Как определить сечение магнитопровода. Как узнать мощность трансформатора? Определение мощности силового трансформатора

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных нужно постоянное напряжение 10 - 15 В, в некоторых случаях, например для мощных выходных каскадов НЧ - 25÷50 В. Для анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 - 300 В, для накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и "перерабатывать" мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, для электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для ламповых обычно две обмотки - накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для транзисторных чаще всего одна обмотка, которая питает один выпрямитель. на какой-либо каскад или узел нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется "число витков на вольт", и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти "число витков на вольт", разделив 50-70 на сечение сердечника в см:

Так, взять сердечник с сечением 6 см², то для него получится "число витков на вольт" примерно 10.

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора - «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап - нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Содержание:

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул : P 2 = I 2 xU 2 ; P 3 = I 3 xU 3 ;P 4 = I 4 xU 4 , и так далее. Здесь P 2 , P 3 , P 4 являются мощностями, которые выдают обмотки трансформатора, I 2 , I 3 , I 4 - сила тока, возникающая в каждой обмотке, а U 2 , U 3 , U 4 - напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р 2 + Р 3 + Р 4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2: . С помощью сечения сердечника необходимо определить количество витков n 0 , соответствующее 1 вольту напряжения: n 0 = 50/Q.

На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n 1 = 0,97 xn 0 xU 1 . Вторичные обмотки рассчитываются по следующим формулам: n 2 = 1,03 x n 0 x U 2 ; n 3 = 1,03 x n 0 x U 3 ;n 4 = 1,03 x n 0 x U 4 ;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I - сила тока, проходящего через обмотку в амперах, d - диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I 1 = P/U 1. Здесь используется общая трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: S м = 4 x (d 1 2 n 1 + d 2 2 n 2 +d 3 2 n 3 + d 4 2 n 4 + …), в которой d 1 , d 2 , d 3 и d 4 - диаметр провода в мм, n 1 , n 2 , n 3 и n 4 - количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь S м позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» - ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Р тр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и . В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых - магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: S о хS с = 100 хР г /(2,22 * В с х j х f х k о х k c). Здесь S о иS с являются соответственно площадями окна и поперечного сечения сердечника, Рг - значение габаритной мощности, Вс - показатель магнитной индукции в сердечнике, j - в проводниках обмоток, f - частота переменного тока, k о и k c - коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим . Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп - к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

При проектировании трансформаторов основным параметром является его мощность. Именно она определяет габариты трансформатора. При этом основным определяющим фактором будет полная мощность, отдаваемая в нагрузку:

Для трансформатора с большим количеством вторичных обмоток полную мощность можно определить, просуммировав мощности, потребляемые нагрузками, подключенными ко всем его обмоткам:

(2)

При полностью резистивной нагрузке (отсутствие индуктивной и емкостной составляющей в токе) потребляемая мощность активна и равна отдаваемой мощности S 2 . При расчете трансформатора важным параметром является типовая или габаритная мощность трансформатора. В этом параметре кроме полной мощности учитывается мощность, потребляемая трансформатором от сети по первичной обмотке. Типовая мощность трансформатора вычисляется следующим образом:

(3)

Определим типовую мощность для трансформатора с двумя обмотками. Полная мощность первичной обмотки S 1 = U 1 I 1 , где U 1 , I 1 — действующие значения напряжения и тока Именно этой мощностью определяются габариты первичной обмотки. При этом число витков первичной обмотки трансформатора зависит от входного напряжения, сечение провода от протекающего по ней максимального тока (действующее значение). Габаритная мощность трансформатора определяет необходимое сечение сердечника s с. Ее можно рассчитать следующим образом:

(4)

Напряжение на первичной обмотке трансформатора можно определить из выражения U 1 = 4k ф W 1 fs B m , где s – площадь сечения сердечника магнитопровода, определяемая как произведение ширины сердечника на его толщину. Эквивалентная площадь сечения сердечника трансформатора обычно меньше и зависит от толщины пластин или ленты и расстояния между ними, поэтому при расчете трансформатора вводится коэффициент заполнения сердечника, который определяется как отношение эквивалентной площади сечения сердечника магнитопровода к его геометрической площади . Его значение обычно равно k c = 1 ... 0,5 и зависит от толщины ленты. Для прессованных сердечников (изготовленных из феррита, альсифера или карбонильного железа) k c = 1. Таким образом, s = k c s c и выражение для напряжения первичной обмотки трансформатора принимает следующий вид:

U 1 = 4k ф k c W 1 fs c B m (5)

Аналогичное выражение можно записать и для вторичной обмотки. В трансформаторе с двумя обмотками мощность первичной обмотки и типовая мощность трансформатора равны. Мощность первичной обмотки можно определить по следующему выражению:

U 1 = U 1 I 1 = 4k ф k c fs c B m W 1 I 1 (6)

При этом типовая мощность трансформатора будет рассчитываться по следующей формуле:

(7)

Отношение тока в проводе обмотки к его сечению называется плотностью тока. В правильно рассчитанном трансформаторе плотность тока во всех обмотках одинакова:

(8) где s обм1 , s обм2 — площади сечения проводников обмоток.

Заменим токи I 1 = js обм1 и I 2 = js обм2 , тогда сумма в скобках выражения (7) может быть записана следующим образом: W 1 I 1 + W 2 I 2 = , j (s обм1 W 1 + s обм2 W 2) = js м, где s м — сечение всех проводников (меди) в окне сердечника трансформатора. На рисунке 1 приведена упрощенная конструкция трансформатора, где отчетливо видны площадь сердечника s с, площадь окна магнитопровода s ок и площадь, занимаемая проводниками первичной и вторичной обмоток s м.


Рисунок 1 Упрощенная конструкция трансформатора

Введём коэффициент заполнения окна медью . Его величина находится в пределах k м = 0,15 ... 0,5 и зависит от толщины изоляции проводов, конструкции каркаса обмоток, межслойной изоляции, способа намотки провода. Тогда js м = jk м s ок и выражение для типовой мощности трансформатора можно записать следующим образом:

(9)

Из выражения (9) следует, что типовая мощность определяется произведением s с s ок. При увеличении линейного размера трансформатора в m раз, его объём (масса) увеличится в m³ раз, а мощность возрастёт в m 4 раз. Поэтому, удельные массо-габаритные показатели трансформаторов улучшаются с увеличением номинальной мощности. С этой точки зрения предпочтительны многообмоточные трансформаторы по сравнению с несколькими двухобмоточными.

При разработке конструкции трансформаторов стараются увеличить коэффициент заполнения окна сердечника обмотками, так как при этом возрастает значение номинальной мощности S тип. Для достижения этой цели применяются обмоточные проводники с прямоугольным сечением. Следует отметить, что при практических расчетах формулу (9) преобразуют к более удобному виду.

(10)

При расчете трансформатора по заданной мощности на нагрузке исходя из выражения (10) определяется произведение s с s ок. Затем по справочнику выбирается конкретный тип и размер магнитопровода трансформатора, у которого этот параметр будет больше или равен рассчитанному значению. Затем приступают к расчету количества витков в первичной и вторичной обмотках. Рассчитывают диаметр провода и проверяют, помещаются ли обмотки в окне магнитопровода.

Литература:

Вместе со статьей "Мощность трансформатора" читают:


http://сайт/BP/KlassTransf/


http://сайт/BP/SxZamTransf/

Трансформатор – элемент, использующийся для преобразования напряжений. Он входит в состав трансформаторной подстанции. Ее задача – передача электроэнергии от питающей линии (воздушной или кабельной) потребителям в объеме, достаточном для обеспечения всех режимов работы их электрооборудования.

В роли потребителей выступают жилые многоэтажные здания, поселки или деревни, заводы или отдельные их цеха. Подстанции, в зависимости от условий окружающей среды и экономических факторов, имеют различные конструкции: комплектные (в том числе киосковые, столбовые), встраиваемые, расположенные на открытом воздухе или в помещениях. Они могут располагаться в специально предназначенном для них здании или занимать отдельное помещение здания.

Выбор трансформаторов подразумевает определение его мощности и количества трансформаторов. От результатов зависят габариты и тип трансформаторных подстанций. При выборе учитываются факторы :

Выбор числа трансформаторов

Для трансформаторных подстанций используют схемы с одним или двумя трансформаторами. Распределительные устройства, в состав которых входит более 2 трансформаторов, встречаются только на предприятиях или электрических станциях, где применение небольшого их числа не соответствует условиям бесперебойности электроснабжения, условиям эксплуатации. Там экономически целесообразнее установить несколько трансформаторов сравнительно небольшой мощности, чем один или два мощных. Так проще проводить ремонт, дешевле обходится замена неисправного аппарата.

Устанавливают однотрансформаторные подстанции в случаях :

  • электроснабжения потребителей III категории надежности;
  • электроснабжения потребителей любых категорий, имеющих другие независимые линии питания и собственную автоматику резервирования, переключающую их на эти источники.

Но к однотрансформаторным подстанциям есть дополнительное требование. Потребители III категории по надежности электроснабжения, хоть и допускают питание от одного источника, но перерыв его ограничен временем в одни сутки . Это обязывает иметь эксплуатирующую организацию складской резерв трансформаторов для замены в случае аварийной ситуации. Расположение и конструкция подстанции не должны затруднять эту замену. При обслуживании группы однотрансформаторных подстанций мощности их трансформаторов, по возможности, выбираются одинаковыми, либо максимально сокращается количество вариантов мощностей. Это минимизирует количество оборудования, находящегося в резерве.


К потребителям третьей категории относятся:

  • деревни и села;
  • гаражные кооперативы;
  • небольшие предприятия, остановка которых не приведет к массовому браку выпускаемой продукции, травмам, экологическому и экономическому ущербу, связанному с остановкой технологического процесса.

Для потребителей, перерывы электроснабжения которых не допускаются или ограничиваются, применяют двухтрансформаторные подстанции .

Категория электроснабжения Время возможного перерыва питания Схема питания
I Невозможно Два независимых источника с АВР и собственный генератор
II На время оперативного переключения питания Два независимых источника
III 1 сутки Один источник питания

Отличие в питании категорий I и II – в способе переключения питания. В первом случае оно происходит автоматически (схемой автоматического ввода резерва – АВР) и дополнительно имеется собственный независимый источник питания. Во втором – переключение осуществляется вручную. Но минимальное количество трансформаторов для питания таких объектов – не менее двух.


В нормальном режиме работы каждый из двух трансформаторов питается по своей линии и снабжает электроэнергией половину потребителей подстанции. Эти потребители подключаются к шинам секции, питаемой трансформатором. Второй трансформатор питает вторую секцию шин, соединенную с первой секционным автоматом или рубильником.

В аварийном режиме трансформатор должен взять на себя нагрузку всей подстанции . Для этого включается секционный автоматический выключатель. Для потребителей первой категории его включает АВР, для второй включение производится вручную, для чего вместо автомата устанавливают рубильник

Поэтому мощность трансформаторов выбирается с учетом питания всей подстанции, а в нормальном режиме они недогружены . Экономически это нецелесообразно, поэтому, по возможности, усложняют схему электропитания. Имеющиеся потребители III категории в аварийном режиме отключают , что приводит к снижению требуемой мощности.

Выбор конструкции трансформатора

По способу охлаждения и изоляции обмоток трансформаторы выпускают:

  • масляными;
  • с синтетическими жидкостями;
  • воздушными.

Наиболее распространенные – масляные трансформаторы . Их обмотки размещены в баках, заполненных маслом с повышенными изоляционными характеристиками (трансформаторное масло). Оно выполняет роль дополнительной изоляции между витками обмоток, обмотками разных фаз, разных напряжений и баком трансформатора. Циркулируя внутри бака, оно отводит тепло обмоток, выделяемое при работе. Для лучшего теплоотвода к корпусу трансформатора привариваются трубы дугообразной формы, позволяющие маслу циркулировать вне бака и охлаждаться за счет окружающего воздуха. Мощные масляные трансформаторы комплектуются вентиляторами, обдувающими элементы, в которых происходит охлаждение.

Недостаток масляных трансформаторов – риск возникновения пожара при внутренних повреждениях . Поэтому их можно устанавливать только в подстанциях, расположенных отдельно от зданий и сооружений.

При необходимости установить распределительное устройство с трансформатором поближе к нагрузке или во взрыво- или пожароопасных цехах, используются трансформаторы с воздушным охлаждением . Их обмотки изолированы материалами, облегчающими передачу тепла. Охлаждение происходит либо за счет естественной циркуляции воздуха, либо с помощью вентиляторов. Но охлаждение сухих трансформаторов все равно происходит хуже масляных.

Решить проблему пожарной безопасности позволяют трансформаторы с синтетическим диэлектриком . Их устройство похоже на конструкцию масляного трансформатора, но вместо масла в баке находится синтетическая жидкость, которая не так склонна к возгоранию, как трансформаторное масло.

Группы и схемы соединений

Критериями выбора группы электрических соединений разных фаз обмоток между собой являются:

  1. Минимизация в сетях уровней высших гармоник. Это актуально при увеличении доли нелинейных нагрузок потребителей.
  2. При несимметричной загрузке фаз трансформатора токи первичных обмоток должны выравниваться. Это стабилизирует режим работы сетей питания.
  3. При питании четырехпроводных (пятипроводных) сетей трансформатор должен иметь минимальное сопротивление нулевой последовательности для токов короткого замыкания. Это облегчает защиту от замыканий на землю.

Для соблюдения условий №1 и №2 одна обмотка трансформатора соединяется в звезду, при соединении другой – в треугольник. При питании четырехпроводных сетей наилучшим вариантом считается схема Δ/Yo. Обмотки низшего напряжения соединяются в звезду с выведенным наружу нулевым ее выводом, используемым в качестве PEN-проводника (нулевого проводника).


Еще лучшими характеристиками обладает схема Y/Zo, у которой вторичные обмотки соединяются по схеме «зигзаг» с нулевым выводом.

Схема Y/Yo имеет больше недостатков, чем достоинств, и применяется редко.

Выбор мощности трансформатора

Типовые мощности трансформаторов стандартизированы.

Стандартные мощности трансформаторов
25 40 60 100 160 250 400 630 1000

Для расчета присоединенной к трансформатору мощности собираются и анализируются данные о подключенных к нему мощностях потребителей. Однозначно цифры сложить не получится, нужны данные о распределении нагрузок по времени. Потребление электроэнергии многоквартирным домом варьируется не только в течение суток, но и по временам года: зимой в квартирах работают электрообогреватели, летом – вентиляторы и кондиционеры. Типовые графики нагрузок и величины потребляемых мощностей для многоквартирных домов определяются из справочников.

Для расчета мощностей на промышленных предприятиях требуется знание принципов работы их технологического оборудования, порядок его включения в работу. Определяется режим максимальной загрузки, когда в работу включено наибольшее число потребителей (Sмакс). Но все потребители одновременно включиться не могут никогда. Но при расчетах требуется учитывать и возможное расширение производственных мощностей, а также – вероятность в дальнейшем подключения дополнительных потребителей к трансформатору.

Учитывая число трансформаторов на подстанции (N) мощность каждого рассчитывают по формуле, затем выбирают из таблицы ближайшее большее значение:


В этой формуле Кз – коэффициент загрузки трансформатора . Это отношение потребляемой мощности в максимальном режиме к номинальной мощности аппарата. Работа с необоснованно пониженным коэффициентом загрузки экономически не выгодна. Для потребителей, в зависимости от категории бесперебойности электроснабжения, рекомендуются коэффициенты:

Из таблицы видно, что коэффициент загрузки учитывает взятия одним трансформатором дополнительной нагрузки, переходящей к нему при выходе из строя другого трансформатора или его питающей линии. Но он ограничивает перегрузку трансформатора, оставляя по мощности некоторый запас.

Систематические перегрузки трансформаторов возможны, но их время и величина ограничиваются требованиями заводов-изготовителей этих устройств. По правилам ПТЭЭП длительная перегрузка трансформаторов с масляным или синтетическим диэлектриком ограничивается до 5%.

Отдельно ПТЭЭП определяется длительность аварийных перегрузок в зависимости от их величины.

Для масляных трансформаторов:

Для сухих трансформаторов:

Из таблиц видно, что сухие трансформаторы к перегрузкам более критичны.

Статьи по теме: