Подключение энкодера кюблер к счетчику импульсов. Подключение инкрементального энкодера к микроконтроллеру

Давно хотел приспособить к ноуту регулятор громкости, сделанный из энкодера . Подключать этот регулятор нужно будет к USB, чтобы все было «по-взрослому» (да и по-другому никак внешнее устройство к ноуту не подключишь). Крутим энкодер влево - громкость должна уменьшаться, вправо - должна увеличиваться. Жмем вниз ручку энкодера - запускаем какую-нибудь полезную программу, или переключаемся на регулирование тембра.

Для тех, кто не в курсе, что такое энкодер - это такая крутилка, типа ручки громкости на основе обычного резистора, только у этой крутилки нет граничных положений - крути сколько влезет в любую сторону. Крутится энкодер с приятными мягкими щелчками, а выглядит как обычный переменный резистор.

Такие устройства - не редкость в совремеменных автомагнитолах и любых бытовых устройствах, пользовательский интерфейс которых обрабатывается микроконтроллером (а это почитай любая бытовая техника), и где нужна плавная регулировка или настройка. В энкодер часто встраивают и третий контакт, работающий как кнопка на ручке - когда утапливаем ручку энкодера вниз (вдоль оси), то эта кнопка срабатывает. Очень обогащает возможности интерфейса с пользователем - на одном энкодере можно построить всю систему управления электронным устройством (зато добавляется гемор программисту, но это уже мелочи). У меня как раз и был такой энкодер.

Принцип работы энкодера довольно прост - в нем всего лишь два контакта (кнопка на ручке не в счет), которые начинают замыкать, как только пользователь начал крутить ручку энкодера. Контакты подключаются к двум ножкам микроконтроллера (работающих как цифровые входы), и при вращении ручки энкодера на этих ножках появляются импульсы, по фазе и количеству которых микроконтроллер определяет направление вращения и угол поворота ручки энкодера.

Чтобы заработал регулятор громкости, нужно решить, как минимум, три инженерные задачи:

Шаг 1 . Создание низкоскоростного USB-устройства на макетке.
Шаг 2 . Подключить к этому USB-устройству энкодер, добиться, чтобы микроконтроллер его отрабатывал, и передавал в компьютер информацию о вращении энкодера.
Шаг 3 . Разобраться, как можно программно управлять регулятором громкости. Наверняка есть какое-нибудь мультимедиа-API, которое позволяет это делать. Программа минимум - нужно написать программку, которая будет принимать сигналы от USB-устройства и управлять громкостью. Неплохо бы, конечно, написать драйвер, но за это браться страшновато. Лучше оставим на потом.

Итак, опишу процесс создания регулятора по шагам. Подробности опускаю, иначе будет слишком скучно. Кому интересно, см. исходники и документацию по ссылкам.

[Шаг 1. Создание низкоскоростного USB-устройства на макетке ]

Этот шаг прошел, даже не начавшись - как-то слишком просто и банально. Тупо скачал пример проекта по ссылке . Поправил файлик usbconfig.h - для понтов назвал мое устройство ENCODER DEMO , на большее фантазии не хватило. Проверил в Makefile тип проца (ATmega16), частоту кварца (16 МГц) - чтобы соответствовало моей макетке AVR-USB-MEGA16. Скомпилил проект в AVRStudio, прошил макетку, подключил к компьютеру - все завелось с полоборота, мое USB-устройство исправно заработало как виртуальный COM-порт - все в точности так, как написано в статье .

[Шаг 2. Подключить к USB-устройству энкодер ]

Этот шаг у меня вызывал самые большие опасения, что все заработает как надо. Что энкодер подключу и смогу его читать - в этом я не сомневался. Были сомнения, что смогу его считывать качественно, когда в фоне работает ещё и обработка протокола USB - все-таки это задача для микроконтроллера не из легких (как впоследствии оказалось - волновался я совершенно напрасно).

Как обычно, начал рыться в Интернете в поисках готовых подпрограмм для чтения энкодера. Нашел очень быстро то, что нужно - именно для AVR, очень простой код на C , файлики encoder.c и encoder.h. Что ни говори, а open source крутая штука.

Приделал два индикационных светодиода - ЗЕЛЕНЫЙ и ЖЕЛТЫЙ - для обозначения направления вращения энкодера. Подключил энкодер для удобства прямо к разъему ISP, воспользовавшись тем, что сигналы MOSI, MISO и SCK - это всего лишь ножки PB5, PB6 и PB7 микроконтроллера ATmega16 (подключил туда фазы A и B, а также кнопку энкодера).

Поправил определения ножек, добавил код инициализации. Присоединил к проекту модуль encoder.c. Добавил в главный цикл main управление зеленым и желтым светодиодами, когда приходит инфа с энкодера. КРАСНЫЙ светодиод привязал к кнопке энкодера - когда её нажимаем, красный светодиод зажигается, отпускаем - гаснет. Скомпилировал, прошил - работает. Кручу ручку влево, и в такт щелчкам энкодера вспыхивает зеленый светодиод. Кручу ручку вправо - вспыхивает желтый светодиод. Несмотря на то, что чтение энкодера происходит методом поллинга, благодаря эффективному коду к чтению энкодеру НИКАКИХ нареканий даже при одновременной работе с библиотекой V-USB (респект, Pashgan!). Добавил вывод информации от энкодера в виртуальный COM-порт (крутим энкодер влево вывожу в консоль минусики "-", крутим вправо вывожу в консоль плюсики "+"). По таймеру каждые 10 мс вывожу состояние кнопки энкодера и индицирую её красным светодиодом (кнопка нажата - передаю символ "1", отпущена - "0"). Все работает. Скукотища.

В заключение выкинул модули cmd.c, crc16.c, eepromutil.c, strval.c. Объем кода упал до 3 килобайт - отлично, теперь поместится и в память ATtiny45 (можно в будущем задействовать макетку AVR-USB-TINY45, она меньше по размерам и дешевле).

[Шаг 3. Разобраться, как можно программно управлять регулятором громкости ]

Как обычно, прогуглил вопрос. Отсеял кучу мусора, и наконец выгреб жемчужину - . Дальше дело техники. Достаю любимый детский конструктор - Visual Studio. Ни о чем не думая, визардом генерю dialog-based приложение. Бросаю на панель движок регулятора громкости, привязываю к нему переменную, добавляю обработчик положения движка. При старте приложения настраиваю движок на минимум 0 и максимум 65535 (чтобы соответствовало границам значения громкости, которым манипулируют библиотеки управления микшером). Считываю функцией mixerGetControlDetails текущее значение громкости, и ставлю движок регулятора в соответствующее положение. В обработчике положения движка все наоборот - читаю положение движка и функцией mixerSetControlDetails устанавливаю нужную громкость. Управление громкостью делаю в точности так, как написано в статье . Проверил - работает.

Теперь осталось дело за малым - читать, что приходит с виртуального COM-порта (на нём у нас висит свежеиспеченное USB-устройство с энкодером). Если пришел минусик (-) то двигаем движок влево (уменьшаем громкость), плюсик (+), то двигаем движок вправо (увеличиваем громкость). Если приходят символы 0 и 1, то соответственно управляем состоянием чекбокса (просто для индикации - нажата кнопка энкодера, или нет). С COM-портом можно работать, как с обычным файлом (см. ). Инициализируем подключение к COM-порту как открытие файла (вызовом ::CreateFile ) в блокирующем режиме. Запускаем отдельный поток, туда в бесконечный цикл добавляем чтение файла (блокирующим вызовом ::ReadFile ) по одному символу, и этот символ анализируем. По тому, какой символ пришел, крутим движок слайдера в нужную сторону (громкость будет регулировать обработчик слайдера) или обновляем состояние чекбокса. Проверил - работает.

Вот и все, собственно. Дальше можно заниматься бесконечным (и, наверное, бесполезным) улучшательством. Сделать автоматический поиск нужного виртуального COM-порта (сейчас для упрощения имя COM-порта передается через командную строку). Переделать USB-устройство с CDC -класса на HID - это может упростить код USB-устройства, а также упростить программный поиск и открытие устройства на компьютере по VID и HID. Или написать вместо программы сервис (чтобы не надо было запускать отдельную программу). Или даже драйвер. Это очень интересно, но не умею (может, кто из хабравчан научит уму-разуму?..). Прикрутить к кнопке энкодера какое-нибудь действие. Ну и так далее до бесконечности.

Надеюсь, кому-нибудь мои изыскания пригодятся в собственных разработках. Если чего-нибудь упустил, буду рад выслушать замечания в комментариях.

[UPD120803 ]

Один грамотный человек собрал на микроконтроллере AVR

Принцип действия, схема включения и исходник библиотеки для работы с инкрементным энкодером уже рассматривался мной в одной из статей. Сегодня мы поговорим о практическом применении энкодера. В качестве примера я выбрал программу генератора прямоугольного сигнала с диапазоном рабочих частот 1 – 100 Гц. Первоначальный замысел предполагал диапазон 1 - 1000 Гц, но на практике выяснилось, что перебирать тысячу значений утомительно даже с энкодером.

Подготовка

Создаем в пустом workspace`е новый проект

Project > Create New Project…

Тип шаблона C > main

Копируем в папку проекта файлы исходника библиотеки для работы с энкодером
encoder.h и encoder.c

Подключаем к нашему проекту файл encoder.c
Правая кнопка мышки в окне workspace и в открывшемся меню Add > Add Files…

Копируем файл bits_macros.h в папку проекта.


Подключаем заголовочные файлы

В начале файла main.c забиваем следующие строки
#include
#include
#include "encoder.h"
#include "bits_macros.h"

Задаем настройки проекта

Project > Options

Тип микроконтроллера
General Options > Target > Processor Configuration > ATMega8535

Разрешение использования имен битов определенных в заголовочных файлах
General Options > System > Enable bit defenitions...

Оптимизация кода по размеру
C/C++ Compiler > Optimisations >Size High

Тип выходного файла
Linker > Output File галочка Override default и поменять расширение на hex
Linker > Format > Other выбрать Intel Standart

Жмем Ок. Сохраняем проект и workspace.
Теперь у нас есть пустой проект с подключенной либой и заданными настройками.

Задача

Заставить микроконтроллер генерировать меандр с частотой от 1 до 100 Гц. Значение частоты должно задаваться с помощью энкодера. Поворот энкодера на одну позицию должен соответствовать изменению частоты генератора на 1 Гц.

Схема для нашего примера

К выводу, на котором будет генерироваться меандр, подключен светодиод, чтобы хоть как-то видеть результат работы программы. Вряд ли у многих под рукой осциллограф.

Алгоритм программы

Прямоугольный сигнал генерируется с помощью 16 разрядного таймера Т1, который работает в режиме СТС – сброс при совпадении. Во флэш памяти микроконтроллера храниться массив, содержащий для каждого значения требуемой частоты константу. Для доступа к элементам массива используется переменная pTimerValue. В прерываниях таймера Т1 значение константы считывается и записывается в регистр сравнения.

Для генерации сигнала используется вывод PD5 (OC1A). У него есть альтернативные функции – он может менять свое состояние на противоположное при равенстве счетного регистра и регистра сравнения.

В основной программе в бесконечном цикле while микроконтроллер опрашивает буфер энкодера и в зависимости от его значения уменьшает или увеличивает переменную pTimerValue.

В самом начале main`а располагается код инициализации периферии и необходимых переменных.

Структура программы

Для наглядности я изобразил структуру программы в виде диаграммы.

Это типовая структура построения простых программ. Прерывания естественно происходят в произвольном месте цикла.

  • Инициализация.
  • Бесконечный цикл (так называемый superloop), в котором происходит ожидание события, обычно в виде опроса флагов или какого-нибудь буфера.
  • Параллельная работа периферийных устройств, вызывающих прерывания. В них выполняется какой-то код (желательно короткий) и выставляются флаги.

Для простых задач такого подхода хватает за глаза. Для сложных существуют другие способы организации программ. Наберитесь терпения, скоро и до них дойдет дело.

Расчет констант для таймера Т1

Рассчитаем значение константы для частоты 1 Гц. Подобный расчет я уже приводил, но будет не лишним его вспомнить

Тактовая частота микроконтроллера 16 МГц (смотрите схему). Коэффициент предделителя таймера - 256. Он позволяет получить прерывания с любой частотой из нашего диапазона.

Период одного тика таймера будет равен 1/(16 МГц/ 256) = 16 мкс

На выводе PD5 нам нужно получить сигнал частотой 1 Гц. Вывод меняет свое состояние на каждое прерывание таймера и значит, частота прерываний должна быть в 2 раза больше. Для нашего случая - 2 Гц.

Сколько тиков таймера уложится в 2 Герца? (1/2 Гц)/16 мкс = 31250
Это и есть искомая константа.

Остальные значения рассчитываются аналогично. Я для этого обычно использую Exel.


Полученные значения мы помещаем в массив

__flash unsigned int timerValue =
{

сохраняем его в отдельном файле – timer_value.h и подлючаем его к файлу main.c

#include "timer_value.h"

Да, еще нужно добавить парочку констант в этот файл

#define MAX_TIM_VALUE 99
#define MIN_TIM_VALUE 0

Убедимся, что правильно рассчитали константы для таймера. Запустим его. Код программы будет такой.

//программирование AVR на Си

//сайт 17.10.09
#include
#include
#include "encoder.h"
#include "bits_macros.h"
#include "timer_value.h"

//индекс для доступа к элементам массива
volatile unsigned char pTimerValue = 0;

int main(void )
{
//инициализация таймера Т1
TCNT1 = 0;
TCCR1A = (0<TCCR1B = (0<

//настройка вывода PD5 на выход
SetBit(PORTD, PD5);
SetBit(DDRD, PD5);

//ничего не делаем в бесконечном цикле
while (1);
return 0;
}

Думаю, пояснения требует только кусок инициализации таймера.

Обнуление счетного регистра
TCNT1 = 0;

Инициализация конфигурационных регистров таймера Т1.
TCCR1A = (0<TCCR1B = (0<

Где биты WGM13, WGM12, WGM11, WGM10 задают режим работы таймера – СТС,
CS12, CS11, CS10 – определяют коэффициент предделителя таймера –256,

COM1A1, COM1A0 – определяют поведение вывода PD5(OC1F) – в данном случае по сигналу таймера он будет менять свое состояние на противоположное


Инициализация регистра совпадения начальным значением.
OCR1A = timerValue;

Компилируем программу и грузим в микроконтроллер. Светодиод должен моргать с частотой 1 Гц.
В программе нет никаких прерываний. Нет никаких манипуляций с выводом PD5. Однако светодиод моргает!

Программа

Теперь нужно “прикрутить” к этой программе энкодер. Зададим настройки в хедер файле encoder.h – порт и выводы, к которым подключен энкодер, значения констант.


#define PORT_Enc PORTA
#define PIN_Enc PINA
#define DDR_Enc DDRA
#define Pin1_Enc 2
#define Pin2_Enc 1

#define RIGHT_SPIN 0x01
#define LEFT_SPIN 0xff

Хедер содержит прототипы трех функций. Вспомним их назначение.

void ENC_InitEncoder(void) настраивает выводы микроконтроллера, к которым подключен энкодер на вход. Эту функцию нужно вызвать в начале main`а.


void ENC_PollEncoder(void) – однократно опрашивает энкодер, анализирует текущее и предыдущее состояния и записывает в буфер соответствующие константы (RIGHT_SPIN и LEFT_SPIN). Эта функция будет сидеть в прерывании таймера Т0.


unsigned char ENC_GetStateEncoder(void) – возвращает содержимое буфера энкодера. Если поворот на одну позицию не был зафиксирован – функция вернет 0, если поворот был зафиксирован функция вернет значение соответствующей константы. При этом значение буфера очистится. Эта функция будет вызываться в основном программе – в цикле while.


Дополняем нашу программу. Можете попробовать сделать это самостоятельно.

//программирование AVR на Си
//пример использования энкодера
//сайт 17.10.09

#include
#include
#include "encoder.h"
#include "bits_macros.h"
#include "timer_value.h"

#define TCNT0_const 253
#define TCCR0_const 5

volatile unsigned char pTimerValue = 0;

int main(void )
{
ENC_InitEncoder();

//инициализация таймера т0
TCNT0 = TCNT0_const;
TCCR0 = TCCR0_const;

//инициализация таймера т1
TCNT1 = 0;
TCCR1A = (0<TCCR1B = (0<OCR1A = timerValue;

//разрешение прерываний от таймеров
//т0 - по переполнению, т1 - по совпадению

TIMSK = (1<

//настраиваем PD5 на выход
SetBit(PORTD, PD5);
SetBit(DDRD, PD5);

__enable_interrupt ();
while (1){
//считываем содержимое буфера энкодера
//после считывания он очищается

unsigned char stateEnc = ENC_GetStateEncoder();

//если не пустой
if (stateEnc != 0){
//определяем направление вращения и изменяем переменную timerValue
if (stateEnc == RIGHT_SPIN){
if (pTimerValue == MAX_TIM_VALUE) pTimerValue = MIN_TIM_VALUE;
else pTimerValue++;
}
if (stateEnc == LEFT_SPIN) {
if (pTimerValue == MIN_TIM_VALUE) pTimerValue = MAX_TIM_VALUE;
else pTimerValue--;
}
}
}
return 0;
}

//опрос энкодера
#pragma vector=TIMER0_OVF_vect
__interrupt void timer0_ovf_my(void )
{
TCNT0 = TCNT0_const;
ENC_PollEncoder();
}

#pragma vector=TIMER1_COMPA_vect
__interrupt void timer1_compa_my(void )
{
//обновляем значение регистра стравнения
OCR1A = timerValue;
}

Вроде все должно быть понятно.
Кусок кода, в котором изменяется значение pTimerValue, можно было бы написать еще так:

if (stateEnc != 0) {
pTimerValue = pTimerValue + stateEnc;
if (pTimerValue == (MAX_TIM_VALUE + 1)) pTimerValue = MIN_TIM_VALUE;
else if (pTimerValue == (MIN_TIM_VALUE - 1)) pTimerValue = MAX_TIM_VALUE;
}

При вращении энкодера вправо pTimerValue складывается с 1, то есть инкрементируется.

При вращении энкодера влево pTimerValue складывается с 0хff, что равносильно вычитанию 1. Одна и та же операция, а результат прямо противоположный.

В данном демонстрационном проекте мы рассмотрим задачу сопряжения элемента управления под названием энкодер с микроконтроллером PIC.

Для реализации демонстрационного проекта нам понадобятся:

  • 24-позиционный энкодер;
  • 16 светодиодов (3 мм);
  • драйвер светодиодов ;
  • микроконтроллер .

Энкодер - современный и оригинальный элемент управления цифровыми устройствами, и по внешнему виду похож на переменный резистор (см. рисунок ниже). Другое название этого элемента управления - датчик угла, датчик поворота. Вращение вала сопровождается щелчками, например 24 щелчка на один оборот. Энкодер имеет 3 вывода - A, B, C и применяется для быстрого ввода данных в цифровые устройства. Некоторые модели имеют встроенную кнопку, которая срабатывает по нажатию на вал энкодера (добавляется еще один вывод).

Принцип работы энкодера

При повороте на один щелчок, например, вправо, сначала замыкается контакт А+С, затем В+С. Когда в этом щелчке вал доворачивается, в той же последовательности контакты размыкаются. При повороте вала в другую сторону, последовательность замыкания с контактом С меняется, т.е. при повороте влево замыкаются сначала В+С, затем А+С.

Используя энкодер в проектах на микроконтроллерах, возможно, при помощи одного и того же энкодера, реализовать несколько различных типов ввода данных, однако, это требует некоторой обратной связи и визуализации, чтобы пользователь знал, какую информацию он вводит и в какой позиции энкодер.


Принципиальная схема: подключение энкодера к микроконтроллеру PIC (нажмите для увеличения)

Выводы энкодера A и B подключаются к портам микроконтроллера RB4 и RB5, вывод С энкодера подключается к «земле». Стоит заметить, что на сигнальные линии выводов A и B должны быть подключены подтягивающие резисторы. Энкодер не случайно подключен к указанным линиям ввода/вывода микроконтроллера: во-первых, порт B имеет встроенные подтягивающие резисторы и нам не придется подключать внешние, во-вторых, порт B микроконтроллера имеет очень полезную функцию - «interrupt-on-change» - прерывание по изменению уровня, что позволит нам отслеживать состояние энкодера.

16 обычных 3 мм светодиодов используются для визуализации вводимых данных и расположены они будут на печатной плате вокруг установленного энкодера. Светодиоды подключены к микросхеме A6276.

Микросхема представляет собой драйвер светодиодов с 16-битным последовательным вводом информации. Драйвер содержит 16-битный КМОП сдвиговый регистр, соответствующие защелки и драйверы для управления светодиодами и может управлять большим количеством светодиодов, чем это позволяет микроконтроллер. Кроме того, драйвером можно управлять по интерфейсу SPI, что дополнительно сокращает количество используемых линий ввода/вывода и делает проект масштабируемым.

Программное обеспечение микроконтроллера для решения нашей задачи относительно простое. Реализуется 3 режима работы (ввод информации) и обратная связь:

  • Режим позиционирования на 360° - в этом режиме светодиоды указывают текущую «позицию» энкодера, пользователь может поворачивать вал энкодера влево и вправо на любой угол;
  • Режим «Громкость/Уровень» - в этом режиме светодиоды указывают текущее значение между минимальным и максимальным уровнями диапазона ввода (как уровень громкости в аудиоустройствах);
  • Режим 3-позиционного ротационного тумблера - в этом режиме имеется только три выбираемых позиции, которые пользователь выбирает, поворачивая вал энкодера влево/вправо.

Демонстрация работы проекта

Для реализации демонстрационного проекта нам понадобятся:

  • 24-позиционный энкодер;
  • 16 светодиодов (3 мм);
  • драйвер светодиодов A6276 ;
  • микроконтроллер PIC18F2550 .

Энкодер - современный и оригинальный элемент управления цифровыми устройствами, и по внешнему виду похож на переменный резистор (см. рисунок ниже). Другое название этого элемента управления - датчик угла, датчик поворота. Вращение вала сопровождается щелчками, например 24 щелчка на один оборот. Энкодер имеет 3 вывода - A, B, C и применяется для быстрого ввода данных в цифровые устройства. Некоторые модели имеют встроенную кнопку, которая срабатывает по нажатию на вал энкодера (добавляется еще один вывод).

Принцип работы энкодера

При повороте на один щелчок, например, вправо, сначала замыкается контакт А+С, затем В+С. Когда в этом щелчке вал доворачивается, в той же последовательности контакты размыкаются. При повороте вала в другую сторону, последовательность замыкания с контактом С меняется, т.е. при повороте влево замыкаются сначала В+С, затем А+С.

Используя энкодер в проектах на микроконтроллерах, возможно, при помощи одного и того же энкодера, реализовать несколько различных типов ввода данных, однако, это требует некоторой обратной связи и визуализации, чтобы пользователь знал, какую информацию он вводит и в какой позиции энкодер.

Принципиальная схема

Выводы энкодера A и B подключаются к портам микроконтроллера RB4 и RB5, вывод С энкодера подключается к «земле». Стоит заметить, что на сигнальные линии выводов A и B должны быть подключены подтягивающие резисторы. Энкодер не случайно подключен к указанным линиям ввода/вывода микроконтроллера: во-первых, порт B имеет встроенные подтягивающие резисторы и нам не придется подключать внешние, во-вторых, порт B микроконтроллера имеет очень полезную функцию - «interrupt-on-change» - прерывание по изменению уровня, что позволит нам отслеживать состояние энкодера.

16 обычных 3 мм светодиодов используются для визуализации вводимых данных и расположены они будут на печатной плате вокруг установленного энкодера. Светодиоды подключены к микросхеме A6276.

Микросхема A6276 представляет собой драйвер светодиодов с 16-битным последовательным вводом информации. Драйвер содержит 16-битный КМОП сдвиговый регистр, соответствующие защелки и драйверы для управления светодиодами и может управлять большим количеством светодиодов, чем это позволяет микроконтроллер. Кроме того, драйвером можно управлять по интерфейсу SPI, что дополнительно сокращает количество используемых линий ввода/вывода и делает проект масштабируемым.

Программное обеспечение микроконтроллера для решения нашей задачи относительно простое. Реализуется 3 режима работы (ввод информации) и обратная связь:

  • Режим позиционирования на 360° - в этом режиме светодиоды указывают текущую «позицию» энкодера, пользователь может поворачивать вал энкодера влево и вправо на любой угол;
  • Режим «Громкость/Уровень» - в этом режиме светодиоды указывают текущее значение между минимальным и максимальным уровнями диапазона ввода (как уровень громкости в аудиоустройствах);
  • Режим 3-позиционного ротационного тумблера - в этом режиме имеется только три выбираемых позиции, которые пользователь выбирает, поворачивая вал энкодера влево/вправо.

Демонстрация работы проекта

Загрузки

ZIP-архив с проектом в среде MPLAB и исходным кодом на Hitech C, а также, принципиальная схема и топология печатной платы находятся .

Энкодер для частотника по своему внешнему виду похож на переменный резистор или на потенциометр. Те же три вывода, тот же корпус панели. На этом его сходство заканчивается. Внутри у него два переключателя, у которых есть общий вывод задач управления и два своих.

Чтобы энкодер заработал, средний вывод нужно подключить к земле, а два остальных через резисторы к питанию. Съем сигнала управления нужно производить непосредственно с выводов панели энкодера.

Теперь представим, что энкодер идеальный и его контакты не страдают дребезгом. Подключим к выводам энкодера осциллограф и начнем вращать ручку энкодера. Импульсы будут сдвинуты относительно друг друга на 90 градусов. Если крутить ручку мощности (кВт) вправо, влево или назад, то будем иметь последовательности панели управления:

Если осциллограммы как применение последовательности задач логических нулей и единиц, то они будут иметь такой вид:

Возьмем обычный энкодер, у которого есть дребезг контактов. Зона дребезга:

При переключении с логической единицы на логический ноль возникает дребезг. С дребезгом можно бороться двумя способами: аппаратным и программным применением.

Аппаратный способ – это подключение серии конденсаторов частотника, триггеров Шмитта, как указано на схеме панели управления:

Рекомендуется применять метод борьбы с дребезгом – программный. Такой метод описан в библиотеке Ротери. Данная библиотека содержит несколько функций, которые нужны для настройки выводов векторного контроллера на ввод, и подключение подтягивающих мощность (кВт) резисторов. В библиотеке нужно указывать соответствующие команды и задачи. Данной командой включается подтягивающий резистор внутри .

Функция серии Get position vfd возвращает значение энкодера. Данная фукнция нужна для получения количества импульсов, которые считал энкодер. Функция set Position vfd нужна для загрузки значения, с которого энкодер начнет свой счет.

Функция tick должна быть рассмотрена подробнее. Переменные этой функции sig1 и sig2 записывают состояние векторного pin, к которой подключен энкодер. Дальше эти pin записываются в переменную thisState vfd, которая является текущим состоянием энкодера. Если текущее состояние энкодера не равно предыдущему, то вычисляются новые направления счета и количество импульсов мощности сохраняется в переменной Position. Когда энкодер вернется в свое начальное векторное положение, произойдет сдвиг вправо на два разряда, и новое значение управления нужно записать в переменную PositionExt. Данная переменная нужна для сохранения серии результатов задач, которые будут иметь применение в основной программе.

Счет

Проанализировав состояние энкодера при вращении влево и вправо, составляем таблицу:

Его начальное положение 1-1. При повороте вправо произошел щелчок, единица стала логическим нулем. Новое значение this State vfd равно 01. Согласно команды данный результат суммируется со значением переменной Position.

Из-за того, что произошел дребезг, позиция стала 11, после перерасчета порядковый номер стал 7. После того, как дребезг закончился, нужно фиксировать новое положение 01 и к предыдущему нулю добавляется единица. При повороте энкодера произошел один щелчок, и значение переменной Position стало единицей.

Происходит второй щелчок при повороте энкодера направо, и вместо позиции 01 мы имеем позицию 00. После того, как весь дребезг закончится, на выходе управления также имеем значение единицы. При четвертом щелчке, когда позиция с 10 стала 11, мы имеем значение 6. После окончания дребезга остается 6.

В некоторых энкодерах имеет применение кнопка панели. При ее нажатии и отпускании тоже будет дребезг контактов, нужно применить библиотеку Bounce. Функции этой библиотеки нужны для задания pin, к которому будет подключена кнопка, задач времени задержки в миллисекундах. Если произошло нажатие на кнопку, то функция мощности (кВт) возвращает векторное значение true, если нет, то false vfd.

Принципиальная схема подключения энкодера к преобразователю частоты

В станкостроении энкодеры широко применяются для преобразователей частоты асинхронных двигателей. Они монтируются как датчики обратной связи по своей скорости. Такие энкодеры имеют большую дискретность от 100 импульсов на оборот до 1 млн импульсов на оборот. У этой марки дискретность равна 500 имп. на оборот.

Энкодеры подразделяются на виды задач по . Они бывают абсолютными и инкрементальными. Наш энкодер выполняет обычную функцию – выдает сигнал дифференцирования при отключении мощности питания, и ее подачи снова. Раннее состояние не сохраняется.

Энкодеры абсолютного вида имеют внутреннюю память, которая помнит последние положения. Зачем нужна память, и зачем сохранять эти данные? В заводских условиях станкостроения перед перемещением определенного устройства в первую очередь указывают нулевую точку. Такой процесс называется реферированием, то есть, выход в нуль.

Применение датчика абсолютного вида дает возможность уйти от этой процедуры на второй раз, сократить время при условии, что система имеет ограничения для перемещений.

Рассмотрим энкодеры синуса и косинуса. Они выдают выходной сигнал косинуса или синуса. Далее, с помощью устройства интерполятора мощности образуют из них импульсы. Сигналы такого вида можно изменять в размерах. Питание энкодера осуществляется от напряжения 5 вольт.

Сигнал «А» — это сигнал импульса прямого типа. Количество импульсов с этого сигнала приходит на каждом обороте. Оно равно 500 (дискретность датчика).

Сигнал «В» — тоже прямой сигнал импульса. С него на каждом обороте поступает число импульсов по дискретности датчика, который смещен от канала «А» на 90 градусов (500).

Сигнал «R» — это сигнал метки «нуль». С одного оборота датчика получается один импульс.

В энкодерах промышленного назначения используется сигнал дифференцирования, для работы с частотным преобразователем (частотником). Название у него сложное, а на самом деле все просто. Все каналы отдельно копируются своей инверсией. Это необходимо для отдавания сигнала на значительные расстояния. Выходной канал энкодера подсоединяется к приемнику специального назначения, сделанному на усилителях операционного вида. Импульс в итоге определяется в совокупности двух сигналов.

Подключение

Подключение простое. Подсоединяем напряжение 5 вольт на выходы энкодера. У нас раскладка: провод коричневого цвета – 0 В, белого цвета — +5 В, розовый, зеленый и красный – А, В, R.

Программа подключения энкодера базируется на прерываниях каналов А и В. Срабатывания прерываний происходят на переднем фронте. Получается ситуация, когда происходит торможение энкодера в момент растрового пересечения и выходной сигнал канала всегда остается положительным. Подсчет импульсов непрерывно ведется счетчиком.

В нашем случае мы не будем применять прерывания, потому что мы работаем с 4-мя датчиками, они эксплуатируются одновременно. Если применять схему прерываний, наверняка возникнет ситуация потери импульсов. У нас эта проблема решается путем установления значка наличия движения. А мы рассматривали эксплуатацию энкодеров промышленного назначения.

Работа счетчика импульсов на основе модуля энкодера

Счетчик работает в связке с модулем семиразрядного индикатора, который и будет отображать количество накрученных энкодером импульсов. При включении значение счетчика равно нулю.

Покрутим ручку энкодера по часовой стрелке. Значение счетчика инкрементируется на единицу при каждом щелчке энкодера. Наибольшее число можно накрутить 999999999. это число должно заполнить все разряды нашего семисегментного индикатора. Если вращать ручку дальше, то счетчик обнулится, начнет снова считать с нуля.

Для примера накрутим 120 импульсов. Теперь скручиваем обратно, вращая ручку против часовой стрелки. Центральная ось энкодера работает как кнопка. Она очищает от нулей свободные разряды индикатора. У кнопки есть небольшой дребезг контактов, поэтому выключение и включение происходит не сразу. Программным путем, дребезг устраняется. Это основа работы с модулем энкодера.

Статьи по теме: