконечника

Керамика

2. Разъемы типа MU

Вторым представителем конструкции рассматриваемой разновидности является разъем MU (рис.8) японской телекоммуникационной корпорации NTT. Это изделие можно рассматривать как малогабаритный вариант разъема SC, что подчеркивается в некоторых публикациях обозначением «mini-SC». Аналогично своему предшественнику разъем данного типа содержит корпус с внутренней защелкой (принцип push-pull), а за счет меньшего диаметра наконечника и миниатюризации остальных элементов конструкции обладает примерно вдвое меньшими габаритами.


Рис. 6. Разъем MU

На коммерческом рынке оборудования можно встретить как симплексный, так и дуплексный варианты разъема рассматриваемого типа. Дуплексный вариант разъема MU известен в двух разновидностях. Первая из них реализована на основе общей неразборной обоймы для двух вилок с расстоянием между центрами наконечников 4,5 мм. Величина этого параметра у второй, разборной разновидности - 6,5 мм.

3. Разъемы типа F-3000

Разъем типа F-3000 (рис.7) представляет собой усовершенствованную версию описываемого ниже разъема типа Е-2000. Он сохраняет основные конструктивные особенности прототипа и отличается от него применением керамического наконечника внешним диаметром 1,25 мм и металлической защитной крышки вместо пластмассовой. Последнее нововведение гарантирует защиту глаз обслуживающего персонала в случае работы с аппаратурой, оснащенной мощными лазерными излучателями. По утверждениям разработчиков, вилка разъема F-3000 может свободно вставляться в розетку разъема LC.

Рис. 7. Разъем F-3000

Оптические разъемы малых форм-факторов (SFF). Малогабаритные разъемы с наконечниками диаметром 2,5 мм

Подход второго типа основан на сохранении в разъеме основного элемента применяемых ранее конструкций - наконечника диаметром 2,5 мм. Улучшение массогабаритных показателей обеспечивается за счет более плотной компоновки и, возможно, миниатюризации отдельных элементов корпуса. Наиболее известными разработками в этой области являются разъемы типов Е-2000, SC-Compact и FJ.

1. Разъем типа E-2000

Разъем типа Е-2000 (рис.8) (Европа, 2000 год) создан компанией Diamond и получил распространение в некоторых европейских странах (Швейцария, Германия и т. д.). Известен в двух основных вариантах конструктивного исполнения, полностью соответствующих друг другу по посадочным местам. Согласно первому из них, продвигаемому разработчиком - компанией Diamond, наконечник выполнен по композитной схеме в виде мельхиорового цилиндра, на который вплотную надета центрирующая керамическая гильза. В разъеме Е-2000 фирмы Huber+Suhner наконечник выполнен по классической технологии в виде керамического цилиндра. Фиксация вилки в розетке выполняется при помощи внешней защелки рычажного типа.


Рис. 8. Разъем E-2000

Разъем может эксплуатироваться как в симплексном, так и в дуплексном исполнении. Дуплексный разъем известен в обычном (duplex, расстояние между осями наконечников 12,7 мм), компактном (compact duplex, расстояние между осями 6,4 мм) и вертикальном (low profile duplex, вилки расположены друг над другом с разворотом на 180°) вариантах. Для получения одной дуплексной вилки из двух одиночных используется специальная фиксирующая защелка, дуплексная розетка совместима по своим посадочным местам со стандартной розеткой модульного разъема только для компактного варианта. От более ранних конструкций разъем типа Е-2000 отличается возможностью применения эффективной цветовой кодировки (в настоящее время стандарт включает 8 цветов) и механической блокировки при использовании сменной рамки розетки, а также наличием интегрированной в конструкцию защитной крышки. Последняя при установке в розетку открывается автоматически и надежно защищает наконечник от загрязнения.

2. Разъем типа SC-Compact

Разъем типа SC-Compact швейцарской компании Reichle & De Massari представляет собой удачный пример глубокой модернизации хорошо отработанного в серийном производстве изделия с целью получения новых свойств. Прототипом разъема является хорошо известный SC, однако за счет устранения внешних элементов крепления и разработки новой фиксирующей оправки инженеры компании Reichle & De Massari сумели уменьшить расстояние между осями наконечников с обычных 12,7 мм до 7,5 мм и вписать, тем самым, розетку в посадочные места розетки модульного разъема. Отметим, что так называемый вертикальный вариант дуплексной вилки SC-разъема японской компании Honda Tsushin Kogyo имеет расстояние между осями наконечников 8,5 мм. Розетка этой вилки близка по посадочным местам к розетке модульного разъема, однако, не является по отношению к ней взаимозаменяемой.

3. Разъем типа High Density SC Connector

Еще одним представителем разъемов, в которых использована аналогичная идея, является изделие High Density SC Connector компании ЗМ. Этот разъем отличается от разъема стандартной плотности тем, что имеет габаритные размеры вилки, уменьшенные в поперечном сечении до 6,0x7,2 мм, против 7,4x9,0 мм у прототипа. Наибольшее преимущество данная разработка обеспечивает в случае использования для соединения счетверенной розетки. При таком варианте исполнения расстояние между центрами розеток составляет примерно 7 мм, то есть данный разъем обеспечивает плотность портов, примерно равную плотности портов электрических аналогов, однако, без поддержки свойства обратной совместимости.

4. Разъем типа FJ

Компанией Panduit еще в 1996 году предложен разъем типа FJ (fibre jack) или Opti-Jack (рис.9). Это изделие предназначено для использования в структурированной кабельной системе PAN-NET и известно только в дуплексном исполнении. Основой разъема также является керамический наконечник диаметром 2,5 мм, однако, за счет более плотной компоновки и, в частности, уменьшения расстояния между осями наконечников до 6,4 мм (0,25 дюйма) габариты розетки уменьшены до размеров гнезда электрического модульного разъема. Фиксация вилки в розетке выполняется защелкой рычажного типа. Для улучшения условий эксплуатации рычаг защелки закрыт куполообразной крышкой хвостовика. Конструкция позволяет производить полевую сборку, для чего разработана оригинальная клеевая технология с использованием двухкомпонентного анаэробного клея. Очистка торцевых поверхностей наконечников от загрязнений, потребность в которой может возникнуть в процессе текущей эксплуатации, обеспечивается за счет использования разборной конструкции розетки: ее отдельные детали крепятся друг к другу на защелках.

Рис. 9. Разъем FJ (Opti-Jack)

От других конструкций разъем типа FJ отличается тем, что его розетка не является отдельным конструктивным элементом, а всегда объединяется с одной из вилок. Только в 1998 году появилась классическая розетка для разъемов рассматриваемого типа, но она предназначена исключительно для использования в измерительных целях.

Разъем FJ первоначально выпускался только в многомодовом варианте с корпусом бежевого цвета. В 1998 году появился его одномодовый вариант с корпусом голубого цвета.

Оптоволоконные разъемы группового типа

Подход третьего типа представлен достаточно многочисленной группой разработок многоканальных или групповых разъемов. Наиболее совершенные изделия этой группы позволяют сращивать одновременно до 18 световодов, то есть превосходят электрические модульные разъемы по плотности компоновки в девять раз. Достаточно часто эти изделия выполняются как уменьшенный или упрощенный вариант «большого» группового разъема, разработанного для применения в телекоммуникационных приложениях. Общей отличительной чертой, объединяющей все рассмотренные далее конструкции, является использование в них линейного принципа установки в розетку (принцип push-pull) без использования резьбовых или байонетных фиксаторов.

1. Разъемы типа SCDC и SCQC

Разъемы SCDC и SCQC продвигаются консорциумом, в который входят компании Siecor, Siemens и IBM, и отличаются тем, что в них с целью сокращения времени разработки и частичной унификации с уже существующими изделиями использован внешний корпус вилки традиционного симплексного разъема SC. Новым является применение центрирующего элемента, очень похожего на обычный наконечник и имеющего два (SCDC) или четыре (SCQC) канала для фиксации в них сращиваемых световодов.

2. Разъемы типа Mini-MT и MT-RJ

Принцип частичной унификации задействован также в разъемах Mini-MT (сокращение «МТ» означает Mass Termination) разработки компании Siecor и MT-RJ (рис.10) консорциума фирм AMP, Siecor, Hewlett Packard, USConec и Fujikura. В этих изделиях использован одинаковый центрирующий элемент с близкой к прямоугольной в сечении формой, рассчитанный на два или четыре световода. Разница между этими вариантами разъемов состоит в том, что в MT-RJ элемент фиксации вилки в розетке имеет вид, привычный пользователям СКС, и аналогичен защелке рычажного типа вилки электрического модульного разъема. Отметим, что разъем MT-RJ является одним из основных элементов волоконно-оптической кабельной системы Solarum компании AMP.

Рис. 10. Разъем MT-RJ

3. Разъем типа MPO и Mini-MPO

Групповые разъемы типа MPO (Multofiber Push-On) активно используются для подсоединения ленточных оптоволоконных кабелей. Наибольшую долю среди перспективных типов оптоволоконных разъемов для СКС занимает оптический разъем Mini-MPO компании Berg Electronics, который позволяет сращивать до 18 волокон одновременно. Ожидается, что разъемы указанного типа имеют большие перспективы для инсталляции в центрах хранения данных (SAN) где требуется большая плотность соединений. В этой связи следует ожидать в ближайшие годы широкого распространения групповых разъемов MPO для 24- или 48-волоконных кабелей.

Конструкции оптоволоконных разъемов без центрирующего наконечника

Центрирующий наконечник вилки оптоволоконного разъема является дорогой прецизионной деталью (по некоторым оценкам, доля наконечника в конструкции вилки достигает 40% его стоимости), а процесс армирования им световода представляет собой достаточно сложную и продолжительную процедуру. Стремление к устранению этих недостатков привело к появлению двух конструкций, в которых наконечники отсутствуют, а процесс центрирования волокон в процессе их соединения выполняется другими средствами.

Общими отличительными признаками разъемов рассматриваемой группы являются:

  • выступающее на несколько миллиметров из держателя волокно, торец которого сколот и подготовлен к сращиванию в процессе монтажа вилки разъема на специальном технологическом приспособлении;
  • обязательное наличие подпружиненной крышки, которая закрывает волокна во внерабочем состоянии;
  • возможность установки вилки или розетки только с помощью комплекта фирменной технологической оснастки.

1. Разъем типа Optoclip II

Разъем типа Optoclip II (рис. 11) швейцарской компании Huber+Suhner (по другим данным, разработчиком разъема является французская компания Compagnie Deutsch) реализован по наиболее распространенной симметричной схеме и основан на применении одиночной вилки, которая, в случае необходимости, может соединяться с другой вилкой для получения дуплексного варианта.


Рис. 11. Разъем Optoclip II

Предварительное выравнивание волокон при их соединении выполняется с помощью конусообразной направляющей, окончательное выравнивание производится с помощью системы из трех сдвинутых друг относительно друга на 120° шариков, один из которых выполнен подвижным в вертикальном направлении.

2. Разъем типа VF-45

В отличие от этого оптоволоконный разъем VF-45 (рис. 12) (иногда может употребляться название VG-45) компании ЗМ реализован на основе V-образной канавки и рассчитан на армирование одной вилкой сразу двух волокон ленточного кабеля одновременно. Для обеспечения возможности четкого ввода световодов в направляющие канавки и получения физического контакта торцевых поверхностей сращиваемых волокон при установленной вилке фиксация концевого участка световодов в розетке выполнена с разворотом под углом 45°, что дополнительно несколько уменьшает общую длину коннектора. В качестве интересной технической особенности вилки разъема отметим, что защитная крышка при ее установки в розетку в отличие от подавляющего большинства других конструкций сдвигается вбок, а не поднимается вверх.

В разъеме VF-45 достаточно оригинально решается проблема очистки торцевой поверхности сращиваемых волокон, которая является весьма трудной задаче для любого изделия без центрирующего наконечника. Специальное промывочное устройство очищает волокна за счет прокачки через розетку разъема большого количества очищающей жидкости. Для получения необходимого уровня обратного отражения торцевая поверхность волокна скашивается под углом 9° при обработке в скалывателе во время монтажа разъема.

Отметим также, что в этих разъемах по-разному решается проблема цветовой кодировки. В варианте Optoclip II использовано обычное исполнение корпуса из пластика разных цветов, в VF-45 же многомодовое и одномодовое исполнение кодируется применением только защитной дверцы различных цветов.

Перечень рассмотренных типов перспективных оптоволоконных разъемов, применяемых некоторыми производителями, представлен в табл. 3.

Таблица 3. Некоторые типы перспективных оптоволоконных разъемов, поддерживаемых различными производителями СКС

ADC Telecommunication, США

NetConnect (Solarum)

BTR Telecom, Германия

Corning,США IBM, США

Corning Cable Systems

Lucent Technologies, США

Molex Premise Netwoks

Ortronics, США

RiT Technologies, Израиль

Siemon Cabling System

На технических семинарах по ОВ решениям в СКС мне неоднократно приходилось слышать от студентов курсов, что ОВ коннекторы того или иного производителя не справлялись с возложенными на них функциями. Это касалось как механических характеристик ОВ коннекторов, так и характеристик вносимого затухания и потерь отражения.

Следует учесть, что величина вносимого затухания главным образом зависит от следующих основных факторов:

Радиального смещения ОВ,
- торцевого зазора,
- углового смещения ОВ,
- воздушного зазора, образованного из-за чрезмерной полировки торцов по методу РС (phisical contact ).

Современные ОВ коннекторы, применяемые в LAN сетях, имеют типовое затухание около 0,2 дБ и лучше.

Помимо вышеуказанных факторов, дополнительное вносимое затухание в ОВ разъемное соединение могут вносить различные конструкции ОВ коннекторов с большими допусками на их детали. Так, наводнение рынка в последнее время дешевыми ОВ коннекторными сборками с отсутствием марки производителя (noname ) из Юго-Восточной Азии, иногда на практике приводит к полной потере работоспособности ОВ канала. Выбор ОВ решений у прекрасно зарекомендовавших себя и проверенных временем производителей ОВ оборудования, обернется несомненным выигрышем.

Оптический разъем, или коннектор, является простой, надежной и относительно недорогой конструкцией для коммутации , обеспечивающей малые уровни потерь и отраженного сигнала.

В настоящее время разработано огромное множество типов оптических разъемов для различного назначения.

Стыковку двух коннекторов, как одного типа, так и разных, обеспечивают оптические адаптеры. Если стыкуются неодинаковые типы оптических коннекторов, их совмещение производят в гибридном оптическом адаптере. Возможна также установка в некоторые адаптеры аттенюаторов для ослабления оптического сигнала.

Основные параметры передачи

Главные параметры передачи оптических коннекторов - вносимое затухание и обратное отражение. Зависят они в основном от следующих факторов: поперечное смещение осей и угла между ними; френелевское отражение оптического сигнала на границе раздела двух оптических сред.

Оптическое затухание. Имеет наибольшее значение для оценки вносимых разъемным соединением потерь. Оказывает главное влияние на суммарные потери в оптическом тракте. Величина обратного затухания зависит главным образом от разъюстировки (то есть поперечного отклонения) сердцевин стыкуемых .

Обратное отражение. Основным источником отраженного сигнала является граница раздела двух сред, к примеру материала оптоволокна и воздуха. Достигать данная составляющая потерь может значительных величин. Помимо этого, обратное отражение непостоянно во времени. Под влиянием внешних воздействий обратное отражение может в конечном итоге привести к нарушению стабильности работы системы.

Технология оконцевания

Производителями предлагаются различные технологии оконцевания, или другими словами - монтажа оптических коннекторов на ОВ.

На первоначальном этапе предполагалось, что в технологию создания разъемных соединений войдут технологические операции по закреплению соединяемых оптоволокон в штекере-заготовке при помощи химического фиксатора - эпоксидного клея или его аналогов. После закрепления оптическое волокно нужно было сколоть, затем произвести определенную полировку торца разъема с выступающим волокном до момента достижения необходимых форм торца.

Затем в целях ускорения процесса инсталляции разработали технологии без применения эпоксидного клея - в них используются механическая фиксация ОВ встроенными в оптический коннектор зажимами и термофиксация клеями-расплавами. Но со временем эти технологии утратили популярность, вероятно, по причине хладотекучести клеев-расплавов под давлением, из-за чего оптоволокно внутри коннектора с течением времени смещалось вдоль оси, что вело к ухудшению или потере физического контакта и вызывало, следовательно, рост потерь и обратных отражений.

В настоящий момент наиболее распространены коннекторы с вмонтированным отрезком ОВ в буферном и вторичном покрытиях. Данный отрезок стыкуется с волокном кабеля. И несмотря на наличие двух мест стыка вместо одного такая технология на практике хорошо себя зарекомендовала. Основным ее достоинством является отсутствие при оконцевании ОВ длительной по времени, а порой и высокой по стоимости технологической операции по полировке торца коннектора. Данные процедуры проводятся в стационарных условиях на предприятии-изготовителе. Благодаря подобному подходу производитель может почти бесконечно улучшать качество полировки торцов соединяемых волокон, а также использовать новые, направленные на сокращение потерь и улучшение параметров оптических разъемов технологии, при этом для покупателя нет необходимости в приобретении все более совершенного (следовательно, дорогостоящего) оборудования для окончательной подготовки разъемов к работе.

Обеспечение оптического контакта

Технологически добиться получения абсолютно перпендикулярных торцов, имеющих идеальные поверхности контакта во время полировки волокон, сложно. Для минимизации отраженного сигнала необходимо гарантированное отсутствие воздушного зазора между сердцевинами стыкуемых ОВ. С этой целью полировка торцов стыкуемых волокон производится так, чтобы получились сферические поверхности. Во время стыковки задается продольный прижим волокон, а это ведет к упругой деформации торцов волокон и оптическому контакту в области сердцевин соединяемых ОВ, при котором воздушный зазор между ними становится минимальным.

Подробнее о классах полировки коннекторов - см. .

Основные типы разъемов

В коннекторах типа FC благодаря керамическому наконечнику диаметром 2,5 мм, имеющему выпуклую торцевую поверхность диаметром 2 мм, обеспечивается физический контакт стыкуемых световодов. Изготовление данного наконечника в строгих геометрических параметрах гарантирует низкий уровень потерь и минимум обратных отражений.

Фиксируется коннектор FC на розетке с помощью накидной гайки. В данной конструкции отсутствует жесткая связь подпружиненного наконечника с корпусом и хвостовиком, в связи с чем коннектор усложняется и удорожается, но такое дополнение в то же время окупается повышением надежности.

Так как коннекторы данного типа устойчивы к вибрациям и ударам, их можно применять на соответствующих сетях: на подвижных объектах, сооружениях вблизи железных дорог и т.п.

В коннекторах типа ST физический контакт стыкуемых световодов обеспечивается благодаря керамическому наконечнику диаметром 2,5 мм, имеющему выпуклую торцевую поверхность диаметром 2 мм. С целью защиты от повреждений торца ОВ при прокручивании в момент установки используется боковой ключ, входящий в паз розетки; фиксация вилки на розетке производится байонетным замком.

Данные коннекторы характеризуются простотой и надежностью в эксплуатации, легкостью установки и относительно невысокой ценой. Однако есть и отрицательные стороны: данные коннекторы чувствительны к резким, прилагаемым к кабелю усилиям и к значительным ударным и вибрационным нагрузкам, так как наконечник является единым узлом с корпусом и хвостовиком. Из-за данного недостатка применение подобных коннекторов на подвижных объектах ограничено. В настоящее время такой тип коннекторов получил широкое распространение в оптических подсистемах локальных сетей.

Для устранения такого недостатка коннекторов типов FC и ST, как необходимость вращательного движения при подключении к адаптеру, был разработан коннектор типа SC . Его корпус в поперечном сечении прямоугольный. Отсутствует жесткая связь наконечника с корпусом и хвостовиком.

Подключение и отключение данного коннектора производятся линейно (push-pull), благодаря чему наконечники коннекторов предохраняются от прокручивания друг относительно друга при фиксации в адаптере. Открытие фиксирующего механизма происходит только при вытягивании коннектора за корпус. Недостатки коннекторов SC: более высокая цена и меньшая механическая прочность в сравнении с коннекторами типов FC и ST. Коннекторы типа SC на подвижных объектах используются ограниченно.

Стандартный керамический сердечник, имеющий диаметр 2,5 мм, выступает далеко за пределы корпуса. Пластмассовый корпус снабжен ключом, который препятствует вращению сердечника вокруг своей оси при вкручивании в адаптер. Применение коннекторов типа DIN : в тестовой аппаратуре, а также оборудовании для телекоммуникаций.

Конструктивные особенности: ключ выступает за пределы металлического корпуса (нетехнологичная конструкция), керамический сердечник нестандартного диаметра - 2 мм. Фиксация коннекторов на розетке осуществляется с помощью накидной гайки.

  • Е-2000

В коннекторах типа Е-2000 одна из наиболее сложных конструкций. Подключение и отключение такого коннектора производятся линейно (push-pull). Открытие фиксирующего механизма происходит только при вытягивании коннектора за корпус посредством специальной вставки-ключа. Случайно выключить такой коннектор без ключа почти невозможно: нужна нагрузка для разрушения защелки его корпуса.

Наконечник коннектора типа Е-2000 представляет собой многослойную феррулу диаметром 2,5 мм. Корпуса как коннекторов, так и адаптеров изготавливаются из прочного полимера. Главным новшеством являются пластмассовые шторки: они выполняют функцию заглушек при отключении адаптера, а также предотвращают попадание на плоскость оптического контакта пыли.

У данного типа коннекторов улучшенные оптические показатели и стабильные температурные характеристики, а также высокая надежность. Квадратное сечение корпуса дает возможность легкой реализации дуплексных коннекторов.

Разъемы с увеличенной плотностью монтажа

На основе анализа преимуществ и недостатков рассмотренных коннекторов создавались их новые типы. При аналогичных рабочих параметрах они должны были обеспечивать большую экономию места для увеличения плотности монтажа на лицевых панелях.

Основой для размеров адаптеров стали габариты разъема типа RJ-45, что дало возможность использования общих конструктивных решений под установку RJ-45 и оптических коннекторов разрабатываемых конструкций.

Конструкция коннектора типа LC относительно проста: керамический сердечник, имеющий диаметр 1,25 мм, не связан с пластмассовым корпусом. Фиксация производится с помощью защелки (аналогично RJ-45). Объединить пару коннекторов в дуплекс легко.

  • MT-RJ

Изготавливаются коннекторы типа MT-RJ исключительно в виде дуплексных пар, в связи с чем универсальными считаться не могут. Производство их технологически сложное.

Корпус коннекторов содержит пару металлических направляющих, в которые предварительно установлены два ОВ. Оптические волокна кабеля подвариваются к предустановленным волокнам. Кабель после установки фиксируется поворотом запирающего ключа.

Применение: в коммутаторах, концентраторах, маршрутизаторах.

  • VF-45

Возможна реализация под названием SJ.

Подключение коннектора типа VF-45 производится линейно (push-pull). Хвостовик коннектора для эргономичности наклонен примерно под углом в 45° от плоскости соединения волокон, другими словами, опущен вниз. При этом обеспечивается высокая плотность монтажа. Керамические феррулы заменены V-образной канавкой, что удешевляет производство коннектора.

Самозащелкивающаяся шторка, которой снабжен коннектор, предотвращает от попадания на поверхность оптического контакта пыли.

Применение: в коммутаторах, маршрутизаторах, концентраторах.

Это уменьшенный приблизительно в два раза аналог SC. Из-за уменьшения габаритов механизм фиксации в данных коннекторах может быть менее надежен.

Наконечник и центратор выполнены из керамики, имеют диаметр 1,25 мм. Корпус - из пластмассы, а детали - полимерные и металлические.

С предлагаемыми оптическими коннекторами можно ознакомиться в .

В настоящее время существует множество оптических разъемов, отличающихся размерами и формами, методами крепления и фиксации. Выбор типа оптического коннектора зависит от используемого активного оборудования, задач монтажа ВОЛС и требуемой точности.

Классификация оптических разъемов в целом одинакова и основана на следующих параметрах:

  • стандарт коннектора (разъема);
  • тип шлифовки;
  • тип волокна (одномодовое или многомодовое);
  • тип коннекторов (одинарный или дуплекс).

В результате различных комбинаций всех этих типов получается огромное множество модификаций коннекторов и адаптеров. На картинке ниже приведены далеко не все из них.

Что означают все эти буквы?

Возьмем для примера типичную маркировку оптического патчкорда: SC/UPC-LC/UPC MultiMode Duplex .

  • SC и LC - это типы коннекторов. Здесь мы имеем дело с патчкордом-переходником, так как на нем установлены два разных типа разъемов;
  • UPC - тип шлифовки;
  • Multimode - вид волокна, в данном случае многомодовое волокно, оно также может быть обозначено аббревиатурой MM . Одномодовое маркируется как SinglеMode или SM ;
  • Duplex - два разъема в одном корпусе, для более плотного расположения. Противоположный случай - Simplex , один коннектор в одном корпусе.

Типы оптических разъемов

В настоящее время наиболее распространены три типа оптических разъемов: FC , SC и LC .

FC

Разъемы FC , как правило, используются в одномодовых соединених. Корпус разъема выполнен из никелированной латуни. Резьбовая фиксация позволяет обеспечить надежную защиту от случайных разъединения.

  • подпружиненное соединение, за счет чего достигается "вдавливание" и плотный контакт;
  • металлической колпачок обеспечивает прочную защиту;
  • коннектор вкручивается в розетку, а значит, не может выскочить, даже если случайно дернуть;
  • шевеление кабеля не влияет на соединение.

Однако плохо подходит для плотного расположения разъемов - необходимо пространство для вкручивания/выкручивания.

SC

Более дешевый и удобный, но менее надежный аналог FC. Легко соединяется (защелка), разъемы могут располагаться плотно.

Однако пластиковая оболочка может сломаться, а на затухание сигнала и обратные отражения влияют даже прикосновения к коннектору.

Данный тип разъемов используется наиболее часто, но не рекомендован на важных магистралях.

Тип разъема SC используется как для многомодового волокна, так и одномодового. Диаметр наконечника 2,5 мм, материал - керамика. Корпус коннектора выполнен из пластика. Фиксация коннектора осуществляется поступательным движением с защелкиванием.

LC

Уменьшенный аналог SC. За счет малого размера применяется для кроссовых соединений в офисах, серверных и т.п. - внутри помещений, там где требуется высокая плотность расположения разъемов.

Диаметр наконечника разъема 1,25 мм, материал - керамика. Фиксация разъема происходит за счет прижимного механизма - защелки, аналогично разъему типа RJ-45, которая исключает непредвиденное разъединение.

При использовании дуплексных патчкордов возможно соединение коннекторов клипсой. Используется для многомодовых и одномодовых волокон.

Автор разработки этого типа коннектора - ведущий производитель телекоммуникационного оборудования, Lucent Technologies (США) - изначально прогнозировал своему детищу судьбу лидера рынка. В принципе, так оно и есть. Особенно учитывая то, что этот тип разъема относится к соединениям с повышенной плотностью монтажа.

ST

В настоящее время ST коннектор широко не применяется из-за недостатков и возросших потребностей по плотности монтажа. Фиксация коннектора происходит за счет поворота вокруг оси, подобно BNC разъему.

Типы полировки (шлифовки) оптоволоконных разъемов

Шлифовка или полировка оптоволоконных разъемов служит для обеспечения идеально плотного соприкосновения сердечников оптоволокна. Между их поверхностями не должно быть воздуха, так как это ухудшает качество сигнала.

На данный момент используются такие типы полировки, как PC , SPC , UPC и APC .

PC

PC — Physical Contac . Прародитель всех остальных видов полировки. Разъем, обработанный методом PC (в том числе вручную), представляет собой скругленный наконечник.

В первых вариациях полировки был предусмотрен исключительно плоский вариант коннектора, однако жизнь показала, что плоский вариант дает место воздушным зазорам между световодами. В дальнейшем торцы коннекторов получили небольшое закругление. В класс PC входят заполированные вручную и изготовленные по клеевой технологии коннекторы. Недостаток данной полировки заключается в том, что возникает такое явление как «инфракрасный слой» — в инфракрасном диапазоне происходят негативные изменения на торцевом слое. Данное явление ограничивает применение коннекторов с такой полировкой в высокоскоростных сетях (>1G).



Обратите внимание, на рисунке видно, что соединение коннекторов с плоским торцом чревато, как упоминалось ранее, возникновением воздушной прослойки. В то время как скругленные торцы соединяются более плотно.

Данный тип полировки может применяться в сетях небольшой дальности, предполагающих небольшую скорость передачи данных.

SPC

SPC — Super Physical Contact . По сути та же PC, только сама полировка является более качественной, т.к. она уже не ручная, а машинная. Также был сужен радиус сердечника и материалом наконечника стал цирконий. Дефекты полировки конечно снизить удалось, однако проблема инфракрасного слоя осталась.

UPC

UPC- Ultra Physically Contact . Данная полировка осуществляется уже сложными и дорогими системами управления, в результате чего проблема инфракрасного слоя была устранена а параметры отражения значительно снижены. Это дало возможность коннекторам с данной полировкой применяться в высокоскоростных сетях.

UPC - почти плоский (но не свосем) разъем, который производится с применением высокоточной обработки поверхности. Дает отличные показатели отражательной способности (по сравнению с PC и SPC), поэтому активно применяется в высокоскоростных оптических сетях.

Коннекторы с этим типом разъема чаще всего - синие.

APC

АРС — Angled Physically Contact . На данный момент считается, что наиболее действенным способом снижения энергии отраженного сигнала является полировка под углом 8-12°. Такая полировка поверхности дает самые лучшие результаты. Обратные отражения сигнала практически сразу покидают покидают оптоволокно, и благодаря этому снижаются потери. В таком исполнении отраженный световой сигнал распространяется под большим углом, нежели вводимый в волокно.

Первый шаг в разработке оптоволоконной системы - выбор передатчиков и приемников, наилучшим образом подходящих к заданному типу сигнала. Лучше всего это делать, сравнивая техническую информацию об изделиях и консультируясь с инженерами фирмы-изготовителя, которые помогут подобрать наилучший вариант. После этого надо выбрать сам оптоволоконный кабель, оптические соединители и метод их установки. Хотя это в самом деле не очень простая задача, часто не имеющие опыта инженеры испытывают неоправданную боязнь технологий работы с оптоволокном. В этой брошюре мы попытаемся прояснить несколько распространенных заблуждений об оптоволоконных кабелях и монтаже разъемов на них.

Конструкция кабеля

Выбор кабеля определяется решаемой задачей.

Как и медные провода, оптоволоконные кабели выпускаются во множестве различных вариантов. Существуют одно- и многожильные кабели, кабели для воздушной прокладки или непосредственной укладки в грунт, кабели в негорючей оболочке для прокладки в пространстве между фальшпотолком и перекрытием и в межэтажных кабельных каналах, и даже сверхпрочные тактические кабели военного назначения, способные выдерживать сильнейшие механические перегрузки. Понятно, что выбор кабеля определяется решаемой задачей.

Вне зависимости от вида внешней оболочки, в любом оптоволоконном кабеле имеется хотя бы один волоконный световод. Остальные конструктивные элементы (разные в разных типах кабеля) защищают световод от повреждений. Наиболее часто используются две схемы защиты тонких оптических волокон: с помощью неплотно облегающей трубки и с помощью плотно прилегающей оболочки.

Наиболее часто используются две схемы защиты тонких оптических волокон: с помощью неплотно облегающей трубки и с помощью плотно прилегающей оболочки.

В первом способе оптоволокно находится внутри пластмассовой защитной трубки, внутренний диаметр которой больше внешнего диаметра волокна. Иногда эту трубку заполняют силиконовым гелем, предотвращающим скопление влаги в ней. Поскольку оптоволокно свободно «плавает» в трубке, механические усилия, действующие на кабель снаружи, обычно его не достигают. Такой кабель очень устойчив к продольным воздействиям, возникающим при протяжке через кабельные каналы или при прокладке кабеля на опорах. Поскольку в световоде нет значительных механических напряжений, кабели такой конструкции имеют малые оптические потери.

Второй способ состоит в использовании толстого пластикового покрытия, нанесенного прямо на поверхность световода. Защищенный таким образом кабель имеет меньший диаметр и массу, большую устойчивость к ударным воздействиям и гибкость, но поскольку оптоволокно жестко зафиксировано внутри кабеля, его стойкость к растяжению не столь высока, как при использовании свободно облегающей защитной трубки. Такой кабель применяется там, где не предъявляются очень высокие требования к механическим параметрам, например, при прокладке внутри зданий или для соединения отдельных блоков аппаратуры. На рис. 1 схематично показано устройство обоих типов кабеля.



Рис. 1. Конструкция основных типов оптоволоконных кабелей

На рис. 2 показано поперечное сечение одно- и двухжильного оптоволоконного кабеля, а также более сложного многожильного. Двухжильный кабель внешне похож на обычный сетевой электропровод.

Во всех случаях световод с защитной трубкой сначала заключаются в слой синтетической (например, кевларовой) оплетки, определяющей прочность кабеля на растяжение, а затем все элементы помещаются во внешнюю защитную оболочку из поливинилхлорида или другого подобного материала.

Во всех случаях световод с защитной трубкой сначала заключаются в слой синтетической (например, кевларовой) оплетки, определяющей прочность кабеля на растяжение, а затем все элементы помещаются во внешнюю защитную оболочку из поливинилхлорида или другого подобного материала. В многожильных кабелях часто добавляется дополнительный центральный усиливающий элемент. При изготовлении оптоволоконных кабелей используются, как правило, только не проводящие электрический ток материалы, но иногда добавляется внешняя навивка из стальной ленты для защиты от грызунов (кабель для непосредственной укладки в грунт) или внутренние усиливающие элементы из стальной проволоки (кабели для воздушных линий на опорах). Существуют также кабели с дополнительными медными жилами, по которым подается питание на удаленные электронные устройства, используемые в системе передачи сигнала.



Рис. 2. Различные типы кабелей в поперечном разрезе

Волоконные световоды

Независимо от разнообразия конструкций кабелей их основной элемент - оптическое волокно - существует лишь в двух основных модификациях: многомодовое (для передачи на расстояния примерно до 10 км) и одномодовое (для больших расстояний). Применяемое в телекоммуникациях оптоволокно обычно выпускается в двух типоразмерах, отличающихся диаметром сердцевины: 50 и 62,5 мкм. Внешний диаметр в обоих случаях составляет 125 мкм, для обоих типоразмеров используются одни и те же разъемы. Одномодовое оптоволокно выпускается только одного типоразмера: диаметр сердцевины 8-10 мкм, внешний диаметр 125 мкм. Разъемы для многомодовых и одномодовых световодов, несмотря на внешнее сходство, не взаимозаменяемы.



Рис. 3. Прохождение света через оптоволокно со ступенчатым и плавным профилем показателя преломления

На рис. 3 показано устройство двух типов оптоволокна - со ступенчатой и с плавной зависимостью показателя преломления от радиуса (профилем).

Волокно со ступенчатым профилем состоит из сердцевины из сверхчистого стекла, окруженной обычным стеклом с более высоким показателем преломления. При таком сочетании свет, распространяясь по волокну, непрерывно отражается от границы двух стекол, примерно как теннисный шарик, запущенный в трубу. В световоде с плавным профилем показателя преломления, который целиком изготовлен из сверхчистого стекла, свет распространяется не с резким, а с постепенным изменением направления, как в толстой линзе. В оптоволокне обоих типов свет надежно заперт и выходит из него только на дальнем конце.

Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света. На 850 нм (свет с такой длиной волны в основном применяется в системах передачи на небольшие расстояния) потери в обычном оптоволокне составляют 4-5 дБ на километр кабеля. На 1300 нм потери снижаются до 3 дБ/км, а на 1550 нм - до величины порядка 1 дБ. Свет с двумя последними длинами волн используется для передачи данных на большие расстояния.

Потери, о которых только что было сказано, не зависят от частоты передаваемого сигнала (скорости передачи данных). Однако существует еще одна причина потерь, которая зависит от частоты сигнала и связана с существованием множества путей распространения света в световоде. Рис. 4 поясняет механизм возникновения таких потерь в оптоволокне со ступенчатым профилем показателя преломления.

Рис. 4. Различные пути распространения света в оптоволокне

Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света.

Луч, вошедший в оптоволокно почти параллельно его оси, проходит меньший путь, чем тот, который испытывает многократные отражения, поэтому свету для достижения дальнего конца световода требуется разное время. Из-за этого световые импульсы с малой длительностью нарастания и спада, обычно используемые для передачи данных, на выходе из оптоволокна размываются, что ограничивает максимальную частоту их следования. Влияние этого эффекта выражается в мегагерцах полосы пропускания кабеля на километр его длины. Стандартное волокно с диаметром сердцевины 62,5 мкм (многократно превышающим длину волны света) имеет максимальную частоту 160 МГц на 1 км на длине волны 850 нм и 500 МГц на 1 км при 1300 нм. Одномодовое волокно с более тонкой сердцевиной (8 мкм) обеспечивает максимальную частоту в тысячи мегагерц на 1 км. Однако для большинства низкочастотных систем максимальное расстояние передачи в основном ограничивается все же поглощением света, а не эффектом размывания импульсов.

Оптические разъемы

Поскольку свет передается только по очень тонкой сердцевине оптоволокна, важно очень точно совмещать его с излучателями в передатчиках, фотодетекторами в приемниках и световодами в оптических соединениях. Эта функция возлагается на оптические разъемы, которые изготавливаются с очень высокой точностью (допуски имеют порядок тысячных долей миллиметра).

Поскольку свет передается только по очень тонкой сердцевине оптоволокна, важно очень точно совмещать его с излучателями в передатчиках, фотодетекторами в приемниках и световодами в оптических соединениях.

Хотя существует много типов оптических разъемов, сейчас наиболее распространен разъем типа ST (рис. 5). Он состоит из изготовленного с высокой точностью штифта, в который выходит оптоволокно, пружинного механизма, который прижимает штифт к такому же штифту в ответной части разъема (или в электронно-оптическом устройстве) и кожуха, механически разгружающего кабель.

Разъемы ST выпускаются в вариантах для одномодового и многомодового оптоволокна. Основное различие между ними заключено в центральном штифте и его не так просто заметить визуально. Однако следует внимательно относиться к выбору варианта разъема: если одномодовые разъемы еще можно использовать с многомодовыми излучателями и детекторами, то разъемы для многомодового кабеля с одномодовым будут работать плохо или вообще приведут к неработоспособности системы.



Рис. 5. Оптический разъем типа ST

Однако следует внимательно относиться к выбору варианта разъема: если одномодовые разъемы еще можно использовать с многомодовыми излучателями и детекторами, то разъемы для многомодового кабеля с одномодовым будут работать плохо или вообще приведут к неработоспособности системы.

Установка оптического разъема на кабель начинается со снятия оболочки с помощью практически таких же инструментов, что используются для электрического кабеля. Затем усиливающие элементы обрезаются на нужную длину и вставляются в различные удерживающие уплотнения и втулки. В кабеле со свободно облегающей защитной трубкой ее конец снимается, чтобы обнажить само оптоволокно. В кабеле с плотно прилегающей к оптоволокну оболочкой она снимается с помощью прецизионного инструмента, напоминающего устройство для снятия изоляции с тонких электрических проводов. До этого момента процесс очень похож на работу с электрическим кабелем, но дальше начинаются отличия. Освобожденное от оболочек оптоволокно смазывается быстротвердеющей эпоксидной смолой и вставляется в прецизионно выполненное отверстие или канавку штифта, конец оптоволокна при этом выходит из отверстия наружу. Затем на разъеме устанавливаются элементы механической разгрузки кабеля, и он готов к завершающим операциям. Штифт помещается в специальное приспособление, в котором торчащий конец оптоволокна скалывается. На это уходит одна-две секунды, после чего разъем устанавливается в специальное зажимное приспособление, где выполняется полировка скола с помощью специальных пленок двух или трех степеней шероховатости. На все, не считая пяти минут на затвердевание эпоксидной смолы, уходит 5-10 минут в зависимости от мастерства монтажника.

Фактически, сборка оптического разъема ST - не более трудная задача, чем монтаж старого знакомого электрического разъема BNC.

Разъемы всех типов их изготовители снабжают простой пошаговой инструкцией по монтажу на оптоволоконный кабель.

Среди многих людей распространено предубеждение о трудностях установки разъемов на оптоволоконные кабели, поскольку они слышали «о сложном процессе скола и полировки стеклянного волокна». Когда им показывают, что этот «сложный процесс» выполняется с помощью очень простого приспособления и занимает меньше минуты, то окутывающая его «тайна» мгновенно улетучивается. Фактически, сборка оптического разъема ST - не более трудная задача, чем монтаж старого знакомого электрического разъема BNC. После обучения, которое занимает от 30 минут до часа, наибольшее время при установке оптических разъемов расходуется на ожидание затвердевания эпоксидной смолы. Тем не менее предубеждение остается широко распространенным, и для таких потребителей некоторые фирмы выпускают оптические разъемы так называемого быстрого монтажа. Они устанавливаются на кабели с помощью разнообразных механических зажимных систем, клеевых расплавов, быстросохнущих клеев (а иногда и вообще без химических клеящих составов). Некоторые из этих разъемов даже поставляются с заранее отполированным отрезком оптоволокна, вставленного в штифт, что вообще позволяет исключить процедуру окончательной обработки. Хотя установка этих разъемов действительно чуть более проста, никому не следует бояться и стандартного метода монтажа с использованием эпоксидной смолы и полировкой торца световода. На рис. 6 показана последовательность установки типового разъема ST на оптоволоконный кабель.


Рис. 6. Этапы монтажа разъема ST на оптоволоконный кабель

Также распространены оптические разъемы SMA, SC и FCPC. Все они подобны в смысле использования штифта, прецизионно совмещаемого с таким же штифтом в ответной части разъема, а отличаются только конструкцией механического соединения. Разъемы всех типов их изготовители снабжают простой пошаговой инструкцией по монтажу на оптоволоконный кабель.

Статьи по теме: