В россии создан самый мощный квантовый компьютер в мире. Квантовое превосходство: всё о квантовых компьютерах Сравнение квантового компьютера и суперкомпьютера

В июле 2016 года компания Lockheed Martin увеличила производительность своего Центра квантовых вычислений (находится в Институте научной информации, США) за счет 1098 кубитов. Компания, занимающаяся разработкой систем безопасности и аэрокосмическими технологиями, вот уже в течение шести с половиной лет интересуется сферой квантовых вычислений. Оно и неудивительно. В ближайшие 20 лет эта технология обещает оказать серьезное влияние практически на все, что только можно, начиная от проектов академических исследований и заканчивая виртуальной кибербезопасностью.

Квантовый скачок

Lockheed Martin доказывает, что преимущества квантовых вычислений можно получить уже сейчас, даже несмотря на то, что настоящих полноценных функционирующих квантовых компьютеров еще не создано.

Первой квантовой системой, которую Lockheed Martin купила у компании D-Wave Systems, был компьютер «Rainier», работающий на базе 128 кубитов и известный также под названием D-Wave One. Позже систему заменили на компьютер «Vesuvius» с 512 кубитами на борту, который, в свою очередь, совсем недавно был заменен еще более продвинутой системой D-Wave 2X с поддержкой уже 1152 кубитов.

«Это коммерчески доступный компьютер. Вы правда можете купить себе такой, если хотите. Но на самом деле это больше экспериментальная система, предназначенная для научных разработок и исследований», — говорит Грег Таллант, глава Центра квантовых вычислений компании Lockheed Martin.

«Она не является системой, готовой для массового рынка, но если хотите, то вы можете купить ее и использовать почти так же, как вы используете обычные компьютеры».

Чуть позже вы поймете, почему слово «почти» здесь имеет решающее значение.

Перед собственно самой покупкой представители Lockheed Martin несколько раз посещали главный офис компании D-Wave в Ванкувере. Система, по мнению специалистов, показала себя «многообещающей», и поэтому было решено приобрести один компьютер. Следующим шагом было подписание соглашения о сотрудничестве с Университетом Южной Калифорнии. Одним из результатов сотрудничества стало строительство Центра квантовых вычислений.

Подписанное соглашение позволяет Университету Южной Калифорнии использовать систему для своих исследований и проводить тесты компьютера. Lockheed Martin, в свою очередь, может использовать эту информацию для исследования вопроса перспективного использования технологий квантовых вычислений в различных сферах.

Основной сферой применения подобной квантовой системы изначально рассматривалась проверка и подтверждение работоспособности других готовых программных продуктов. Однако диапазон интересующих направлений решено было увеличить. Важнейшей новой сферой в списке интересов, пожалуй, является машинное обучение, однако систему также рассматривают в качестве мощного инструмента для планирования и прогнозирования.

«С увеличением числа необходимых для решения задач, связанных с отдельно взятой гипотетической растущей проблемой, увеличивается и число возможностей, которые следует рассмотреть для решения этой проблемы», — объясняет Таллант.

«Пример такой задачи можно рассмотреть на классической «задаче коммивояжера» в направлении комбинаторной оптимизации».

Задача коммивояжера заключается в отыскивании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. Эту задачу можно решить и с помощью нынешних компьютеров, однако квантовые аппаратные средства потенциально способны многократно повысить скорость вычислений, особенно в случае если число этих городов в задаче будет постоянно увеличиваться.

Компьютер D-Wave

Талланту и его команде пока не довелось продемонстрировать преимущества их системы D-Wave над классическими компьютерами при решении этой задачи, однако шаг вперед уже сделан. Как сделана и ставка на будущие технологические свершения с помощью самого мощного на сегодняшний день квантового компьютера с 1152 кубитами на борту, который компания приобрела в июле этого года.

Самый мощный?

«Здесь есть некоторая особенность», — говорит Таллант.

«Нынешний чип, использующийся в системе, обладает 1152 кубитами. Однако когда вы собираете подобные системы, то необходимо провести калибровочный процесс. В рамках этого процесса некоторые кубиты могут не пройти проверку и, следовательно, в дальнейшем не могут использоваться в вычислительных процессах».

Другими словами, купили вы, скажем, смартфон на 32 гигабайта внутренней памяти. Запускаете его впервые и обнаруживаете, что на самом деле все обещанные вам 32 гигабайта памяти вам недоступны. Они, конечно же, в устройстве имеются, но то, что находится под крышкой, и тот объем памяти, который вам доступен по факту, — это несколько разные вещи.

«Наш 1152-кубитный процессор после прохождения калибровки имеет 1098 доступных кубитов», — говорит Таллант.

«Важность числа доступных кубитов всецело связана со сложностью подзадач, которые требуется решить для поиска ответа на основной вопрос. Например, если у вас имеется всего 512 кубитов, то и сложность проблемы, с которой система сможет справиться, наиболее эффективно ограничена числом этих кубитов. В данном конкретном случае речь идет о задаче, которая может иметь 512 переменных. На практике же это число будет на порядок ниже, около 200 переменных».

В мае этого года компания IBM гордо объявила о том, что собирается открыть академикам и энтузиастам доступ к своему квантовому 5-кубитному компьютеру через веб-платформу IBM Experience. К чему фанфары IBM, в то время как D-Wave, казалось бы, уже продает квантовые компьютеры с количеством кубитов, превышающим число кубитов в системе IBM? Ответ прост: квантовый компьютер Lockheed Martin (точнее D-Wave Systems) — не совсем квантовый.

Квантовый квантовому рознь

Сердцами систем IBM и Lockheed Martin действительно являются сверхпроводящие кубиты, многообещающие элементарные носители квантовой информации, на базе которых исследователи надеются однажды создать настоящий универсальный квантовый компьютер. Слово «однажды» здесь ключевое, так как такой компьютер пока не создан.

Систему IBM нельзя рассматривать как «универсальный» квантовый компьютер, потому что машина не способна выполнять те задачи, с которыми справляются классические компьютеры. Именно особенность выполнять все задачи и будет характеризовать универсальный квантовый компьютер.

Система D-Wave, использующаяся компанией Lockheed Martin, тоже не подпадает под это определение. По сути, это скорее установка квантового отжига (нормализации), а не полноценный квантовый компьютер. Система способна справляться лишь с ограниченным числом задач.

Процессор D-Wave

«Система D-Wave — это не компьютер общего назначения. Он способен решать определенные задачи на базе алгоритмов модели Изинга», — говорит Таллант, описывая этот компьютер как «систему для оптимизированных решений» таких проблем, как, например, расчет наиболее эффективного использования ресурсов (времени и топлива, например) при наличии различных сценариев проблемы.

«В этом ключе можно говорить лишь о квантовом отжиге. Мы вносим в машину задачи, ответы на которые нам известны. После этого загружаем в нее задачи, ответы на которые нужно будет найти. После чего мы попробуем совместить информацию обеих задач. В конечном итоге на основе решений-кандидатов мы сможем получить ответ на нашу задачу».

«В некотором смысле этот способ позволяет применять известный вам метод решения задачи, даже если истинный метод решения этой задачи вам изначально неизвестен. Другими словами, вы получаете ответ на задачу, даже если не знаете, как ее решить».

Работает — и ладно

На данный момент, по сравнению с другими аналогичными системами, D-Wave может похвастаться наличием самого большого числа доступных для работы кубитов. Тем не менее радоваться пока рано, потому что перед нами не полноценная универсальная квантовая система, о которой так долго мечтают не только люди, которые занимаются созданием квантовых компьютеров, но и ученые, которые очень хотят на таких компьютерах поработать.

«Это определенно не универсальный квантовый компьютер. Это нормализатор», — говорит Таллант.

«Компьютер D-Wave не универсален. Пока современная наука пока не позволяет создать все необходимые компоненты для постройки универсальной квантовой системы. Мы и сами были бы рады получить ее в свое распоряжение».

На днях в ходе Международной квантовой конференции в Москве российский ученый Михаил Лукин представил самый мощный на сегодняшний день 51-кубитный квантовый компьютер, сообщает 4pda.ru.

Число 51 было выбрано не случайно: Google уже долгое время работает над 49-кубитным квантовым компьютером, поэтому обойти конкурента было для Лукина - как для азартного ученого - делом принципа.

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Михаил Лукин сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что в Google все время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Ученые убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали все свое волшебство и профессионализм».

Сами же кубиты, в количестве которых так неистово соревнуются ученые, - это вычислительный юнит, который одновременно представляет собой и ноль, и единицу, в то время как привычный бит - это либо одно, либо другое. Современные суперкомпьютеры выстраивают последовательности, а квантовые компьютеры, в свою очередь, производят вычисления параллельно, в одно мгновение. Благодаря такому подходу вычисления, на которые сегодняшним суперкомпьютерам понадобятся тысячи лет, квантовый компьютер может осуществить моментально.

«Это одна из самых больших квантовых систем, которые были созданы, - рассказывает Михаил Лукин, профессор Гарвардского университета и сооснователь Российского квантового центра. - Мы входим в тот режим, где уже классические компьютеры не могут справиться с вычислениями. Делаем маленькие открытия, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, но до конца не понимаем».

Пока даже создатели мощнейших квантовых компьютеров не могут сказать наверняка, зачем человечеству понадобятся настолько мощные вычислительные машины. Возможно, с их помощью будут разработаны принципиально новые материалы. Могут быть совершены новые открытия на ниве физики или химии. Или, возможно, квантовые компьютеры помогут, наконец, полностью понять природу человеческого мозга и сознания.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет, - полагает Руслан Юнусов, директор Российского квантового центра. - Здесь можно привести пример транзистора. Когда придуман был транзистор, никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили компьютеры, никто не представлял, как сильно изменится жизнь».

То, как именно будут использоваться квантовые компьютеры, покажет только время.

В ходе Международной квантовой конференции в Москве российский учёный Михаил Лукин представил самый мощный на сегодняшний день 51-кубитный квантовый компьютер. Число 51 было выбрано не случайно: Google уже долгое время работает над 49-кубитным квантовым компьютером, а потому обойти конкурента было для Лукина, как для азартного учёного, делом принципа.


«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Сами же кубиты, в количестве которых так неистово «соревнуются» учёные, - это вычислительный юнит, который одновременно представляет собой и ноль, и единицу, в то время как привычный бит - это либо одно, либо другое. Современные суперкомпьютеры выстраивают последовательности, а квантовые компьютеры, в свою очередь, проводят вычисления параллельно, в одно мгновение. Благодаря такому подходу вычисления, на которые сегодняшним суперкомпьютерам понадобятся тысячи лет, квантовый компьютер может осуществить моментально.

«Это одна из самых больших квантовых систем, которые были созданы, - рассказывает Михаил Лукин, профессор Гарвардского университета и сооснователь Российского квантового центра. - Мы входим в тот режим, где уже классические компьютеры не могут справиться с вычислениями. Делаем маленькие открытия, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, но до конца не понимаем».

Пока даже создатели мощнейших квантовых компьютеров не могут сказать наверняка, зачем человечеству понадобятся настолько мощные вычислительные машины. Возможно, с их помощью будут разработаны принципиально новые материалы. Могут быть совершены новые открытия на ниве физики или химии. Или, возможно, квантовые компьютеры помогут, наконец, полностью понять природу человеческого мозга и сознания.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесёт, - полагает Руслан Юнусов, директор Российского квантового центра. - Здесь можно привести пример транзистора. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили компьютеры, никто не представлял, как сильно изменится жизнь».

В IT сложилась предреволюционная ситуация, хотя в курсе происходящего остаются лишь немногие интересующиеся и еще более узкий круг специалистов. А между тем уже в этом году ожидается событие исторического масштаба: квантовые компьютеры, разработка которых продолжается уже более трех десятилетий, впервые смогут проводить вычисления, недоступные для самых мощных суперкомпьютеров традиционной кремниевой архитектуры. Если ожидания оправдаются, скоро мы вступим в эру« квантового превосходства». Но хотя название для этой эпохи давно придумано, что нас в ней ждет, не знает пока никто.

Александр Ершов

Стенд компании Intel на прошедшей в начале года конференции потребительской электроники CES в Лас-Вегасе, как обычно, был заполнен журналистами и техноблогерами. Новинки крупнейшего производителя микрочипов всегда потенциально интересны, хотя в последние годы эти обновления — чуть больше ядер, чуть меньше энергопотребление — все реже привлекают внимание публики. Однако на этот раз технологическому гиганту действительно было чем похвастаться: посетителям показали квантовый процессор Tangle Lake, способный — пусть теоретически и лишь в некоторых задачах — делать то, что пока было по силам лишь лучшим суперкомпьютерам.

Tangle Lake ни размерами, ни формой не слишком выделяется на фоне обычной продукции Intel. Но принципы, на которых он работает, далеки от тех, на которых построена традиционная электроника. Вместо миллиардов транзисторов на новой микросхеме имеется всего 49 элементов. И это не полупроводниковые переключатели тока, а кубиты («квантовые биты»), элементарные ячейки, способные работать с квантовой информацией. В данном случае они представляют собой крохотные сверхпроводящие антенны.


Это не единственный вариант получить кубиты для квантового компьютера, но в данном случае важнее их число. 49 не рекорд: еще до презентации Tangle Lake компания IBM рассказала о работе над квантовым компьютером на 50 кубит, а группа под руководством гарвардского физика Михаила Лукина сделала экспериментальный 51-кубитный вычислитель. Легко заметить, что все эти проекты построены вокруг цифры в полсотни кубит: именно на ней обычно устанавливают планку, после которой стоит ожидать наступления «квантового превосходства».

Преимущество неопределенности

Использовать для расчетов поведения квантовых систем не обычные компьютеры, а другие квантовые системы, которые могли бы играть роль упрощенной модели, предложил еще Ричард Фейнман в 1981 году. Справедливости ради стоит добавить, что идея, видимо, витала в воздухе: почти за год до того ее высказывал советский математик Юрий Манин. В самом деле, трудность, с которой сталкиваются обычные компьютеры при моделировании таких систем, заключается в самой их квантовой природе, в неустранимой неопределенности параметров взаимодействующих частиц.



Наименее универсальная форма квантового компьютера. Его легче всего построить, однако он способен выполнять лишь очень ограниченный круг задач, связанных с оптимизацией. Многие эксперты сомневаются в том, что такое устройство может иметь какие-либо преимущества перед традиционным компьютером. Применение: задачи на оптимизацию Универсальность: ограниченная. Вычислительная мощность: не превышает традиционную

Допустим, нам нужно посчитать, как поведет себя атом, если мы направим на него фотон; для этого нам требуется выяснить поляризацию фотона. Единственный способ сделать это — провести измерения, а до этого поляризация останется неопределенной: физики говорят о суперпозиции, наложении возможных значений. Для расчетов все варианты должны быть рассмотрены по отдельности, и в нашем примере это займет вдвое больше времени, чем если бы нужные параметры поляризации были известны. Более того, стоит начать добавлять в систему другие компоненты (несколько атомов, несколько фотонов), и неопределенности придется перемножать, а сложность вычислений вырастет экспоненциально.

Идея квантового компьютера заключалась в том, чтобы обратить недостаток в достоинство: использовать для вычислений саму неопределенность, которая так затрудняет обычные расчеты. Представим, что вам нужно подобрать пароль, у которого неизвестны последние два бита. Тут возможны четыре комбинации: 00, 01, 10 и 11. В классическом случае каждый из них необходимо считать отдельно: подставить его в нужное место и проверить результат. Однако если носителем информации станет квантовый объект — например, два кубита с суперпозицией поляризации, — то все четыре комбинации можно будет проверить одновременно.


Позволит проводить симуляцию сложных квантовых взаимодействий, которые недоступны для моделирования на любых традиционных компьютерах. Считается, что аналоговый квантовый компьютер будет содержать от 50 до 100 кубитов. Применение: квантовая химия, разработка новых материалов, задачи на оптимизацию, семплирование, квантовая динамика. Универсальность: частичная. Вычислительная мощность: высокая

Если правильная комбинация возможных состояний кубитов существует, можно не сомневаться, что они примут и ее тоже. Главное — организовать взаимодействие между ними так, чтобы мы смогли прочитать и понять получившийся ответ. Мощь квантовых компьютеров заключается именно в экспоненциально растущем числе операций, которые можно сделать за один шаг. Система, состоящая из двух кубитов, позволяет одновременно рассмотреть четыре варианта развития событий, система из четырех — 16. После 50, как мы помним, наступает «квантовое превосходство», а на число комбинаций всех возможных состояний квантового компьютера из 300 кубитов уже не хватит атомов во Вселенной.

Чтобы взять эту планку, нам понадобятся физические носители кубитов. В этой роли могут выступать отдельные атомы, способные находиться в разных энергетических состояниях, или дефекты кристаллической структуры («вакансии»), несущие спин разного направления, или даже относительно крупные объекты — как те сверхпроводниковые антенны, на которых построен Tangle Lake. Какой именно вариант станет стандартом в будущем, пока сказать трудно. Так в свое время было с электрической лампой: физика понятна, но инженерных решений предложен целый букет. Только опыт применения покажет достоинства, недостатки и перспективы разных систем.


Наиболее мощная и наиболее гибкая с точки зрения вычислительных задач версия квантового компьютера. Разработка такого устройства связана с большим количеством технических трудностей. По современным оценкам, в его составе должно иметься не менее 100 000 физических кубитов. Применение: безопасные вычисления, машинное обучение, криптография, квантовая химия, разработка новых материалов, задачи на оптимизацию, семплирование, квантовая динамика, поиск. Универсальность: полная, с ускорением относительно традиционных компьютеров. Вычислительная мощность: весьма высокая

Минимальный набор

Впрочем, для создания настоящего квантового компьютера понадобится не только комплект кубитов, но и каналы их взаимодействия. В обычном компьютере эту роль выполняют провода и электрические контакты, а в квантовом — эффект запутанности. Запутанные частицы имеют общие квантовые параметры: их можно разделить физически, но их поведение останется связанным, невзирая на расстояние. Кубиты в квантовом компьютере расположены не слишком далеко, однако именно запутанность связывает их в единую, согласованно реагирующую систему.

Кроме того, новому компьютеру необходимо записывать и считывать информацию. В принципе, это самое простое: для ввода-вывода можно использовать излучение, например лазерное или микроволновое, сфокусированное на отдельных кубитах, позволяющее «писать» и «читать» их состояние. Технически это довольно тонкая работа, которая требует дорогого оборудования, но делать это физики умеют уже давно. Куда труднее выполнить последнее требование: как можно надежнее изолировать кубиты от внешнего мира, чтобы удерживать их запутанность в течение времени, достаточного для вычислений и обмена данными.

Bristlecone Google

Последняя разработка группы Джона Мартиниса в исследовательском подразделении поисковой корпорации показывает пример нового подхода к проблеме коррекции ошибок, столь важной для квантовых вычислений. Кубиты расположены на микрочипе в шахматном порядке — так, что «белые» используются для логических операций, а «черные» — для контроля ошибок.

О том, насколько трудно сохранить квантовую природу большой и сложной системы, может рассказать сам кот Шредингера. Замысел этого мысленного эксперимента широко известен: помещенное в коробку животное оказывается одновременно живо и мертво, поскольку его судьба зависит от неопределенного состояния некоей частицы. До открытия коробки (измерения) параметры частицы находятся в суперпозиции двух состояний, а вместе с ними в суперпозиции находится и кот. Обычно этот эксперимент приводят как пример парадоксальной природы квантового мира, но, если подумать, он говорит еще и о другом.

Одновременно живых и мертвых котов не бывает как раз потому, что кот — это макроскопический объект. Он состоит из многих частиц, которые все время норовят вступить во взаимодействие с внешней средой и «сколлапсировать», потеряв неопределенность и перейдя в одно из возможных состояний. Точно так же и с компьютером: чем больше кубитов, тем он может быть мощнее, но при этом все сильнее напоминает шредингеровского кота, которому трудно сохранять свое квантовое состояние. Именно поэтому кубиты обязательно помещают в вакуумные камеры, для них создают хитрые схемы охлаждения и разрабатывают сложные методы коррекции ошибок.

Tangle Lake Intel

Помимо числа кубитов и использования в основе устройства сверхпроводящих антенн с джозефсоновскими переходами, о Tangle Lake не известно пока ничего конкретного.

Точка перегиба

Теперь, когда примерно ясно, что вообще имеется в виду под квантовым вычислителем и какие у него могут быть преимущества, становится понятно, что квантовые технологии не заменят старый добрый кремний ни завтра, ни в отдаленном будущем. Однако это вовсе не значит, что все разговоры о «квантовом превосходстве» — очередная утка. Да, сегодня известно лишь несколько вычислительных задач, которые квантовые компьютеры способны ускорить. Зато это ускорение не в 10 и не в 100 раз, а намного больше — чем сложнее задача, тем заметнее.

50Q IBM

50-кубитный квантовый компьютер от IBM был представлен в ноябре 2017 года, но подробностей о нем известно тоже немного. В частности, утверждается, что его время когерентности (в течение которого можно проводить вычисления) достигло рекордных для системы 90 микросекунд.

Решение многих таких задач уже требуется на практике. Например, алгоритм Шора позволяет за секунды взламывать самые современные шифры, а алгоритм Лова Гровера принципиально снижает сложность поиска в больших объемах данных. Не следует забывать и про квантовые расчеты, о которых изначально говорили Фейнман и Манин. По статистике, они занимают сегодня до 30−40% вычислительных ресурсов всех суперкомпьютеров. И по-видимому, именно эта область станет первой, которая почувствует «квантовый толчок» от создания новых машин. А это будет означать новые материалы, новые лекарства, новое понимание сверхпроводимости.

19Q Rigetti Computing

Главной особенностью 19-кубитного чипа называют его специализацию на машинном обучении. Система разработана для решения задач кластеризации данных, например при распознавании изображений.

Можно не сомневаться, что таких примеров будет все больше: спектр практических применений любого компьютера становится понятен только после появления подходящих для него алгоритмов, которые только предстоит разработать. Их создание — область настолько молодая, что, по словам одного исследователя, «можно написать на одной доске имена всех, кто ей занимается в мире». Специалистов катастрофически не хватает, особенно сейчас, когда в квантовую гонку включаются IT-гиганты, готовые переманивать сотрудников целыми лабораториями.

2000Q D-Wave

2000Q содержит 2048 кубитов, что формально делает ее самой сложной квантовой системой в мире. Однако архитектура D-Wave существенно отличается от других устройств и подходит для решения только очень узких задач. Многие эксперты сомневаются, что подход D-Wave вообще может иметь какой-то практический выигрыш от использования квантовых эффектов.

Наступление эры «квантового превосходства» нельзя сравнивать с выпуском первого персонального компьютера или мобильной революцией. Простые потребители не почувствуют никаких принципиальных изменений еще как минимум несколько лет. Но если говорить об индустрии, то она уже изменилась. Резкий интерес к постквантовой криптографии, создание такими гигантами, как IBM и Microsoft, платформ для разработки квантовых алгоритмов, миллиардные инвестиции — история квантовой революции уже пишется.

Таймлайн

До 1990: развитие квантовой механики, теоретические работы

1927

Вернер Гейзенберг формулирует принцип неопределенности.

1981

В лекции «Моделирование физики на компьютерах» Ричард Фейнман формулирует основы квантовых вычислений.

1985

Дэвид Дойч описывает систему универсального квантового компьютера для любых вычислений.

После 1990: практические попытки создания квантовых компьютеров. Начало активного финансирования исследований

1994

Питер Шор открывает квантовый алгоритм разложения целых чисел на множители, позволяющий взламывать современные криптосистемы.

1994

Петер Цоллер и Хуан Игнасио Сирак реализуют первую экспериментальную схему квантового компьютера, получив логический вентиль C-NOT.

1997 Алексей Китаев создает надежный метод коррекции ошибок при квантовых вычислениях.
1998

Первые двухкубитные компьютеры созданы в Оксфордском университете и IBM.

2001

Квантовый компьютер IBM проводит успешное разложение числа 15 по алгоритму Шора.

2008

Компания D-Wave заявляет о создании 28-кубитного устройства.

2016

IBM запускает облачный сервис Quantum Experience для удаленного доступа к квантовому вычислителю.

2017

Не менее четырех независимых групп докладывают о создании вычислителей с примерно полусотней кубит.

2018

Группа Джона Мартиниса анонсирует Bristlecone — квантовый компьютер на 72 кубитах с системой коррекции ошибок.

о создании 72-кубитного квантового компьютера. Потенциально это самая мощная вычислительная система на данный момент. Пора ли хоронить традиционные компьютеры?

Квантовое превосходство

Анонс был сделан на ежегодных мартовских встречах Американского физического общества, одного из самых крупных в мире мероприятий для физиков, конференция объединяет более 10 000 участников со всего мира. Поэтому выбор площадки для объявления Джоном Мартинисом результатов работы его группы в Google является неслучайным - среди докладчиков и участников конференции ключевые фигуры «квантовой гонки», включая Михаила Лукина из Гарвардского университета, представителей IBM и Intel.

Квантовые компьютеры используют необычные свойства частиц квантовой природы для получения ускорения в решении ряда математических задач, например, при разложении чисел на простые множители или моделировании химических соединений. В этих задачах квантовый компьютер гораздо эффективнее классического, но для создания квантовых компьютеров требуется решить сложную научно-инженерную задачу.

Элементами квантовых компьютеров являются кубиты (квантовые биты - аналоги классических битов информации, являющихся элементарными единицами для вычислений). В отличие от классических битов, которые принимают значения либо 0, либо 1, квантовые системы находятся одновременно в этих состояниях. Такой «параллелизм» является ключевым для получения ускорения при решении задачах. Центральной проблемой является масштабируемость квантовых компьютеров: из-за хрупкости квантовых состояний тяжело создать систему из достаточно большого количества кубит, поскольку из-за воздействия окружения квантовые состояния разрушаются и в процессе вычислений возникают ошибки.

При этом считается, что порог «квантового превосходства» (quantum supremacy) находится на уровне 50 кубит - такая квантовая система потенциально может решать задачи, которые являются непосильными для самых быстрых суперкомпьютеров, построенных на полупроводниках (всех тех системах, что используются сейчас).

Конкуренты

Квантовый процессор от Google с 72 кубитами потенциально является значительным шагом вперед по сравнению с анонсированными в прошлом году 49-кубитными процессорами IBM и Intel, 51-кубитной системой Гарвардского университета и 53-кубитного симулятора Криса Монро из Объединенного квантового института в Мэриленде.

Кроме количества кубитов, важным является количество ошибок, совершаемых квантовым компьютером при работе. Группа Мартиниса развивает технологию построения квантовых компьютеров с использованием сверхпроводящих кубитов. Предыдущая модель из 9 кубит обладала очень низким уровнем ошибок. Интересным приемом при проектировании нового 72-кубитного процессора является переход от структуры цепочки, которая была реализована в 9-кубитном процессоре, к архитектуре двух массивов из 36 кубит. Такая схема расположения кубит позволяет задействовать квантовые коды исправления ошибок - отслеживать и исправлять ошибки в ходе вычислений. В результате в новом процессоре производительность выросла без вреда для результатов вычислений, поскольку удается сохранить достаточно низкий уровень ошибок.

В России также проектируются квантовые компьютеры на задействованных в работе Мартиниса сверхпроводящих кубитах. Российский квантовый центр, Институт физики твердого тела РАН, МИСиС, ВНИАА им. Духова и МГТУ им. Н.Э. Баумана ведут работы по разработке квантового компьютера, использующего несколько кубит. Несмотря на количественное отставание, разрабатываемые технологии для приготовления, управления и измерения квантовых состояний будут полезны для масштабирования и создания следующих поколений сверхпроводящих квантовых процессоров.

Хотя крупных проектов по созданию квантовых компьютеров не так много, команды серьезно конкурируют между собой. При этом отдельное внимание уделяется взаимодействию команд физиков с уже существующей в IT-компаниях экспертизой по инженерии и информационным технологиями. Примеры Google и IBM показывают, что такой подход позволяет достаточно быстро развивать сложные научно-технологические проекты, к которым, безусловно, относится квантовый компьютер.

Борьба за квантовое превосходство идет сразу по нескольким фронтам. Строятся более мощные и более совершенные архитектуры квантовых компьютеров, ищутся более эффективные квантовые алгоритмы и подходящие задачи. Тем не менее остаются важные вопросы по дальнейшему масштабированию схемы и количеству операций, которые можно будет выполнять.

Практическое применение

Переводя вопрос в практическую плоскость можно спросить: насколько полезны те задачи, которые могут быть решены на квантовом компьютере группы Мартиниса?

Квантовые компьютеры разительно отличаются от традиционных. В них пока нельзя и думать загрузить операционную систему Windows (или Linux), сложное ПО и посчитать, быстро он работает или нет. Поэтому ученым приходится отдельно исследовать задачи, в которых может быть очевидно преимущество сверхпроводящего процессора над традиционным. Интересно, что как раз группа Мартиниса в сентябре опубликовала работу, в которой описала такую задачу, но пока неизвестно, удалось ли на практике проверить новый 72-кубитный процессор.

Сформулированная задача является абстрактной и не имеет практического приложения. Очевидно, что после демонстрации самого факта «квантового превосходства», пусть и на абстрактной задаче, необходимо будет найти полезный для индустрии кейс применений квантовых вычислений. В этом направлении серьезную конкуренцию Google составляют IBM (в рамках проекта IBM Q Experience) и Rigetti Computing, которые открыли облачный доступ к своим квантовым платформам. Также к ним присоединяется компьютер от Alibaba, созданный в рамках совместного проекта с Китайской академией наук.

Собирая данные по решенным задачам, можно получить большой объем информации о направлениях, которые могут быть интересны для конечных пользователей. Откроет ли Google доступ к своему компьютеру? Покажет ли решение абстрактной или полезной задачей для квантового превосходства? Насколько обоснован оптимизм относительно дальнейшего масштабирования системы? Ближайшие месяцы должны дать ответы на эти ключевые вопросы.

Статьи по теме: