Полярные и неполярные конденсаторы - в чем отличие. Введение в электронику

Конденсатор

Основа конструкции конденсатора - две токопроводящие обкладки, между которыми находится диэлектрик

Слева - конденсаторы для поверхностного монтажа; справа - конденсаторы для объёмного монтажа; сверху - керамические; снизу - электролитические.

Различные конденсаторы для объёмного монтажа

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

где - мнимая единица , - частота протекающего синусоидального тока, - ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 10 6 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для , а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24 , т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики конденсаторов

Основные параметры

Ёмкость

Основной характеристикой конденсатора является его ёмкость . В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = C U ). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад . Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где - относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью - отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность

Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов - довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью . С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

Электрическое сопротивление изоляции конденсатора - r

Сопротивление изоляции - это сопротивление конденсатора постоянному току, определяемое соотношением r = U / I ут , где U - напряжение, приложенное к конденсатору, I ут - ток утечки.

Эквивалентное последовательное сопротивление - R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR ) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.) ).

Эквивалентная последовательная индуктивность - L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

Тангенс угла потерь

Тангенс угла потерь - отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ - относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

,

где ΔT - увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда . Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC -цепочек с различной постоянной времени . Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием

В электронике используется множество различных деталей, которые вместе позволяют осуществлять целый ряд действий. Одной из них является конденсатор. И в рамках статьи будет вестись речь о том, что это за механизм, как работает, для чего нужен конденсатор и что он делает в схемах.

Что называется конденсатором?

Конденсатор - это пассивное электрическое устройство, которое в схемах может выполнять различные задачи благодаря умению копить заряд и энергию электрического поля. Но главный спектр применения - это в фильтрах выпрямителей и стабилизаторов. Так, благодаря конденсаторам осуществляется передача сигнала между усилительными каскадами, задаются временные интервалы для выдержки времени, строят фильтры высоких и низких частот. Благодаря своим свойствам он также используется для подборки частоты в разных генераторах.

Данный вид конденсаторов может похвастаться емкостью, которая составляет несколько сотен микрофарад. По подобному принципу устроены и другие представители семейства этой детали электроники. А как проверить конденсатор и убедиться, что реальное положение дел соответствует надписям? Наиболее простой способ - воспользоваться цифровым мультиметром. Также ответ на вопрос, как проверить конденсатор, может дать омметр.

Принцип действия и для чего нужен конденсатор

Из обозначения и схематического изображения можно сделать заключение, что в качестве простейшего конденсатора могут выступить даже две металлические пластины, расположенные рядом. В качестве диэлектрика при этом справится воздух. Теоретически нет никакого ограничения на площадь пластин и расстояние между ними. Поэтому даже при разводе на огромные расстояния и уменьшении их размера, пускай и незначительная, но какая-то емкость сохраняется.

Такое свойство нашло использование в высокочастотной технике. Так, их научились делать даже в виде обычных дорожек печатного монтажа, а также просто скручивая два провода, которые находятся в полиэтиленовой изоляции. При использовании кабеля емкость конденсатора (мкф) увеличивается вместе с длиной. Но следует понимать, что если передаваемый импульс короткий, а провод длинный, то он может просто не дойти до точки назначения. Может использоваться конденсатор в цепи постоянного и переменного тока.

Накопление энергии

При увеличении емкости конденсатора такие процессы, как заряд и разряд протекают медленно. Напряжение на данном электрическом устройстве растёт по кривой линии, которая в математике называется экспонентой. Со временем напряжение конденсатора увеличится от значения в 0В до уровня источника питания (если не перегорит из-за слишком высоких значений последнего).

Электролитический конденсатор

На данный момент самой большой удельной емкостью при соотношении этого показателя и объема детали могут похвастаться электролитические конденсаторы. Их показатель вместимости достигает значений в 100 тысяч микрофарад, а рабочее напряжение до 600 В. Но работают они хорошо исключительно на низких частотах. Для чего нужен конденсатор такого типа? Основная сфера применения - фильтры Электролитические конденсаторы в схемы всегда включаются с соблюдением полярности. Электроды делают из тонкой пленки (которая сделана из оксида металлов). Так как тонкий слой воздуха между ними не является достаточно хорошим изолятором, то также сюда добавляется слой электролита (в качестве него выступают концентрированные растворы щелочей или кислот).

Суперконденсатор

Это новый класс электролитических конденсаторов, который называют ионисторами. Его свойства делают его похожим на аккумулятор, хотя и накладываются определённые ограничения. Так, их преимущество заключается в коротком времени заряда (обычно несколько минут). Для чего нужен конденсатор такого типа? Ионисторы используются как резервные источники питания. При изготовлении они получаются неполярными, и где плюс, а где минус, определяется первой зарядкой (на заводе-производителе).

Значительное влияние на работоспособность оказывает температура и номинальное напряжение. Так, при 70˚C и 0,8 мощности дадут только 500 часов работы. При уменьшении напряжения до 0,6 от номинала, а температуры до 40 градусов срок его службы увеличится до 40 тысяч часов. Найти ионисторы можно в микросхемах памяти или электронных часах. Но вместе с этим имеют неплохие перспективы их использования в солнечных батареях.

Объясняя, что такое конденсатор, мы должны четко представлять физические основы работы и конструкцию этого незаменимого элемента каждого мало-мальски серьезного электронного устройства.

К недостаткам танталовых конденсаторов можно отнести чувствительность к пульсациям тока и перенапряжениям, а также относительную дороговизну этих изделий.

Силовые конденсаторы, как правило, используются в системах высокого напряжения. Они широко применяются для компенсации потерь в линиях электропередач, а также для улучшения коэффициента мощности в промышленных электроустановках. Изготавливаются из высококачественной металлизированной пропиленовой пленки с применением специальной пропитки нетоксичным изоляционным маслом.

Могут иметь функцию самоликвидации внутренних повреждений, что придает им дополнительную надежность и увеличивает срок службы.

Керамические конденсаторы имеют в качестве материала диэлектрика керамику. Отличаются высокой функциональностью по рабочему напряжению, надежностью, низкими потерями и дешевизной.

Диапазон емкостей их варьируется от нескольких пикофарад до примерно 0,1 мкФ. В настоящее время являются одним из наиболее широко используемых типов конденсаторов, используемых в электронном оборудовании.

Серебряные слюдяные конденсаторы пришли на смену широко распространенным ранее слюдяным элементам. Обладают высокой стабильностью, герметичным корпусом и большой емкостью на единицу объема.

Широкому применению серебряно-слюдяных конденсаторов мешает их относительная дороговизна.

У бумажных и металлобумажных конденсаторов обкладки изготовляются из тонкой алюминиевой фольги, а в качестве диэлектрика используется специальная бумага, пропитанная твердым (расплавленным) или жидким диэлектриком. Применяются в низкочастотных цепях радиоустройств при больших токах. Отличаются относительной дешевизной.

Для чего нужен конденсатор

Имеется целый ряд примеров использования конденсаторов в самых разнообразных целях. В частности, их широко применяют для хранения и и цифровых данных. используются в телекоммуникационной связи для регулировки частоты и настройки телекоммуникационного оборудования.

Типичным примером их применения является использование в источниках питания. Там эти элементы сглаживания (фильтрацию) выпрямленного напряжения на выходе этих устройств. Они также могут быть использованы в для генерации высокого напряжения, многократно превышающего входное напряжение. Конденсаторы широко применяются в различного рода преобразователях напряжения, устройствах бесперебойного питания для компьютерной техники и т.д.

Объясняя, что такое конденсатор, нельзя не сказать, что этот элемент может служить и отличным хранилищем электронов. Однако реально эта функция имеет определенные ограничения по причине неидеальности изоляционных характеристик используемого диэлектрика. Тем не менее конденсатор обладает свойством достаточно длительное время хранить электрическую энергию при отключении от цепи заряда, поэтому он может быть использован как временный источник питания.

Благодаря своим уникальным физическим свойствам эти элементы нашли настолько широкое применение в электронной и электротехнической промышленности, что сегодня редко какое электротехническое изделие не включает в себя по крайней мере один такой компонент для какой-либо цели.

Подводя итоги, можно констатировать, что конденсатор - это бесценная часть огромного множества электронных и электротехнических устройств, без которых был бы немыслим дальнейший прогресс в науке и технике.

Вот что такое конденсатор!

Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

Что такое электрический конденсатор

Если говорить по-русски, то конденсатор можно обозвать "накопитель". Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток -- это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он "наестся"? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

Как устроен электрический конденсатор

В школе тебе рассказывали, что конденсатор -- это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

Принцип работы

Общий принцип работы достаточно прост: подали напряжение -- заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

Конденсатор в цепи постоянного тока

Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А -- отсутствие тока в цепи. Что случилось?

Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C - ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

Конденсатор в цепи переменного тока

Что такое переменный ток? Это когда электроны "бегут" сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то "+" заряд, то "-". Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток "беспрепятственно" проходит через конденсатор.

Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

Реактивное сопротивление конденсатора

Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

Другое дело ток переменный -- он проходит, но испытывает со стороны конденсатора сопротивление:

f - частота, С - ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

Где используются конденсаторы

Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

Какие бывают конденсаторы

Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

Радиолюбители, особенно как мы -- начинающие -- особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в "пакет" и запаковывались в корпус.

Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Бумажные конденсаторы

Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок -- алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен -- у них и провода односторонней проводимости бывают...

В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


У конденсаторов этого типа есть два неоспоримых преимущества. Первое -- можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе -- это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

Электролитические кондесаторы


Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

Продолжение следует...

Во второй части я планирую показать примеры типичного использования конденсаторов..

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Статьи по теме: