Как правильно установить кулер в блоке питания. Вентиляторы делятся на два типа: радиальные и осевые. Выделим основные требования, каким должен быть кулер для процессора

Вентилятор ( ) – устройство, обеспечивающее охлаждение процессора. Как правило, кулер устанавливается поверх самого процессора. Существуют различные модели куллеров, под разные сокеты.

Различают активные и пассивные кулеры. Пассивным кулером называют обычный радиатор. Такой кулер потребляет минимум электричества, очень дешево стоит и практически не шумит. Активным кулером называют радиатор с закрепленным на нём вентилятором или тот, который выделяет холод (чипы Пельтье).

Наибольшее распространение получили активные воздушные кулеры. Такой кулер является активным воздушным охладителем и состоит из металлического радиатора с закрепленным на нем вентилятором. Современные кулеры отличаются большими габаритами и весом. Благодаря использования кулеров компьютеры имеют относительно небольшие размеры. Недостатком кулеров является дополнительный акустический шум, который они издают во время работы.

Вентилятор прогоняет большие объемы воздуха через ребра радиатора и этим обеспечивается нормальный тепловой режим процессора. Для определения направления потока воздуха нет необходимости подключать кулер к питанию. Лопатки крыльчатки будут слегка вогнуты со стороны, где выход потока воздуха. Иногда корпус кулера маркируется стрелками, указывающими вращения крыльчатки и направление потока воздуха. Как и в любом механическом устройстве, трущиеся детали кулера (подшипники качения, скольжения) вовремя нужно смазывать машинным маслом. В качестве смазки запрещается использовать растительные масла (оливковое, подсолнечное и др.). Через некоторое время такое масло засыхает, и даже разобрать кулер станет невозможно.

О недостаточном количестве смазки вы узнаете по постепенно возрастающему акустическому шуму от кулера. Если эту профилактику вовремя не сделать, то подшипники интенсивно изнашиваются, и понадобится установка нового кулера.

Рассмотрим основные составляющие кулера

Радиатор распределяет тепло охлаждаемого объекта (процессора) в окружающую среду. Поэтому он должен иметь непосредственный физический контакт с охлаждаемым объектом. Для процесса передачи тепла от процессора к радиатору, площадь контакта должна быть как можно больше. Сторона радиатора, прилегающая к процессору, именуется подошвой (основанием). От ядра тепло проходит к основанию, затем распределяется по всей площади радиатора и рассеивается.

Для изготовления радиаторов кулеров применяют разные материалы.

  • Алюминий обладает хорошими тепловыми характеристиками, легкий вес и относительно дешево стоит.
  • Медь намного лучше, чем алюминий проводит тепло, но дороже стоит и имеет большой вес (такие модели весят около 1 кг).
  • Некоторые радиаторы делают, комбинируя медные и алюминиевые пластины.

Вентиляторы делятся на два типа: радиальные и осевые

Осевые вентиляторы наиболее распространены из-за небольших размеров и хороших показателей производительность/шум. Осевой вентилятор – это обычный вентилятор с пропеллером. Поток воздуха в нём направлен вдоль оси вращения.

В радиальных вентиляторах (бловерах) воздушный поток направлен под углом 90 градусов к оси мотора. В радиальных вентиляторах вместо пропеллера с лопастями крутятся барабаны (крыльчатки). Такой тип вентиляторов требует моторов большей мощности. Поэтому бловеры больше по размерам и дороже стоят. Но радиальные вентиляторы имеют свои преимущества. Воздушный поток в них обладает большей скоростью, меньшей турбулёнтностью и более равномерен.

Вентиляторы еще классифицируют по способу подключения, конструкции подшипников и размерам.

В маркировке вентилятора есть информация о подшипниках:

  • Sleeve — подшипник скольжения.

Подшипник скольжения представляют собой просто подушку из масла и скользящих материалов. Эти подшипники быстро изнашиваются. Единственное их достоинство — низкая стоимость.

  • Ball – подшипник качения.

Шариковые подшипники (Ball) более надежны, долговечны, и поэтому в основном они используются для современных кулеров. Это подшипники, состоящие из двух радиальных колец, между которыми расположены мелкие шарики.

Наиболее распространенными размерами вентиляторов являются: 60х60х25, 50х50х10, 45х45х10.

Вентиляторы, по способу подключения разделяют на SMART (подключение через MOLEX Connector) и обычные (подключение через PC-plug коннектор).

Важным параметром вентилятора является уровень производимого им шума. В документации на кулер он обязательно указывается. Для нормальной работы такой шум не должен быть выше 25 дБ.

Другой важной характеристикой вентилятора является потребляемая мощность. Обычно она составляет 0.8 -1.6 Вт.

Частота вращения лопастей — так же является важным параметром. Этот параметр показывает количество оборотов в минуту (Об/мин.). Чем больше этот параметр, тем больше перегоняется воздуха в минуту, но и больше производится шума. В документации указывается количество воздуха, перегоняемого за минуту (CFM). Для питания всех компьютерных вентиляторов используется постоянный ток.

Установка кулера на процессор

Процесс установки кулер на процессор очень простой, если все проделать аккуратно и без спешки. Устанавливать кулер на процессор желательно до установки материнской платы в корпус. А для дополнительного удобства и безопасности рекомендуется устанавливать кулер на коробке подходящих размеров, например, от материнской платы. Если у вас куплен процессор в коробке (box- версия вместе с кулером), то посмотрев на подошву кулера, вы увидите там тонкий слой специального материала – термоинтерфейс. Он устанавливается производителем кулера.

При покупке кулера отдельно от процессора, необходимо купить термопасту (КПТ-8, АЛСИЛ). Один тюбик пасты хватает на несколько установок кулера.

Рассмотрим установку кулера для сокета 754, 939, AM2

  • Переверните куллер и посмотрите, есть ли на нем нанесенный производителем термоинтерфейс. Если есть, то можно перейти к 3 пункту. Если у вас кулер без термоинтерфейса и с защитной пленкой, то необходимо снять её.


  • Возьмите термопасту. Осторожно выдавите пасту, чтобы распределить ее равномерным слоем по всей контактной площадке процессора. Учитывайте тот факт, что когда кулер будет установлен, паста от давления размажется по всей поверхности, и поэтому нет необходимости наносить ее толстым слоем. Чтобы кулер мог плотнее прижаться к контактной площадке процессора, наносите термопасту очень тонким слоем. Толстый слой ухудшит отведение тепла (у пасты теплопроводность хуже, чем у металла).

Куском пластика равномерно распределите пасту по всей поверхности. Если немного попадет на края или за них, то это не страшно.


  • Осторожно установите кулер в процессорное гнездо. Устанавливать нужно без перекосов и сдвигов. Когда вы поставите кулер на кристалл – не снимайте и не наклоняйте его, не давите и не вращайте. Снятие и движения кулера на намазанном пастой кристалле могут вызвать появления не заполненных пастой областей. В дальнейшем это может привести к нестабильности системы и локальному перегреву. Если вы решили снять кулер после установки, то обязательно распределите пасту по кристаллу заново.
  • Когда вы установите кулер на процессор, то нужно закрепить его.


Сначала зацепите скобу за выступ сокета с края, где нет пластикового рычага. После проделайте это действие с того края, где расположен рычаг.

  • Поверните рычаг и зафиксируйте его.
  • Посмотрите, чтобы не было перекосов, и проверьте надежность крепления. Если таковые обнаружите, то откройте рычаг крепления кулера и устраните перекос. После этого закрепите кулер снова.
  • Подключите разъем питания кулера в гнездо питания на материнской плате. Такой разъем обычно обозначается CPU_FAN. Для работы кулера необходимо на его обмотки подать напряжение постоянного тока 12В.

Кроме этого есть и другие варианты закрепления кулера.

Вставляющиеся кулеры

Для установки таких кулеров нужно каждую ножку кулера вставить в соответствующее отверстие на материнской плате и прижать до характерного щелчка.


При повороте головки ножки против часовой стрелки на девяносто градусов разблокировывается пружина, и кулер легко снимается.


Винтовое крепление кулеров

В кулерах Intel есть проблема повышенной нагрузки, прикладываемой на четыре точки крепления к материнской плате. Некоторыми производителями используется специальная крепёжная пластина, закрепленная на обратной стороне материнской платы для распределения нагрузки. В этом случае кулеры приходится устанавливать с помощью винтов.


Такие кулеры можно устанавливать только до закрепления платы в корпусе, поскольку крепёжная пластина устанавливается на обратной стороне материнской платы. Пластину нужно устанавливать правильной стороной, а то можно закоротить контакты.

Пример установки кулера на процессор:

Выбор кулера

По функциональному назначению кулеры не отличаются, их отличие состоит только в производительности и способе крепления к радиатору. Производительность кулера напрямую зависит от скорости вращения и диаметра крыльчатки. Скорость вращения всех кулеров мало различается и равна около 5000 об/мин. Поэтому, если выбирать кулер для замены, то можно ориентироваться только по диаметру крыльчатки. Он должен быть такой же или большего размера.

Процессоры разного производства нагреваются по-разному. К примеру, изделия от AMD будут греться сильнее изделий от Intel. Поэтому чем сильнее греется процессор, тем мощнее кулер требуется для его охлаждения.

Основной массе процессоров вполне достаточно кулера, поставляемого в комплекте. В некоторых случаях, к примеру, если процессор вышел из строя или был куплен без вентилятора, придется выбирать кулер отдельно.

Выделим основные требования, каким должен быть кулер для процессора:

  1. низкое термическое сопротивление и обеспечение достаточного охлаждения.
  2. хорошая совместимость кулера. Он должен ставиться на как можно большее число типов процессоров.
  3. хорошее крепление кулера. Он должен легко ставиться и легко сниматься.
  4. должен обеспечивать достаточное охлаждение микросхем кэша.
  5. должен быть износостойким.
  6. при работе не должно производиться никакой вибрации.
  7. большие кулеры должны по габаритам помещаться на все известные материнские платы.

В любом случае, хороший кулер тот, который хорошо справляется с охлаждением процессора. Наиболее известны следующие марки кулеров: AAVID, Zalman, ElanVital, AVC, TennMax.

Кулеры для процессоров

Рассмотрим популярныекулеры CPU, совместимые с современными сокетами.



Akasa Venom Voodoo


Akasa Venom Voodoo

В Venom Voodoo добавлено два вентилятора. Можно контролировать их скорость с помощью сплитера PWM через разъём материнской платы. Комплект поставки кулера позволяет проводить установку и на более ранние платформы. В верхней части кулера Venom Voodoo расположена сетка. На охлаждение она не влияет, и сделана просто с учетом дизайна.


Akasa Venom Voodoo

Кулер Akasa имеет достаточно эффективный дизайн. На нем расположены шесть тепловых трубок в шахматном порядке, быстро отводящие тепло от процессора. Установочный набор Akasa включает все необходимое для установки на разные платформы, от сокета AMD AM2 до Intel LGA 2011.


Крепеления для Akasa

Специальные стойки Akasa вкручиваются во встроенную опорную планку, расположенную на сокете LGA 2011. Процесс установки проходит быстро и легко.


Втягивающий вентилятор устанавливается на вогнутой стороне радиатора, а с другой стороны ставится выпускной.

Самый лучший кулер

Arctic Cooling Freezer i30

Компания AC работает на рынке недорогого оборудования и поддерживает всего нескольких интерфейсов, что дает возможность держать приемлемую цену. В комплекте идут два крепёжных набора для сокетов LGA 2011 и LGA 1155/1156. Есть также дополнительный крепёжный набор, позволяющий прикрутить верхнюю скобу непосредственно к интерфейсу LGA 2011.


Arctic Cooling Freezer i30

Для уменьшения стоимости, в этой модели использовано всего четыре тепловых трубки с одним вентилятором, расположенным на большом охлаждающем радиаторе. Тепловые трубки установлены вплотную друг к другу для увеличения площади контакта и уменьшения зазоров.

Установочной комплект этой модели очень прост и не поддерживает LGA 1366, только для сокетов LGA 2011 и LGA 1155/1156.

Перед тем, как установить две переходные скобы кулера Freezer i30 устанавливают металлические прокладки на специально встроенные в опорную пластину сокета LGA 2011 позиции для болтов. На крестовые скобы нужно прикрутить переходную планку с помощью двух коротких винтов.

Arctic Cooling Freezer i30

Для завершения установки кулера нужно прикрепить вентилятор к радиатору и подключить питание.

Arctic Cooling Freezer

CoolerMaster Hyper 212 Evo


CoolerMaster Hyper 212 Evo

Комплект кулера Hyper 212 Evo включает: небольшой тюбик термопасты, установочную скобу для LGA 2011 и кулер. Конструкция Hyper 212 Evo включает четыре тепловые трубки.

кулера Hyper 212

Тепловые трубки, контактирующие с процессором, расположены максимально близко друг с другом. Такая технология называется Continuous Direct Contact. Основание хорошо отшлифовано. Установочная скоба складная, что дает хороший доступ между рёбрами радиатора и основанием. Разложенную скобе необходимо просто вкрутить в встроенную пластину LGA 2011. Кулер фиксируется стальным штифтом на верхней пластине.


Continuous Direct Contact

Вентилятор устанавливается на радиатор и подключается к плате.

Continuous Direct Contact

Coolink Corator DS


Coolink Corator DS

Стоимость Corator DS позволил снизить минимальный установочный набор, только для LGA 2011. Но на установочных скобах есть три отверстия, и значит кулер может поддерживать меньшие интерфейсы процессора.

Вентилятор расположен в середине кулера

Кулер имеет полусплющенные трубки, расположенные под однородным куском меди.

Радиатор

При установке сначала в опорную пластину необходимо вкрутить болты-подставки, а на них установить крестовые установочные скобы и зажать сверху гайками. Заводская скоба прикручивается на крестовые скобы из набора.

Вентилятор нужно установить между двумя радиаторами и подключить питание с платы.

Установка радиатора на материнскую плату

Corsair A70


В этом кулере двумя вентиляторами создается система «тяни-толкай». Corsair добавила сплиттер для подключения их в один разъём питания на плате. Вентиляторы не поддерживают регулировку ШИМ (PWM) и контроль скорости осуществляется через прошивку.

Радиатор Corsair A70 с одной стороны имеет вогнутую форму, чтобы улучшить выход воздуха из центра. Тепловые трубки разделяются слоем алюминия, из которого изготовлена основа.

При установке для интерфейсов AMD использована защёлкивающаяся скоба. В этом кулере крепёжные винты прикручиваются изнутри основы A70. Опорная панель и скоба кулера стянуты с помощью гаек и винтов.

интерфейс AMD

Для завершения установки необходимо установить вентиляторы и подключить питание.

интерфейс AMD

Enermax ETS-T40


В ETS-T40 добавлена алюминиевая полоса на вентилятор. Это является преимуществом среди кулеров с равной производительностью.

Установочный набор предназначен для платформ AMD и Intel. Набор болтов не требует наличия опорной планки сокета LGA 2011. Рёбра радиатора поддерживают систему «тяни-толкай» из двух вентиляторов, для этого есть второй набор зажимов. Основание ETS-T40 сделано по технологии прямого контакта.


Gelid GX-7


GX-7 поддерживает два вентилятора. Поддерживаются интерфейсы Intel, AM2, AM3 и AM3+ от AMD. Можно самим выбрать направление воздушного потока, повернув кулер GX-7 на 90°.

Вогнутая форма лицевой стороны кулера создает направление воздуха в центр радиатора. Лопасти вентилятора подсвечены светодиодами, хотя сама рама не прозрачная.

Крепление для Gelid GX-7

Для обеспечения оптимального контакта с процессором, основа была выполнена в виде матового, тщательно обработанного, медного блока.

Чтобы обеспечить поддержку двух вентиляторов была уменьшена центральную часть радиатора, что снизило охлаждаемую поверхность. Пришлось добавить пятую тепловую трубку.

Кулер для Gelid GX-7

SilenX EFZ-120HA5


SilenX EFZ-120HA5

SilenX обеспечивает сборщиков самым тихим охлаждением. Установочный набор обеспечивает поддержку сокетов AMD AM2/3 и Intel LGA. Второй набор винтов дает возможность установить скобу для LGA 1366 на встроенной опорной планке LGA 2011.

Наличие в наборе EFZ-120HA5 установочных резиновых штифтов дает возможность собрать конфигурацию «тяни-толкай» с помощью двух вентиляторов. Но в комплекте поставляется только один вентилятор, имеющий диаметр 120 мм. Три тепловых трубки располагаются V-образно, что необходимо для выведения большего количества воздуха через центр радиатора.

Радиатор для SilenX EFZ-120HA5

Установочный набор SilenX содержит скобу, подходящую ко всем популярным сокетам(от AMD Socket 939 до AM3+, от LGA 775 до 2011), базовую планку, поддерживающую большинство распространенных интерфейсов (кроме LGA 2011), набор установочных винтов для LGA 2011.

Кулер для SilenX EFZ-120HA5

В установке этой модели сложнее всего установить вентилятор. Сначала проталкиваются четыре резиновых T-образных кнопки в специальные отверстия на вентиляторе, расположенные с обратной стороны. После чего нужно чтобы верхушка кнопки проскользнула в ложбинки радиатора.

Xigmatek Venus XP-SD1266


Xigmatek Venus XP-SD1266

Xigmatek Venus обеспечивает поддержку все последних интерфейсов процессоров Intel и AMD. В этой модели слегка увеличен радиатор и он укомплектован 120-ти миллиметровым вентилятором, обеспечивая высокопроизводительное охлаждение по доступной цене. Данная модель на платформе AMD создает корректное направление воздушного потока. В наборе есть специальные болты для поддержки сокета LGA 2011.

В Xigmatek используется прозрачная рама со светодиодами, которые хорошо подсвечивают корпус. Можно настраивать степень освещения. В кулере используется шесть тепловых трубок.

Радиатор для Xigmatek Venus XP-SD1266

Комбинация малого размера и хорошей теплоёмкости являются отличным вариантом для небольших по размеру систем. В установочном наборе Xigmatek скобы маркируются для Intel и AMD. Хотя скобы AMD имеют отверстия также для интерфейса Intel. Для вентилятора в качестве крепежа Xigmatek используются резиновые кнопки.

Кулер для Xigmatek Venus XP-SD1266

Лето стремительно вступило в свои права; столбик термометра ползет вверх, и все чаще приходится задумываться о том, как обеспечить комфортную температуру. Поверьте: для компьютеров проблема борьбы с жарой не менее актуальна, чем для их пользователей. Даже если условия в помещении вполне нормальные (20 - 22°С), температура в системном блоке достигает 30–32°С. И это в лучшем случае. Чем жарче на улице и в квартирах, тем острее вопрос защиты от перегрева и тем пристальнее внимание к системам охлаждения системного блока и его компонентов.

Чтобы грамотно решить проблему, необходимо хотя бы в общих чертах представлять, зачем вообще нужны компьютерам системы охлаждения, почему системные блоки перегреваются и как обезопасить «вычислительного друга» от теплового удара. В этой статье вы не найдете длинного перечня моделей кулеров, но, прочитав ее, сами сможете выбрать подходящие компоненты системы охлаждения ПК и грамотно подойти к выбору нового корпуса.

Почему он греется

Причина тривиальна: как любой электроприбор, компьютер рассеивает часть (порой весьма значительную) потребляемой электроэнергии в виде тепла – например, процессор переводит в тепло почти всю использованную энергию. Чем больше ее нужно системному блоку, тем сильнее нагреваются его компоненты. Если тепло вовремя не отводить, это может привести к самым неприятным результатам (см. «Последствия перегрева»). Особенно актуальна проблема теплоотведения и охлаждения для современных моделей процессоров (как центральных, так и графических), устанавливающих все новые рекорды производительности (а нередко и тепловыделения).

Каждый компонент ПК, рассеивающий много тепла, оснащается охлаждающим устройством. Как правило, в таких устройствах присутствуют металлический радиатор и вентилятор – именно из этих компонентов состоит типичный кулер. Важен также термоинтерфейс между ним и нагревающимся компонентом – обычно это термопаста (смесь веществ с хорошей теплопроводностью), обеспечивающая эффективную передачу тепла к радиатору кулера.

Прогресс в области систем охлаждения, благодаря которому появились такие технологические новинки, как термотрубки, обеспечил создателям компонентов для персональных компьютеров новые возможности, позволив отказаться от шумных кулеров. Некоторые компьютеры оснащаются водяными системами охлаждения – они имеют свои достоинства и недостатки. Обо всем этом рассказывается далее.

Рост тепловыделения ПК

Главная причина, по которой компьютеры выделяют все больше и больше тепла, состоит в том, что повышается их вычислительная мощность. Наиболее существенны следующие факторы:

  • рост тактовых частот процессора, чипсета, шины памяти и прочих шин;
  • рост числа транзисторов и ячеек памяти в чипах ПК;
  • увеличение мощности, потребляемой узлами ПК.

Чем мощнее компьютер, тем больше электричества он «съедает» – следовательно, неизбежен рост тепловыделения. Несмотря на применение изощренных технологических процессов при производстве чипов, их потребляемая мощность все равно растет, увеличивая количество тепла, рассеиваемого в корпусе ПК. Кроме того, возрастает площадь плат видеокарт (например, из­за того, что необходимо разместить больше микросхем памяти). Результат – рост аэродинамического сопротивления корпуса: громоздкая плата просто перекрывает доступ охлаждающего воздуха к процессору и блоку питания. Особенно актуальна эта проблема для ПК в маленьких корпусах, где расстояние между видеокартой и «корзиной» для HDD составляет 2–3 см, – а ведь в этом пространстве еще проложены шлейфы приводов и прочие кабели... Микросхемы оперативной памяти тоже становятся все «прожорливее», а современные ОС требуют все большего ОЗУ. Например, в Windows 7 для него рекомендуется 4 Гб – таким образом, рассеивается несколько десятков ватт тепла, что дополнительно усугубляет ситуацию с тепловыделением. Микросхема системной логики на материнской плате тоже является весьма «горячим» компонентом.

УЯЗВИМОСТЬ ЖЕСТКИХ ДИСКОВ

Внутри корпуса жесткого диска над поверхностью вращающихся пластин скользят подвижные магнитные головки, управляемые высокоточной механикой. Они осуществляют запись и чтение данных. При нагревании материалы, из которых сделаны компоненты диска, расширяются. В рабочем диапазоне температур механика и электроника вполне справляются с тепловым расширением. Однако при перегреве оно превышает допустимые пределы, и головки жесткого диска могут «промахиваться», записывая данные не там, где нужно, пока компьютер не будет выключен. А когда его снова включат, остывший жесткий диск не сможет найти данные, записанные в перегретом состоянии. В подобном случае информацию удается спасти только при помощи сложного и дорогого спецоборудования. Если температура превышает 45°С, для охлаждения жесткого диска рекомендуется установить дополнительный вентилятор.

Налицо парадокс: тепловая нагрузка в современных корпусах растет высокими темпами, а их конструкция почти не меняется: производители берут за основу рекомендованный Intel дизайн почти 10­летней давности. Модели, приспособленные к интенсивному тепловыделению, встречаются нечасто, а малошумные – и того реже.

Последствия перегрева

При избытке тепла компьютер в лучшем случае начнет тормозить и зависать, а в худшем – один или несколько компонентов выйдут из строя. Высокие температуры очень вредны для «здоровья» элементной базы (микросхем, конденсаторов и пр.), особенно для жесткого диска, перегрев которого чреват потерей данных.

ПРИМЕРНЫЕ ПАРАМЕТРЫ ТЕПЛОВЫДЕЛЕНИЯ

Примерные параметры тепловыделения компонентов среднестатистического системного блока компьютера (при высокой вычислительной нагрузке). Основными источниками тепла являются материнская плата, центральный процессор и графический процессор видеокарты (на их долю приходится более половины рассеиваемого тепла).

Емкость современных HDD позволяет хранить на них обширные коллекции музыки и видео, рабочие документы, цифровые фотоальбомы, игры и многое другое. Диски становятся все компактнее и быстрее, но за это приходится расплачиваться большей плотностью записи данных, хрупкостью конструкции, а значит, и уязвимостью начинки. Допуски при производстве емких накопителей измеряются микронами, так что малейший «шаг в сторону» выводит диск из строя. Потому HDD столь чувствительны к внешним воздействиям. Если диску приходится работать в неоптимальных условиях (например, с перегревом), вероятность потери записанных данных резко возрастает.

Охлаждение ПК: азы

Если температура воздуха в системном блоке держится на уровне 36°С или выше, а температура процессора – более 60°С (либо жесткий диск постоянно нагревается до 45°С), пора принимать меры по улучшению охлаждения.

Но прежде чем бежать в магазин за новым кулером, примите во внимание несколько моментов. Не исключено, что проблему перегрева можно решить более простым способом. Например, системный блок должен располагаться так, чтобы имелся свободный доступ воздуха ко всем вентиляционным отверстиям. Расстояние, на которое его тыльная часть отстоит от стены или мебели, должно быть не меньше, чем два диаметра вытяжного вентилятора. Иначе возрастает сопротивление оттоку воздуха, а главное – нагретый воздух дольше остается рядом с вентиляционными отверстиями, так что значительная его часть вновь попадает в системный блок. Если он установлен неправильно, от перегрева не спасет даже самый мощный кулер (эффективность работы которого определяется разностью между его температурой и температурой охлаждающего радиатор воздуха).

КУЛЕР, ОСНОВАННЫЙ НА ЭФФЕКТЕ ПЕЛЬТЬЕ

Одна из новейших моделей, в которой использован эффект Пельтье. Обычно в таких кулерах представлен полный набор последних технологических достижений: ТЭМ, термотрубки, вентиляторы с продвинутой аэродинамикой и эффектный дизайн. Результат впечатляющий; хватило бы места в системном блоке…

Максимально эффективное охлаждение достигается при равенстве температур воздуха в системном блоке и в помещении, где он находится. Единственный способ получить такой результат – обеспечить эффективную вентиляцию. Для этого используются кулеры всевозможных конструкций.

В стандартном современном персональном компьютере обычно устанавливается несколько кулеров:

  • в блоке питания;
  • на центральном процессоре;
  • на графическом процессоре (если в компьютере имеется дискретная видеоплата).

В отдельных случаях применяются дополнительные вентиляторы:

  • для микросхем системной логики, расположенных на материнской плате;
  • для жестких дисков;
  • для корпуса ПК.

Эффективность охлаждения

Выбирая корпус для системного блока ПК, каждый из пользователей руководствуется собственными критериями. Например, моддерам требуется оригинальное дизайнерское решение либо возможность переделки для воплощения оного. Оверклокерам нужен корпус, в котором комфортно почувствует себя до предела разогнанный процессор, видеокарта, ОЗУ (список можно продолжать). И при этом все, конечно, хотят, чтобы системный блок был тихим и небольшим по размеру.

Однако навороченный ПК может выделять до 500 Вт тепла (см. таблицу ниже). Осуществимы ли пожелания с точки зрения законов физики?

СКОЛЬКО ТЕПЛА ВЫДЕЛЯЕТ КОМПЬЮТЕР

Есть несколько способов измерить тепловыделение.

1. По значениям потребляемой мощности, указанным в документации к компонентам ПК.

  • Достоинства: доступность, простота.
  • Недостатки: высокая погрешность и как следствие – завышенные требования к системе охлаждения.

2. С помощью сайтов, предоставляющих сервис для расчета тепловыделения (и потребляемой мощности), – например, www.emacs.ru/calc.

  • Достоинства: не придется рыться в мануалах или путешествовать по сайтам производителей – нужные данные имеются в базах предлагаемых сервисов.
  • Недостатки: составители баз не поспевают за производителями узлов, поэтому базы нередко содержат недостоверные данные.

3. По значениям потребляемой узлами мощности и коэффициентам тепловыделения, найденным в документации или измеренным самостоятельно. Этот способ – для профессионалов либо больших энтузиастов оптимизации системы охлаждения.

  • Достоинства: дает самые точные результаты и позволяет наиболее эффективно оптимизировать работу ПК.
  • Недостатки: чтобы использовать данный способ, необходимы серьезные знания и немалый опыт.

Пути решения

Главный принцип: чтобы отвести тепло, необходимо пропустить через системный блок определенное количество воздуха. Причем его объем должен быть тем больше, чем жарче в помещении и чем сильнее перегрев.

Простой установкой дополнительных вентиляторов проблему не решить. Ведь чем они многочисленнее, мощнее и «оборотистее», тем «звучнее» ПК. Причем мало того, что шумят двигатели и лопасти вентиляторов, – вследствие вибраций шумит весь системный блок (особенно часто это бывает при некачественной сборке и использовании дешевых корпусов). Для исправления такой ситуации рекомендуется применять низкооборотные вентиляторы большого диаметра.

Чтобы можно было добиться эффективного охлаждения, не используя шумные вентиляторы, системный блок должен иметь низкое сопротивление для воздуха, который через него проходит (на профессиональном языке это называется аэродинамическим сопротивлением). Говоря попросту – если воздух с трудом «пролезает» сквозь тесное пространство, забитое кабелями и компонентами, приходится ставить вентиляторы с большим избыточным давлением, а они неизбежно создают сильный шум. Другая проблема – пыль: чем больше воздуха надо прокачивать, тем чаще требуется очищать внутренность корпуса (об этом поговорим отдельно).

Аэродинамическое сопротивление

Для оптимального охлаждения всегда желательно использовать большой корпус. Только так можно добиться комфортной работы без шума и перегрева даже при аномальной (свыше 40°С) жаре. Маленький корпус уместен лишь в том случае, если компьютер имеет низкое тепловыделение либо используется водяное охлаждение.

Впрочем, для минимизации шума вовсе не обязательно собирать ПК с воздушным охлаждением в морском контейнере или в холодильнике. Достаточно учесть рекомендации специалистов. Так, свободное сечение в любом разрезе корпуса должно быть в 2–5 раз больше проходного сечения вытяжных вентиляторов. Это также относится и к отверстиям для подачи воздуха.

КУЛЕР НА ТЕРМОТРУБКАХ

Кулеры на термотрубках «молчаливы» и позволяют охлаждать даже весьма горячие компоненты ПК, такие как графические процессоры видеокарт. Однако нужно непременно учитывать специфические особенности этих охлаждающих систем.

Гибридные системы включают, наряду с термотрубками и радиаторами, обычные вентиляторы. Но присутствие термотрубок, облегчающих отвод тепла, позволяет обойтись вентилятором меньших размеров либо использовать низкооборотные, а значит, не столь шумные модели.

Для того чтобы снизить аэродинамическое сопротивление, нужно:

  • обеспечить в корпусе достаточно свободного места для потоков воздуха (оно должно быть в несколько раз больше суммарного сечения вытяжных вентиляторов);
  • аккуратно уложить кабели внутри системного блока, используя стяжки;
  • в месте подачи воздуха в корпус установить фильтр, задерживающий пыль, но не оказывающий сильного сопротивления воздушному потоку;
  • фильтр следует регулярно чистить.

Соблюдение нехитрых правил позволит установить низкооборотные вытяжные вентиляторы. Как уже говорилось, корпус должен обеспечивать подачу холодного воздуха из помещения, где стоит ПК, ко всем «горячим» компонентам без больших энергетических затрат (т.е. минимальным числом вентиляторов). Объем воздуха должен быть достаточным, чтобы его температура на выходе из корпуса не оказалась слишком высокой: для эффективной теплоотдачи компонентов ПК разность температур воздуха на входе и на выходе из системного блока не должна превышать нескольких градусов.

ВАРИАНТЫ КОМПОНОВКИ ВЕНТИЛЯТОРОВ И ЭЛЕМЕНТОВ СИСТЕМНОГО БЛОКА, ОБЕСПЕЧИВАЮЩИЕ ЭФФЕКТИВНОЕ ОХЛАЖДЕНИЕ ПК

Вот одна из концепций построения системы воздушного охлаждения:

  • забор воздуха осуществляется внизу и спереди, в «холодной» зоне;
  • вывод воздуха производится вверху и сзади, через блок питания. Это соответствует естественному движению нагретого воздуха вверх;
  • при необходимости устанавливается дополнительный вытяжной вентилятор с автоматической регулировкой, расположенный рядом с БП;
  • обеспечивается дополнительный забор воздуха для видеокарты через заглушку PCI­E;
  • обеспечивается слабое вентилирование отсеков 3" и 5" дисков за счет слегка отогнутых заглушек незанятых отсеков;
  • важно пустить основной поток воздуха через самые «горячие» компоненты;
  • суммарную площадь заборных отверстий желательно довести до удвоенной площади вентиляторов (больше не требуется, поскольку эффекта это не даст, а накопление пыли увеличится).

В соответствии с данными рекомендациями можно дорабатывать корпуса самостоятельно (интересно, но хлопотно) либо при покупке выбирать соответствующие модели. Примерные варианты организации потоков воздуха через системный блок приводятся выше.

«Правильный» вентилятор

Если системный блок слабо «сопротивляется» потоку вдуваемого воздуха, можно использовать любой вентилятор, лишь бы он давал достаточный для охлаждения поток (об этом можно узнать из его паспорта, а также пользуясь онлайн­калькуляторами). Другое дело, если сопротивление воздушному потоку значительно – именно так обстоит дело с вентиляторами, монтируемыми в плотно «заселенные» корпуса, на радиаторы и в отверстия, забранные перфорацией.

Если вы решили самостоятельно заменить вышедший из строя вентилятор в корпусе или на кулере, устанавливайте такой, который обладает не меньшими значениями расхода и избыточного давления воздуха (см. паспорт). Если соответствующей информации нет, использовать подобный вентилятор в ответственных узлах (например, для охлаждения процессора) не рекомендуется.

Если уровень шума не слишком важен, можно устанавливать «оборотистые» вентиляторы большего диаметра. Более «толстые» модели позволяют снижать уровень шума, одновременно повышая давление воздуха.

В любом случае обращайте внимание на зазор между лопастями и ободом вентилятора: он не должен быть большим (оптимальная величина исчисляется десятыми долями миллиметра). Если расстояние между лопастями и ободом больше 2 мм, вентилятор окажется малоэффективным.

Воздух или вода?

Довольно широко распространено мнение, согласно которому водяные системы намного действеннее и тише обычных воздушных. Так ли это на самом деле? Действительно, теплоемкость у воды вдвое, а плотность – в 830 раз выше, чем у воздуха. Это значит, что равный объем воды способен отвести в 1658 раз больше тепла.

Однако с шумом все не так просто. Ведь теплоноситель (вода) в итоге отдает тепло все тому же «забортному» воздуху, и водяные радиаторы (за исключением огромных конструкций) оснащены такими же вентиляторами – их шум добавляется к шуму водяного насоса. Поэтому выигрыш, если он есть, не так уж велик.

Конструкция сильно усложняется, когда необходимо охладить несколько компонентов потоком воды, пропорциональным их тепловыделению. Не считая разветвленных трубок, приходится применять сложные регулирующие приборы (простыми тройниками и крестовинами не обойдешься). Альтернативный вариант – использовать конструкцию с раз и навсегда отрегулированными на заводе потоками; но в этом случае пользователь лишен возможности существенно изменить конфигурацию ПК.

Пыль и борьба с ней

Вследствие перепадов скоростей системные блоки компьютеров становятся настоящими пылесборниками. Скорость воздуха, идущего через входные отверстия, многократно превышает скорость потоков внутри корпуса. Кроме того, воздушные потоки часто меняют направление, огибая компоненты ПК. Поэтому большинство (до 70%) приносимой извне пыли оседает внутри корпуса; необходимо хотя бы раз в год производить чистку.

Впрочем, пыль может стать вашим «союзником» в борьбе за повышение эффективности системы охлаждения. Ведь активное ее оседание наблюдается как раз в тех местах, где воздушные потоки распределяются не оптимальным образом.

Воздушные фильтры

Волокнистые фильтры перехватывают более 70% пыли, что позволяет чистить корпус значительно реже. Зачастую в корпуса современных ПК устанавливают несколько вытяжных вентиляторов диаметром 120 мм, при этом воздух поступает в корпус через множество входных отверстий, рассредоточенных по всей конструкции, – их суммарная площадь много меньше площади вентиляторов. Устанавливать фильтр в такой корпус без доработки бессмысленно. Профессионалы дают здесь ряд рекомендаций:

  • входные отверстия для забора охлаждающего воздуха должны быть расположены как можно ближе к его основанию;
  • точки входа и выхода воздуха, пути его прохождения должны быть организованы так, чтобы воздушные потоки «омывали» наиболее нагретые элементы ПК;
  • площадь отверстий для забора воздуха должна в 2–5 раз превышать площадь вытяжных вентиляторов.

Кулеры на элементах Пельтье

Элементы Пельтье – или, как их еще называют, термоэлектрические модули (ТЭМ), работающие на принципе эффекта Пельтье, – выпускаются в промышленных масштабах уже много лет. Их встраивают в автомобильные холодильники, охладители для пива, промышленные кулеры для охлаждения процессоров. Существуют модели и для ПК, хотя встречаются они еще довольно редко.

Сначала – о принципе работы. Как нетрудно догадаться, эффект Пельтье открыт французом Жаном­-Шарлем Пельтье; случилось это в 1834 году. Охлаждающий модуль на основе данного эффекта включает множество последовательно соединенных полупроводниковых элементов n­ и p­типов. При прохождении постоянного тока через такое соединение одна половина p-n­контактов будет нагреваться, другая – охлаждаться.

Эти полупроводниковые элементы ориентированы так, чтобы нагревающиеся контакты выходили на одну сторону, а охлаждающиеся – на другую. Получается пластинка, которую с обеих сторон покрывают керамическим материалом. Если подать на такой модуль достаточно сильный ток, разность температур между сторонами мо жет достигать нескольких десятков градусов.

Можно сказать, что ТЭМ – своего рода «тепловой насос», который, затрачивая энергию внешнего источника питания, перекачивает выделяемое тепло от источника (например, процессора) к теплообменнику – радиатору, участвуя таким образом в процессе охлаждения.

Чтобы эффективно отводить тепло от мощного процессора, приходится использовать ТЭМ из 100–200 элементов (которые, кстати, довольно хрупки); поэтому ТЭМ оснащен дополнительной медной контактной пластиной, что увеличивает размер устройства и требует нанесения дополнительных слоев термопасты.

Это снижает эффективность теплоотведения. Проблема частично решается заменой термопасты пайкой, но в доступных на рынке моделях такой способ применяется редко. Заметим, что энергопотребление самого ТЭМ достаточно велико и сопоставимо с количеством отводимого тепла (примерно треть используемой ТЭМ энергии также превращается в тепло).

Другая трудность, возникающая при использовании ТЭМ в кулерах, – необходимость точного регулирования температуры модуля; оно обеспечивается применением специальных плат с контроллерами. Это удорожает кулер, к тому же плата занимает дополнительное место в системном блоке. Если температуру не регулировать, она может опуститься до отрицательных значений; возможно также образование конденсата, что недопустимо для электронных компонентов компьютера.

Итак, качественные кулеры на основе ТЭМ дороги (от 2,5 тыс. руб.), сложны, громоздки и не так эффективны, как можно подумать, судя по их размерам. Единственная область, в которой такие кулеры незаменимы, – охлаждение промышленных компьютеров, работающих в жарких (выше 50°С) условиях; однако к теме нашей статьи это не относится.

Термоинтерфейс и термопаста

Как уже говорилось, составной частью любой охлаждающей системы (в том числе компьютерного кулера) является термоинтерфейс – компонент, через который осуществляется термоконтакт между тепловыделяющим и теплоотводящим устройствами. Выступающая в этой роли термопаста обеспечивает эффективный перенос тепла между, например, процессором и кулером.

Зачем нужна теплопроводящая паста

Если радиатор кулера неплотно прилегает к охлаждаемому чипу, эффективность работы всей охлаждающей системы сразу снижается (воздух – хороший теплоизолятор). Сделать поверхность радиатора ровной и плоской (для идеального контакта с охлаждаемым устройством) весьма трудно, да и недешево. Здесь и приходит на помощь термопаста, заполняющая неровности на контактирующих поверхностях и тем самым значительно повышающая эффективность теплопереноса между ними.

Важно, чтобы вязкость термопасты была не слишком высокой: это необходимо для вытеснения воздуха из места термоконтакта при минимальном слое термопасты. Учтите, кстати, что полировка подошвы кулера до зеркального состояния сама по себе может и не улучшить теплообмен. Дело в том, что при ручной обработке практически нереально сделать поверхности строго параллельными, – в итоге зазор между радиатором и процессором может даже увеличиться.

Прежде чем наносить новую термопасту, старательно избавьтесь от старой. Для этого используются салфетки из нетканых материалов (они не должны оставлять волокон на поверхностях). Разводить пасту крайне нежелательно, так как это сильно ухудшает теплопроводящие свойства. Дадим еще несколько рекомендаций:

  • применяйте термопасты с теплопроводностью более 2–4 Вт/(К*м) и низкой вязкостью;
  • устанавливая кулер, каждый раз наносите свежую термопасту;
  • при установке необходимо, зафиксировав кулер креплением, сильно (но не слишком, иначе возможны повреждения) прижать его рукой и несколько раз повернуть вокруг оси в пределах существующих люфтов. В любом случае монтаж требует навыка и аккуратности.

Термотрубки

Термотрубки замечательно подходят для отвода излишков тепла. Они компактны и бесшумны. По конструкции это герметичные цилиндры (могут быть довольно длинными и произвольным образом изогнутыми), частично заполненные теплоносителем. Внутри цилиндра находится другая трубка, сделанная в виде капилляра.

Работает термотрубка следующим образом: в нагретой области теплоноситель испаряется, его пар переходит в охлаждаемую часть термотрубки и там конденсируется – а конденсат по капиллярной внутренней трубке возвращается в нагретую область.

Главное преимущество термотрубок состоит в высокой теплопроводности: скорость распространения тепла равна скорости, с которой пары теплоносителя проходят трубку из конца в конец (она весьма велика и близка к скорости распространения звука). В условиях меняющегося тепловыделения охлаждающие системы на термотрубках очень эффективны. Это важно, например, для охлаждения процессоров, которые, в зависимости от режима работы, выделяют разное количество тепла.

Выпускаемые сейчас термотрубки способны отводить 20–80 Вт тепла. При конструировании кулеров обычно применяются трубки диаметром 5–8 мм и длиной до 300 мм.

Однако при всех преимуществах термотрубок у них есть одно существенное ограничение, о котором далеко не всегда пишут в руководствах. Производители обычно не указывают температуру закипания теплоносителя в термотрубках кулера, между тем именно она определяет порог, при пересечении которого термотрубка начинает эффективно отводить тепло. До этого момента пассивный кулер на термотрубках, не имеющий вентилятора, работает как обычный радиатор. Вообще, чем ниже температура закипания теплоносителя, тем эффективнее и безопаснее кулер на термотрубках; рекомендуемое значение – 35-40°С (лучше, если температура закипания указана в документации).

Подведем итоги. Кулеры на тепловых трубках особенно полезны при высоком (более 100 Вт) тепловыделении, но их можно применять и в других случаях – если не смущает цена. При этом необходимо использовать термопасты, эффективно передающие тепло, – это позволит полностью реализовать возможности кулера. Общий принцип выбора таков: чем больше термотрубок и чем они толще, тем лучше.

Разновидности термотрубок

Термотрубки высокого давления (HTS). В конце 2005 года компания ICE HAMMER Electronics представила новый вид кулеров на тепловых трубках высокого давления, построенных по технологии Heat Transporting System (HTS). Можно сказать, что данная система занимает промежуточное положение между тепловыми трубками и жидкостными системами охлаждения. Теплоносителем в ней является вода с примесью аммиака и других химических соединений при нормальном атмосферном давлении. Благодаря подъему пузырьков, образующихся при закипании смеси, циркуляция теплоносителя значительно ускоряется. Видимо, такие системы максимально эффективно работают, когда трубки занимают вертикальное положение.

Технология NanoSpreader позволяет создавать полые теплопроводящие ленты из меди шириной 70–500 мм и толщиной 1,5–3,5 мм, заполненные теплоносителем. Роль капилляра играет полотно из медных волокон, возвращающее сконденсированный теплоноситель из зоны конденсации в зону нагрева и испарения. Форму плоской ленты поддерживает упругий крупнопористый материал, который не позволяет стенкам спадаться и обеспечивает свободное перемещение паров. Главные преимущества тепловых лент – малая толщина и возможность накрывать большие площади.

Моддинг и системы охлаждения

Слово «моддинг» образовано от английского modify (модифицировать, изменять). Моддеры (те, кто занимается моддингом) преобразуют корпуса и «внутренности» компьютеров с целью улучшения технических характеристик, а главное – внешнего вида. Как и любители автомобильного тюнинга, компьютерные пользователи хотят персонифицировать свой инструмент работы и творчества, незаменимое средство коммуникации и центр домашних развлечений. Моддинг – мощное средство самовыражения; это, безусловно, творчество, возможность поработать головой и руками, приобрести ценный опыт.

ТОВАРЫ ДЛЯ МОДДИНГА

Существует масса специализированных интернет-магазинов (как российских, так и зарубежных), которые предлагают товары для моддинга, доставляя их по всему миру. Отечественными пользоваться удобнее: с иностранными больше хлопот (например, при переводе денег), да и доставка, как правило, дорогая. Подобные специализированные ресурсы легко найти, воспользовавшись поисковыми системами.

Иногда принадлежности для моддинга совершенно неожиданно обнаруживаются в прайс-листах обычных интернет-магазинов, причем цена на них подчас ниже, чем в специализированных. Поэтому рекомендуем не спешить с покупкой того или иного аксессуара – сперва тщательно изучите несколько прайс-листов.

Что изменяют моддеры в компьютерах

Вряд ли среднестатистический моддер способен переделать сложную начинку: возможности пользователя, не обладающего специальными знаниями в области радиоэлектроники и схемотехники, все же ограниченны. Поэтому компьютерный моддинг предполагает в основном «косметическое» преображение корпуса компьютера.

ОСНОВНЫЕ ПРОИЗВОДИТЕЛИ ТОВАРОВ ДЛЯ МОДДИНГА

Чтобы лучше ориентироваться в комплектующих, имеет смысл знать имена некоторых компаний, специализирующихся на выпуске мод-товаров: Sunbeam, Floston, Gembird, Revoltec, Vizo, Sharkoon, Vantec, Spire, Hanyang, 3R System, G. M. Corporation, Korealcom, RaidMax, Sirtec (компьютерные корпуса и блоки питания), Zalman, Akasa (БП, системы охлаждения), Koolance, SwiftTech (водяное охлаждение), VapoChill (системы криогенного охлаждения), Thermaltake (в основном корпуса и мод-панели).

В частности, осуществляются так называемые blowhole-моды: в корпусе прорезаются отверстия для вентиляции, а также для установки дополнительных кулеров. Такие модификации не просто улучшают внешний вид – они полезны для общего «здоровья» компьютера, поскольку усиливают охлаждение компонентов системы.

Опытные моддеры часто сочетают приятное с полезным: устанавливают жидкостные системы охлаждения (большинство их имеет совершенно футуристический дизайн).

Построение эффективной системы водяного охлаждения (СВО) – задача не из легких и в техническом, и в финансовом смысле. Как было сказано, необходим солидный багаж специальных знаний, которые есть далеко не у каждого; да и без технических навыков не обойтись. Все это сильно стимулирует к покупке готовой СВО. Склоняясь к данному варианту, будьте готовы изрядно раскошелиться. Причем далеко не факт, что прирост производительности процессора и прочих компонентов системного блока, даже разогнанного благодаря эффективному отводу тепла новой СВО, окупит разницу в стоимости по сравнению со штатной (или даже улучшенной) системой воздушного охлаждения. Но у такого варианта есть и явные плюсы. Приобретая готовую СВО, вы не должны будете самостоятельно подбирать отдельные компоненты, заказывать их на сайтах разных производителей или продавцов, ожидать доставки и т.п. К тому же не придется заниматься модификацией корпуса ПК – часто это преимущество перевешивает все недостатки. Наконец, серийные СВО обычно дешевле моделей, собранных по частям.

Примером СВО, предоставляющей разумный компромисс между свободной творчества и простотой сборки (без ущерба для эффективности охлаждения), является система KoolanceExos-2 V2. Она позволяет использовать самые разные водоблоки (так называются полые теплообменники, накрывающие охлаждаемый элемент) из широкого ассортимента, выпускаемого компанией. Блок данной СВО объединяет радиатор-теплообменник с вентиляторами, помпу, расширительный бачок, датчики и управляющую электронику.

Процесс установки и подключения таких СВО очень прост – он подробно описан в руководстве пользователя. Учтите, что вентиляционные отверстия СВО располагаются сверху. Соответственно, над вентиляторами должно быть достаточно свободного места для оттока нагретого воздуха (не менее 240 мм при диаметре вентиляторов 120 мм). Если такого пространства сверху нет (например, мешает столешница компьютерного стола), можно просто положить блок СВО рядом с системным блоком – хотя такой вариант не описан в инструкции.

Самый простой и очевидный способ моддинга – замена штатных кулеров на моддерские с подсветкой (их выбор также достаточно широк: есть и мощные процессорные кулеры, и слабенькие – декоративные).

Главное правило: сравнивайте цены в разных поисковых системах и интернет­магазинах! Амплитуда колебаний вас немало удивит. Разумеется, следует выбирать более дешевые предложения, непременно обращая внимание на условия оплаты, доставки и гарантии.

Здравствуйте, дорогие читатели. С вами опять Александр и в сегодняшней статье я расскажу о вентиляторе для компьютера, который играет очень важную роль при построении компьютерных систем охлаждения.

Одной из важных составляющих бесперебойной, надежной и долгой работы Вашего компьютера, является качественная и высокоэффективная система охлаждения всех его комплектующих и узлов.

Не имеет никакого значения, ноутбук это или мощный игровой компьютер. Качественный отвод тепла от нагревающихся компонентов, значительно продлевает время их работы, и важен для любого устройства.

На данном этапе развития технологий, основным способом охлаждения разгоряченных устройств компьютера является воздушное охлаждение при помощи специально разрабатываемых для этого вентиляторов.

Их размер, скорость вращения, производительность, технология изготовления и даже форма крыльчатки лопастей, все это очень сильно сказывается на качестве охлаждения всей компьютерной системы в целом.

Вентилятор, соединенный с радиатором (может иметь разнообразную форму, размер, материал и процесс изготовления, включать в себя компоненты, помогающие более быстро и качественно отводить тепло от греющегося элемента, например тепловые трубки). Весь этот бутерброд называется кулером.

Так как, количество компьютерных вентиляторов в мощных системных блоках может достигать десятка и более, то у многих пользователей возникает вопрос, как их можно заменить, или отремонтировать при возникновении раздражающего шума или выхода вентилятора из строя. Если Вы вовремя не заметили выход из строя вентилятора, то это может привести к потере дорогостоящего оборудования из-за его перегрева.

Данный вопрос актуален особенно во время летнего периода, когда средняя температура в доме или офисе, по сравнению с зимним периодом поднимается, а так как компьютерные вентиляторы забирают воздух из окружающей среды, то естественно внутри компьютерной системы она тоже повышается.

Купить и заменить корпусный вентилятор очень просто, и это сможет сделать каждый пользователь, имеющий хоть какие-то навыки в обращении с отверткой.

Произвести замену процессорного вентилятора или вентилятора на видеокарте, в большинстве случаев невозможно, в силу их нестандартных размеров и способов крепления, что приводит к необходимости полной замены системы охлаждения данного узла.

Для выбора и дальнейшей покупки качественного корпусного вентилятора, кулера для процессора или видеокарты, Вы должны владеть информацией об основных типах, характеристиках вентиляторов и их устройстве. Она так же поможет Вам (если это потребуется) самостоятельно снять, разобрать и смазать надоедливо шумящий вентилятор.

После прочтения этой статьи, Вы будете очень хорошо знать, чем отличаются вентиляторы разной ценовой категории друг от друга, научитесь разбираться в их технических характеристиках, и сможете сами сделать правильный выбор в пользу той или иной модели вентилятора для компьютера при его покупке.

Итак, приступим…

Устройство вентилятора для компьютера

Компьютерный вентилятор состоит из трех основных частей:

  • Корпус
  • Крыльчатка
  • Электродвигатель

Корпус вентилятора имеет форму в виде рамки и служит основанием для крепления электропривода (электродвигателя) и лопастей крыльчатки. В зависимости от фирмы производителя и качества изделия, корпус может изготавливаться из пластмассы, металла или резины.

Крыльчатка представляет собой набор лопастей, расположенных по кругу на одной оси с электродвигателем, под определенным углом и закрепленных на корпусе вентилятора при помощи подшипников различного вида. Во время вращения, лопасти крыльчатки захватывают воздух и, пропуская его через себя, создают постоянный направленный воздушный поток, который охлаждает греющийся элемент.


При производстве компьютерных вентиляторов используют электродвигатели постоянного тока, которые жестко крепятся к корпусу вентилятора.

Для охлаждения компьютера, компьютерных комплектующих и устройств, в настоящее время применяется два вида вентиляторов:

  • Осевой (аксиальный) вентилятор
  • Центробежный (радиальный) вентилятор

Они отличаются по принципу действия и конструкции.

Осевой вентилятор получил широкое применение в конструировании систем охлаждения различной компьютерной техники, благодаря простоте изготовления и универсальности.

Осевой компьютерный вентилятор применяется для охлаждения системных блоков компьютеров, ноутбуков, сильно греющейся электроники на материнских платах, центральных процессоров, видеокарт, блоков питания и другого оборудования.

Основной способ применения осевых вентиляторов, это обдув радиаторов охлаждения, установленных на электронных устройствах, требующих принудительного отвода тепла.

Центробежный (радиальный) вентилятор представляет собой вращающийся ротор, состоящий из спиральных лопастей. В данном виде вентилятора, воздух затягивается вращающимся ротором через боковое отверстие, внутрь кожуха, где он, за счет центробежной силы, направляется на нагретый радиатор, проходя через ребра которого, он забирает исходящее от них тепло и выводит его наружу.

Радиальный вентилятор применяется в основном только для охлаждения ноутбуков, мощных видеокарт и в качестве дополнительного охлаждения мощных компьютеров и низкопрофильных серверов (бловер).


Преимуществом центробежных вентиляторов, перед осевыми, является возможность прямого вывода нагретого воздуха за пределы системного блока компьютера и большая надежность (в силу своих конструкционных особенностей).

Разборка и смазка компьютерного вентилятора

Вентилятор для компьютера нам может потребоваться разбирать, чтобы смазать его, или очистить от пыли.

Основными сборщиками пыли являются лопасти вентилятора, причем из-за большой скорости вращения, мелкие частички пыли, плотно оседают на поверхности лопастей, и качественно очистить их можно только вручную, используя любую влажную тряпочку или другой похожий подручный материал. Пылесос или сжатый воздух здесь не помогут.

Разбирать Мы будем старый осевой вентилятор на подшипнике скольжения фирмы ADDA (данная фирма выпускает очень качественные вентиляторы, но у нас в продаже мне они не попадались) .


Первым делом необходимо аккуратно снять наклейку с логотипом производителя, желательно не испортив клеящей основы. Она нам еще пригодиться.

Далее вынимаем резиновую или пластиковую заглушку, защищающую подшипники от проникновения в них посторонних частиц (в вентиляторах использующих подшипники скольжения, она служит еще и для предотвращения вытекания смазки).

Ну и последнее, самое сложное, это снять с вала крыльчатки фиксирующую пластиковую шайбу.

Выглядит она вот так:


Фиксирующее (стопорное) кольцо имеет разрез в одном месте и жесткую структуру (очень легко пружинит), поэтому при ее снятии будьте очень осторожны, чтобы она никуда не отлетела. Найти тоненькое и маленькое кольцо будет сложно (проверено на практике), а вентилятор без стопорного кольца неработоспособен. Для ее снятия лучше воспользоваться тонким пинцетом или любым другим предметом, которым будет удобно ее подцепить и удержать.

После снятия фиксирующего кольца, процесс разборки компьютерного вентилятора закончен. Вынимаем крыльчатку и приступаем к очистке и смазке.

Смазку вентиляторов собранных на подшипнике скольжения нужно производить густыми смазочными материалами, так как необходимо, чтобы смазочный материал был постоянно на металлической оси вентилятора во время его работы. Достаточно немного смазать саму ось крыльчатки вентилятора, а после ее установки в рамку с электродвигателем, добавить небольшое количество смазочного материала (до уровня установки стопорного кольца) с задней части компьютерного вентилятора. Это делается для того, чтобы во время работы вентилятора, разжиженная от нагрева смазка поступала по металлической втулке до подшипника и смазывала пространство между ними.

Смазку вентиляторов для компьютера, собранных на подшипниках качения (шарикоподшипниках) производят жидкими материалами. Отлично подходит для этих целей силиконовое масло ПМС-100, ПМС-200, которое можно приобрести в магазинах радиодеталей. Смазка таких вентиляторов осложняется тем, что подшипники небольшого размера и зазоры между корпусом подшипника и самими шариками очень маленькое. Я лично провожу их смазку таким образом. Достаю подшипники с вентилятора. Хорошо их протираю спиртом (или чем нибудь обезжиривающим). Насухо вытираю и на 15-20 мин (пока чищу и смазываю сам вентилятор) забрасываю их в емкость с силиконовым маслом. Затем пинцетом достаю их оттуда, надеваю на вал крыльчатки и собираю вентилятор. Сборка производиться в обратном порядке.

Характеристики вентиляторов для компьютера

Вентиляторы характеризуются следующими основными техническими параметрами:

  • Частота вращения (об/мин)
  • Создаваемый воздушный поток (CFM)
  • Уровень создаваемого шума (дБ)

Частота вращения

Сколько оборотов вокруг своей оси может сделать крыльчатка вентилятора за одну минуту.

Воздушный поток

Производительность вентилятора выражается в мощности создаваемого воздушного потока и выражается в кубических футах в минуту (Cubic Feet per minute, CFM), т. е. какой объем воздуха может пропустить через себя вентилятор, при определенной частоте вращения за одну минуту. Именно воздушный поток, создаваемый вентилятором, влияет на то, какое количество рассеиваемого тепла можно будет отвести от греющегося элемента за определенную единицу времени.

Чем больше CFM, тем производительнее вентилятор. При этом стоит обращать внимание на уровень создаваемого им шума. Во многих случаях, менее производительный, но более тихий вариант может оказаться предпочтительнее.

Для увеличения воздушного потока, лучше использовать вентиляторы большого размера с низкой скоростью вращения, чем маленькие, с большей скоростью вращения. Это избавит Вас от лишнего шума.

Уровень создаваемого шума

Рассчитывается в децибелах. На эту характеристику влияет, куда и как установлен вентилятор, в каких условиях он работает, вид установленных подшипников, качество изготовления, частота вращения и размер вентилятора. Более подробно читайте в конце статьи.

Виды подшипников, используемых в компьютерных вентиляторах

Одним из самых важных параметров, на который следует обращать внимание при выборе вентилятора для компьютера, это вид используемых в нем подшипников.

Существует несколько видов подшипников, на основе которых создаются компьютерные вентиляторы. Именно они влияют на такие важные параметры для нас, как надежность, время наработки на отказ и создаваемый вентилятором шум.

Приведенные ниже виды подшипников на сегодняшний день являются самыми распространенными при производстве компьютерных вентиляторов.

Существуют более редкие и дорогие варианты подшипников, о которых я расскажу ниже.

  • Подшипник скольжения (Sleeve bearing)
  • Подшипник качения (Ball bearing)

Подшипник скольжения очень прост в изготовлении, и от этого самый дешевый из всех видов подшипников. Для придания стабильности крыльчатке, во время ее вращения, используется металлический или (в более продвинутых версиях керамический) цилиндр, с отверстием посередине. Именно в это отверстие вставляется стальная ось, к которой крепиться крыльчатка.

Из-за такого простого и дешевого технического решения, вытекают все недостатки данного вида подшипников.

Когда вентилятор только приобретен и установлен, он будет Вас радовать тишиной во время своей работы, но как только смазка начнет высыхать (а происходит это приблизительно через год, в зависимости от условий эксплуатации), то начнет издавать неприятный шум.

Он возникает из-за сопротивления, которое появляется при трении оси крыльчатки, об высохшую и загрязненную смазку, внутри подшипника.

Дальнейшая длительная работа вентилятора без смазки, приведет к появлению еще большего шума, началу истирания самого подшипника, и в конечном итоге, приведет к полной невозможности восстановления работоспособности вентилятора, что потребует его замены.

Работоспособность подшипника скольжения сильно зависит от окружающей температуры, чем она ваше, тем быстрее будет высыхать смазка, и тем чаще придется чистить и смазывать самим вентилятор, либо менять его на новый.

Так же, одним из недостатков вентиляторов с подшипниками скольжения, является их низкая эффективность при работе в горизонтальном положении.

При таком расположении вентилятора, смазка, находящаяся внутри подшипника, стекает на одну сторону, что приводит к ее неравномерному распределению и более быстрому выходу из строя вентилятора.

Из всего сказанного, можно сделать вывод, что вентиляторы с подшипниками скольжения, особенно качественные модели, можно эффективно применять в охлаждении компьютеров, которым не требуется сильный отвод тепла и время работы которых не превышает 8-10 часов в сутки (офисные или домашние маломощные компьютеры).

При всех своих недостатках, такие вентиляторы наименее дороги, а если за ними следить, в нужное время смазывать и чистить от пыли, то и они смогут проработать долго, не беспокоя Вас лишним шумом.

Теперь перейдем к более качественным и дорогим моделям вентиляторов построенных на основе двух шарикоподшипников.

Шарикоподшипник представляет собой металлический корпус в виде кольца и внутренней втулки с заключенными между ними шариками. Подшипник качения является неразборным, поэтому смазка находящаяся внутри него не вытекает и не загрязняется. Это значительно продлевает срок службы вентилятора, а его характеристики ухудшаются очень незначительно, в течение всего времени эксплуатации.

Так же, подшипник качения, менее подвержен влиянию высоких температур, по сравнению с подшипником скольжения, и пригоден для охлаждения компьютеров с сильным выделением тепла.

Два шарикоподшипника на втулке вентилятора со стопорным кольцом

Уровень акустического шума, издаваемый современными вентиляторами, оснащенными шарикоподшипниками не громче, чем у новых вентиляторов на подшипниках скольжения, и в течение всего времени использования он практически не измениться, в отличие от соперника.

Вы скорее услышите шум, от трения входящего или выходящего с большой скоростью воздуха, об вентиляционные отверстия Вашего корпуса, чем шум работы подшипников качения.

Вентилятор на подшипниках качения позволяет создавать на его основе значительно более продуманные и эффективные варианты охлаждения компьютерных систем из-за возможности располагать их в любом удобном положении, не боясь ухудшения характеристик вентилятора или уменьшения срока его работы.

Так как подшипник качения технологически более сложен в изготовлении, чем подшипник скольжения, то соответственно он более дорог и изделия на его основе имеют высокую цену. А если учесть, что в качественном вентиляторе установлено два подшипника качения, то цена вырастает еще больше.

На данный момент, выбор вентилятора на подшипниках качения представляется мне самым оптимальным вариантом. Производителей много, качество продукции высокое, а цены, ввиду высокой конкуренции, находятся на приемлемом уровне. Рекомендуется устанавливать во все существующие компьютеры.

Приобретение данных вентиляторов, избавит Вас от множества проблем, связанных с их обслуживанием, так как их время наработки на отказ примерно составляет жизненный цикл современного компьютера, и вентиляторы на шарикоподшипниках Вы будете менять вместе со всем содержимым Вашего компьютера:).

Для производства одного вентилятора, могут использоваться различные виды подшипников. Например, достаточно распространенным вариантом является вентилятор, в котором установлены один подшипник скольжения и один подшипник качения. Это решение не устраняет существующие недостатки вентиляторов, но позволяет производителям сэкономить и занять нужную им ценовую нишу, между дорогими и дешевыми моделями вентиляторов, а нам с вами получить хороший продукт по приемлемой цене.

Керамический подшипник качения (Ceramic Bearings)

Подшипник качения, при производстве которого применены керамические материалы. Эксплуатационные свойства керамики, для производства подшипников, превосходят свойства металла. Заявленный ресурс работы больше обычных подшипников в два раза.

Керамический подшипник качения позволяет использовать вентиляторы, построенные на их основе, при таких температурах, в которых неспособны долго работать другие типы подшипников.

На сегодняшний день, это самые долговечные подшипники, применяемые в вентиляторах, но вместе с тем и самые дорогие.

Гидродинамический подшипник (Fluid Dynamic Bearings)

Технологически усовершенствованный подшипник скольжения, в котором вращение вала крыльчатки происходит в слое специальной смазки, постоянно находящейся внутри втулки, за счёт создающейся при работе разницы давлений.

Уровень шума у гидродинамического подшипника, считается самым низким.

Наработка на отказ выше, чем у подшипников скольжения почти в два раза, но ниже, чем у подшипников качения. Вентиляторы на этом типе подшипников дороги и очень редки ввиду сложности изготовления. Выпускаются только небольшой группой производителей.

Подшипник скольжения c винтовой нарезкой (Rifle bearing)

Подшипник скольжения со специальными нарезами на внутренней стороне втулки и вдоль оси крепления крыльчатки, по которым осуществляется равномерное распределение смазки. По уровню издаваемого шума и времени работы примерно соответствует характеристикам гидродинамического подшипника.

Размеры вентиляторов для компьютера

Так как, нуждающаяся в охлаждении электроника компьютерных систем, имеет различные размеры, то и для ее охлаждения требуются вентиляторы различной мощности и размеров.

Все компьютерные вентиляторы, которые можно купить, имеют стандартные размеры. При выборе компьютерных комплектующих (особенно корпусов), стоит обратить на это внимание. В устройствах с нестандартными вентиляторами очень трудно, или даже невозможно, будет произвести замену вышедшего из строя вентилятора, что приведет к необходимости замены всей системы охлаждения.

Не так давно системы охлаждения некоторых видеокарт очень сильно страдали из-за установки низкокачественных вентиляторов, которые выходили из строя раньше, чем видеокарта морально устаревала. Лично я произвел замену кулеров и вентиляторов, только для своего компьютера, на двух видеокартах (NVIDIA Geforce 4 Ti 4200 и ATI Radeon X800XT).

Раньше это представляло большую проблему, но сейчас производители систем охлаждения ее решили, благодаря внедрению центробежных вентиляторов и намного более качественных осевых.

Стандартные размеры осевых компьютерных вентиляторов (в мм)

40Х40, 60Х60, 70Х70, 80Х80, 92Х92, 120Х120

Толщина рамки корпуса 80, 90 и 120мм вентиляторов составляет 25мм, хотя встречаются вентиляторы с 15, 30 или 35мм рамкой. Рамки у вентиляторов меньших размеров составляют 10, 15мм.

Ниже на изображении Вы можете просмотреть, как габаритные, так и установочные размеры основных типоразмеров компьютерных вентиляторов (простите за мелкие подписи, для более детального просмотра кликните по изображению).


Нестандартные размеры компьютерных вентиляторов 140мм, 95мм

140 мм вентиляторы не так давно появились, благодаря увеличению требований к мощности систем охлаждения современных компьютеров.

Изначально, в своей основной массе, они применялись для охлаждения блоков питания компьютера и кулерах для охлаждения процессоров, но сейчас ситуация изменилась.

Множество производителей ветродуев, начали изготавливать 140 мм вентиляторы для продажи в розницу.

Производители компьютерных корпусов, так же не отстают в оборудовании своих детищ посадочными местами под новинки.

Стоит обратить внимание на то, что у некоторых брендов, таких как Noctua, Evercool и им подобных, 140 мм вентиляторы имеют возможность установки в 120 мм посадочные места, при помощи дополнительных креплений или специально разработанных форм корпуса вентилятора.

Цена на 140 мм вентиляторы несколько выше, чем на его меньших сородичей, но за чуть большие деньги и незначительное увеличение размеров, Вы получаете больший поток воздуха в ед. времени, снижение оборотов вентилятора, и как следствие улучшение охлаждения системного блока и уменьшение шума от него.

Можно сделать вывод, что со временем 140 мм вентиляторы, вытеснят 120 мм, как это было не так давно с 92 мм и станут стандартом.

Подключение компьютерных вентиляторов

Все вентиляторы для компьютера, подключаемые к материнской плате или блоку питания, в стандартном режиме, работают от 12 вольт.

Вентиляторы могут быть с автоматической регулировкой скорости вращения крыльчатки, либо без нее.

Виды контактов вентиляторов

У всех компьютерных блоков питания имеется стандартный разъем (Molex) для подачи электрического тока на различные устройства (жесткие диски, оптические приводы и вентиляторы).

Для подключения к компьютерному блоку питания в вентиляторах может применяться, как обычный разъем с четырьмя контактами (типа Molex), так и уменьшенные варианты.

Для работы вентилятора, из четырех контактов, используется только два (Земля и 12 вольт).

Вот так выглядит один из самых популярных в настольной компьютерной технике - 4‑клеммный разъём питания Molex:

Он имеет четыре контакта:

  • желтый провод +12В
  • красный провод +5В
  • черные провода «земля»


Вентилятор, подключенный к нему со стандартным расположением контактов на разъеме питания, будет работать от 12В.

Если нам потребуется уменьшить скорость вращения вентилятора, то мы можем легко подключить его к 5, 6 или 7 Вольтам.

Для этого нам необходимо поменять местами провода в разъеме питания вентилятора.


Контакты на концах проводов имеют стандартное строение.

Они зафиксированы при помощи пары отгибающихся металлических усиков в пластмассовой части разъёма. Для извлечения контакта из разъема, необходимо эти выступающие усики вдавить во внутрь контакта и затем спокойно вынуть провод и вставить его в нужное Вам место разъема.

Для подключения к разъемам на материнской плате или другим устройствам, имеющим возможность регулировать скорость вращения вентиляторов, применяются уменьшенные разъемы.

Они бывают двух, трех или четырех контактными.


2-х контактный разъем имеет два провода, и подает стандартное напряжение +12В.

В 3-х контактном разъёме, кроме «земли» и 12В имеется провод для для связи с тахометром. Тахометр предназначен для регулирования скорости вращения крыльчатки вентилятора, путем изменения напряжения электропитания. Этот параметр настраивается в BIOS материнской платы или специальным программным обеспечением.

Вентиляторы с 4-х контактными разъёмами ставятся в системы охлаждения процессоров и видеокарт. Их скорость регулируется автоматически, при помощи PWM (pulse-width modulation – широтно-импульсная модуляция). В зависимости от температуры охлаждаемого элемента.

Если нагрузки на центральный процессор или видеокарту нет, то они тогда греются слабо и сильного охлаждения им не нужно. В этом случае модуль PWM снижает обороты вентилятора до минимально необходимых значений.

Если нагрузка повышается, то выделение тепла процессорами увеличивается, и модуль PWM постепенно, по мере роста температуры, повышает обороты вентилятора для предотвращения перегрева.

Компьютерные вентиляторы могут быть оснащены двумя различными типами разъемов, подключенными параллельно. Обычно это стандартный Molex и маленький 3х- или 4х-контактный разъем. Подключать питание можно только к одному из них

Регулирование скорости вращения вентиляторов для компьютера различными способами, значительно продлевает срок их эксплуатации и снижает издаваемый ими шум.

Шум, создаваемый компьютерными вентиляторами и методы борьбы с ним

Уровень шума, создаваемый вентилятором во время его работы, является важным показателем при выборе той, или иной модели.

Акустический шум измеряется в дБ (децибелах), и обязательно указывается производителем в технической документации к своей продукции.

Реальные данные в условиях эксплуатации, будут значительно отличаться от заявленных производителем. Измерение шумовых характеристик, проводится в идеальных условиях, т.е. вентилятор работает в свободном положении, не имеет никаких препятствия для прохождения воздушного потока через него, и ни к чему не крепится.

Установка в компьютерный корпус или монтирование вентилятора на радиатор, очень сильно повлияет на издаваемый им шум, и не в лучшую сторону.

Теперь разберем, какие же факторы влияют на акустический шум вентилятора.

1. Низкочастотные вибрации, исходящие от подшипника во время его работы, которые передаются к компьютерному корпусу, через крепление рамки вентилятора.

Методы борьбы:

  • использовать качественные вентиляторы, на мало шумящих подшипниках
  • использовать специальные (виброгасящие) прокладки и силиконовые крепежные винты
  • использование жестких (имеющих толстые металлические стенки) компьютерных корпусов
2. Форма вентиляционных отверстий, через которые входит, или выходит воздушный поток.

Здесь, шум создается всасываемым, или выходящим наружу воздухом, который под давлением и с большой скоростью проходит через узкие вентиляционные отверстия.

Методы борьбы:

3. Форма, количество, угол наклона и качество изготовления лопастей.

Лопасти непосредственно влияют на акустические характеристики вентилятора. При прохождении воздушного потока через них, они его как бы разрезают, от чего создается шум определенного спектра.

Спектр и уровень шума у каждой модели вентилятора будет свой, и зависеть от скорости вращения, качества поверхности, угла расположения и количества лопастей.

На этот параметр Вы можете повлиять, только правильно выбрав модель вентилятора.

Если Вы сможете учесть все вышеуказанные факторы при покупке компьютера, то беспокоиться об издаваемом им шуме Вам не придется.

Конечно, идеально тихим компьютер сделать не получится, но уж точно будет лучше, чем если Вы не воспользуетесь вышесказанными советами.

Пожалуйста, если Вам не сложно, ответьте на вопросы предложенные ниже. Это займет немного времени, но чтобы давать нужную именно Вам информацию это сделать необходимо. Для меня это очень важно. Спасибо.

Введение

Для пользователей ПК или для сборщиков систем, которые всё делают сами, вопросы охлаждения и температуры окружающей среды всегда являются актуальными. Именно поэтому мы собираемся начать с самых основ, предложив вашему вниманию введение в теорию охлаждения. Каждый год у нас появляются новые читатели, и каждый год мы замечаем одни и те же вопросы, задаваемые на наших форумах. Самое последнее, чего мы желаем, – это чтобы дорогостоящий проект потерпел неудачу в результате ошибки, присутствующей в большинстве базовых принципов, способствующих работе аппаратного обеспечения при приемлемых температурах.

Поскольку затронутая нами тема достаточно обширная, а мы хотим предложить вам полное руководство, мы разбили весь материал на две части.

Итак, прежде всего, мы поговорим о корпусах, включая вопросы местоположения блока питания. Затем мы сделаем обзор возможных недостатков других решений. Оптимизированный воздушный поток – это самый важный вопрос из всей информации о системе с воздушным охлаждением, поэтому мы планируем рассказать вам об этом более детально. Потом мы рассмотрим стандартные корпусные вентиляторы и покажем вам, почему даже новичку не стoит бояться наносить на детали термопасту. Если вы также запомните, что важно, чтобы между вашими видеокартами в конфигурации multi-GPU оставалось какое-то пространство, и поймёте, почему зачастую недооцененные вентиляторы на боковых панелях могут быть полезными, то вы сможете лучше оснастить свой ПК, чтобы он смог с меньшими потерями пережить летнюю жару.

Теория охлаждения вкратце

Сохранение энергии

Мы не можем не подчеркнуть мысль о том, какой масштабной затеей может оказаться правильно подобранная система охлаждения. Компьютеры относятся к числу наиболее неэффективных устройств всех времён, поскольку бoльшая часть используемой ими электроэнергии превращается в тепло (тепловую энергию). От этого никуда не деться, приходится принять это как реальность.

Даже обычная 40-ваттная лампочка испускает достаточно тепла, чтобы расплавился пластик и начался пожар. Компьютеры потребляют 60 ватт или больше в режиме простоя. Под нагрузкой эта цифра может резко увеличиться в десять или более раз! Запомните этот факт. Он составит основу нашего обсуждения и поможет вам осознать, насколько сложная в действительности эта задача – охлаждение ПК.

Тепло должно рассеиваться таким образом, чтобы компоненты ПК не превысили заданную максимальную температуру. Эту задачу выполняют в несколько этапов:

  • Рассеивание с поверхности компонента, вырабатывающего тепло (независимо от того, является ли этот компонент ЦП, видеокартой или регулятором напряжения материнской платы).
  • Поглощение тепла контактной площадкой и передача его на пластины радиатора охлаждения.
  • Излучение тепла в воздух (который, к сожалению, довольно плохо проводит тепло).
  • Отвод горячего воздуха из корпуса.

На этапах 1-3 мы использовали промышленные теплосъёмники с вентиляторами, разработанные для того, чтобы подходить к как можно большему количеству интерфейсов, и иногда вызывающие вопросы по установке на более сложных или специализированных платформах. К счастью, бoльшая часть этих вопросов решается достаточно легко. Однако последний этап требует более детального планирования, так что мы начнём с обзора информации о воздушном потоке.


Конечно же, здесь наблюдается прямая связь с расположением компонентов внутри вашего корпуса. И потому далее мы вкратце расскажем вам о конструкции блоков питания, направлении вращения вентилятора кулера и корпусных вентиляторах.

Образование тяги:

Горячий воздух поднимается вверх, холодный воздух опускается вниз. Вот почему верхняя часть корпуса обычно самая горячая. Мы должны всё время держать в уме этот основной принцип из области физики при планировании системы охлаждения.

Конфигурация тестовой системы

Основная идея и тестовая конфигурация

Для того, чтобы провести сравнение результатов настолько всесторонне, насколько это возможно, и при равных условиях, мы использовали устаревшую тестовую платформу, с помощью которой мы довольно точно смоделировали три варианта теплоотдачи - 89, 125 и 140 Вт. В первом варианте частота процессор уменьшалась до 2,2 ГГц, во втором варианте он работал со стандартной частотой, в третьем варианте разгонялся до 3,0 ГГц.

Конфигурация тестового стенда
Центральный процессор AMD Athlon 64 FX-62 (Windsor) 2,8 ГГц, Dual-Core, 2 x 1 Мбайт кэш-памяти L2, Socket AM2, 125 Вт TDP
Материнская плата MSI K9A2 Platinum, чипсет 790FX, Socket AM2/AM2+
Оперативная память 2 x 2 Гбайт DDR2-800
Кулер 1 Оригинальный "коробочный" кулер AMD для Athlon 64 FX-62
Кулер 2 Высокопроизводительный башенный кулер Xigmatek Aegir со 120-мм вентилятором


Используя кулер Xigmatek Aegir, мы протестировали оборудование с различными уровнями энерговыделения и результатами охлаждения для каждого варианта сборки. Этот кулер достаточно мощный для того, чтобы равномерно охлаждать 140 Вт старый процессор FX, находящийся под большой нагрузкой. Хотя устройство кажется солиднее, чем более шумный "коробочный" кулер, предоставленный компанией AMD, большинству пользователей такая покупка нужна для того, чтобы раз и навсегда получить стоящую вещь. Свои измерения мы снимали в помещении, где температура поддерживалась на постоянном уровне 22°C.


Кулер Xigmatek Aegir
Размеры (общие), (ДxВxШ) 130 x 95 x 159 мм
Вес 670 г без вентилятора
Материал Медь/Алюминий
Тепловые трубки Всего шесть (2 x 8 мм, 4 x 6 мм)
Технология Структура Dual-Layer Heatpipe-Direct-Touch (D.L.H.D.T.),
Четыре тепловые трубки с прямым контактом с ЦП
Вентилятор 120 x 120 x 25 мм
Подшипник Подшипник скольжения с длительным сроком службы
Диапазон скоростей 1 100-2 200 об/мин.
Воздушный поток Макс. 150 м³/час
Уровень шума Макс. 20 дБ(A)
Цвет Прозрачный чёрный, 4 белых светодиода
Подсоединение Разъём 4-pin PWM
Совместимость разъёмов Socket 764/939/940/AM2/AM3, LGA 775/1156/1366

Бoльшую часть тестов мы провели, воспользовавшись этим высокопроизводительным охлаждающим устройством, потому что башенные кулеры в настоящее время являются наиболее популярными моделями кулеров. Также в нашем обзоре есть дополнительная глава о кулерах с воздушным потоком, направленным вниз (так называемые "боксовые").

Блок питания: местоположение для установки и выбор корпуса

Блок питания расположен внизу корпуса

Во многих современных корпусах для ПК блок питания располагается внизу, под материнской платой. Такой вариант установки имеет массу преимуществ, поэтому мы настоятельно рекомендуем корпус с подобной конфигурацией. На рисунке вы можете видеть, что вентилятор засасывает прохладный воздух с "пола" через собственное впускное отверстие, использует этот воздух для охлаждения активных компонентов внутри блока питания и выводит его в задней части устройства.


Преимущества монтажа БП внизу корпуса:

  • Равномерная подача прохладного воздуха с "пола" внутрь корпуса.
  • Прямое выведение воздуха из корпуса БП.
  • Меньше скорость вентилятора.
  • Охлаждение позволяет добиться большей производительности БП.
  • Меньше температурное напряжение на компоненты, больше срок службы.
  • Центр тяжести корпуса расположен ниже.
  • Силовой кабель не свисает и не мешает подключению других внешних устройств.

Недостатки:

  • Корпус должен иметь достаточно высокие ножки.
  • Также необходимо иметь в наличии пылевой фильтр.
  • Возможно образования посторонних шумов, в зависимости от того, из какого материала сделан пол.


Несмотря на небольшие недостатки, вышеупомянутая конфигурация является предпочтительной, по сравнению с некоторыми другими вариантами сборки, о которых мы также расскажем, а ещё вы всегда должны обращать внимание на корпус, в котором размещается БП. Но здесь также можно допустить ошибку.


Не устанавливайте БП таким образом, чтобы его отверстие для забора воздуха выходило в корпус компьютера. Таким образом вы можете установить блок питания, только если имеете дело с "тихими" БП с пассивным охлаждением, чтобы тёплый воздух поднимался вверх. В противном случае, вы столкнётесь с силами, действующими при конвекции и, возможно, это приведёт к возникновению ситуации, при которой винт или любая другая плохо зафиксированная деталь могут упасть внутрь блока питания.

Блок питания расположен вверху корпуса

В более старых корпусах для ПК, произведённых согласно спецификации ATX, блок питания размещается прямо под верхней крышкой корпуса. Воздух засасывается внутрь БП изнутри компьютера, а затем выбрасывается наружу корпуса. Предположительно, это улучшает рассеивание и предотвращает накопление тепла. Тем не менее, это также приводит к поглощению блоком питания большого объёма отработанной теплоты, выделяемой видеокартой и процессором. Вследствие этого, вы получаете от БП работу на недостаточном уровне, из-за чего почти невозможно достичь максимальных значений энергии и производительности при температурах, превышающих 40°C (поскольку обычно они основаны на условия эксплуатации при температуре около 25°C). Также страдает продолжительность срока службы компонентов внутри блока питания.


Преимущества монтажа вверху корпуса:

  • Способствует лучшему охлаждению в некоторых системах.
  • Для линии 12 В необходим более короткий кабель.

Недостатки:



Идеальный корпус...

Его не существует. Однако большие, отлично сконструированные "башенные" корпусы, такие как у модели Corsair Graphite 600T, приблизились к идеалу. Внутри этого корпуса воздушный поток не встречает на своём пути препятствий. Вместимость, расположение кабелей в задней части, а также многочисленные вентиляторы и воздушные фильтры – вот что присутствует в этой модели, что позволяет нам назвать это решение почти идеальным.


По возможности, вы должны обращать как можно больше внимания на корпусы, в которых воздушный поток беспрепятственно перемещается снизу-вверх. Если вы захотите включить в свою конфигурацию особо длинную видеокарту, вам понадобится корпус с такой глубиной, какая только будет возможна. Иначе карта будет мешать воздушному потоку. Толстые кабели всегда должны располагаться сзади. Также всё, что болтается внутри корпуса, значительно снизит скорость движения воздушного потока.

Воздушный поток: установка башенных кулеров лицевой стороной вверх

Возможные варианты монтажа башенных кулеров

Применение башенных кулеров предпочтительнее, чем комбинирование радиаторов и вентиляторов, которые вдувают воздух в процессоры. Однако очень важно, чтобы вы обратили внимание на правильную ориентацию БП при установке.

Поскольку на этом этапе можно столкнуться с множеством ошибок, мы рассмотрим различные варианты сборки, прежде чем суммировать наиболее важные правила.

Монтаж башенного кулера в вертикальном положении

Чаще всего вертикальное расположение применяется в сборках на основе компонентов от Intel. Машинам с материнскими платами на основе Socket AM2+ или AM3 нужен кулер со специальной системой крепления, позволяющей устанавливать БП под углом 90°.


Конечно же, башенные кулеры можно устанавливать в корпусы, в которых БП крепятся сверху. В таких случаях схематический рисунок будет выглядеть так:


Следует заметить, что задняя стенка корпуса должна быть либо перфорированной, либо на ней должен находиться вентилятор. Будет даже лучше, если в этом месте будет находиться вытяжной вентилятор, который, в большинстве случаев, может заменить второй вентилятор, установленный на радиаторе процессора. Конечно, можно улучшить и этот сценарий.


Даже при наличии смонтированного вверху БП, воздушный поток можно скорректировать в лучшую сторону, вводя в процесс охлаждения дополнительный прохладный воздух из нижней части корпуса.


Воздушный поток: башенный кулер с горизонтальным расположением

Монтаж башенного кулера в горизонтальном положении

Давайте вернёмся к процессорному разъёму Socket AM3 от AMD и рассмотрим вариант монтажа кулера в горизонтальном положении. То, что вначале показалось нам недостатком, может, на самом деле, превратиться в ценное качество. Помните об образовании тяги? Если тёплый воздух поднимается вверх, почему бы не воспользоваться этим как преимуществом? Для монтажа компонента в горизонтальном положении вам понадобится корпус с вентиляцией сверху.


Также мы воспользовались дополнительным вытяжным вентилятором сбоку, поскольку многие башенные кулеры способствуют перемещению какой-то части воздуха на близлежащие компоненты (регуляторы напряжения, например), и эту часть "рассеянного" воздуха также необходимо вывести. Монтаж в горизонтальном положении возможен также при использовании блока питания, крепящегося внутри корпуса вверху.


Однако при таком сценарии недостатки БП, крепящегося в корпусе вверху, становятся действительно заметными, поэтому мы, определённо, не советуем вам перемещать весь нагретый воздух от процессора в БП. В самом деле, есть же много решений и получше.

Если вы всё-таки решите применить такой способ, удостоверьтесь в том, что в вашей сборке есть, по меньшей мере, вытяжной вентилятор в задней части корпуса.


Вентиляция снизу помогает создать дополнительный охлаждающий воздушный поток.


Воздушный поток: общие ошибки при установке

Возможные варианты монтажа и ошибки планирования расположения

Кажется, что составить подобный план расположения компонентов довольно просто, но, учитывая, что существует очень много различных типов процессорных разъёмов и уникальных конфигураций охлаждающих устройств, можно довольно легко, по незнанию, совершить ошибки, которые негативно скажутся на производительности охлаждающего устройства.


В нашем первом примере кулер установлен в горизонтальном положении. Тем не менее, без вентиляции вверху тепло накапливается и попадает обратно на процессор.


В данном сценарии корпус отличает наличие вентиляция сверху, но ему не хватает дополнительной вентиляции сбоку. Воздуху приходится перемещаться в обход и заканчивается всё тем, что он накапливается за кулером.


Недавно мы наблюдали такой пример: прохладный воздух перемещается вопреки воздействию конвекции (а также вытяжным вентиляторам, работающим безрезультатно). К несчастью, это пример полного провала.


Воздушный поток: от уникальных систем до обычных кулеров

Кулеры с воздушным потоком, направленным вниз (лучшие из бюджетных)

Комплекты в виде "коробочного" радиатора и вентилятора, который вы получаете от AMD и Intel, не являются в достаточной степени эффективными, потому что образуемый этими компонентами воздушный поток не совпадает с вентиляционными отверстиеми в корпусе. Именно поэтому они перемещают воздух прямо на материнскую плату. В лучшем случае можно надеяться, что мощные логические схемы материнской платы получат хоть какое-то охлаждения. Но это ещё вопрос, компенсируется ли это ограниченной производительностью и бoльшим уровнем шума. Мы заметили, что это в большей степени относится к коробочным кулерам от AMD, которые едва справляются с подачей достаточного объёма воздуха для бесперебойной работы процессоров с тепловыделением 125 Вт и часто их вентиляторы вращаются со скоростью до 6 000 об/мин., что приводит к раздражающе высокому уровню шума.

Что касается других конфигураций охлаждения, остальные компоненты, корпус и встроенные вентиляторы играют важную роль при эксплуатации кулеров с воздушным потоком, направленным вниз.

Компьютер, приведённый на рисунке выше, получает недостаточный воздушный поток. В этом ПК нет вентиляции в задней части, а видеокарта ещё больше препятствует конвекции.


Так уже лучше! Эта конфигурация позволяет даже обычному коробочному кулеру, купленному в розничной продаже, рассеивать тепло эффективно.

Варианты сборки:


Оптимизация при наличии вентиляции сбоку

Наличие часто недооцениваемого бокового вентилятора, на самом деле, кажется вполне логичным, если вы используете кулер с воздушным потоком, направленным вниз, поскольку прохладный воздух, проходящий через отверстия для вентиляции, поступает прямиком на кулер центрального процессора. Остальные компоненты также могут выиграть от наличия этих отверстий, поэтому последние, в самом деле, могут понадобиться.




Вы можете либо выбрать корпус с большим, медленным и тихим вентилятором, как у модели LC-Power Titus...

Либо предпочесть кулер с парочкой 120-мм вентиляторов, такой как внутри корпуса Enermax Hoplite.

Воздушный поток: охлаждение жёсткого диска

Вентиляция спереди и охлаждение жёсткого диска

Это самый распространённый вариант расположения компонентов. Воздух всасывается внутрь со стороны передней панели корпуса и немедленно используется для охлаждения установленных жёстких дисков. Такой конфигурации достаточно для охлаждения, проблемы могут возникнуть только в том случае, если все отсеки в вашем корпусе заняты.


Поскольку, в интересах защиты данных и продления срока службы накопителя, следует избегать нагрева жёсткого диска выше 30°C , мы решили рассмотреть пару практических примеров.


Перед нами – классическая конфигурация: жёсткий диск в 3,5" отсеке, помещённый за 120-мм передним вентилятором.




Вот накопитель SATA, установленный спереди, с возможностью "горячей" замены. Вентилятор, расположенный сверху, косвенно способствует охлаждению. Данное расположение компонентов распространено меньше, но всё же это надёжное решение с точки зрения функциональности.


Варианты оптимизации

Если вы пришли к выводу, что температура вашего жёсткого диска слишком высокая, то вам следует обдумать возможность применения стандартного кулера для жёстких дисков. Обычно их можно купить в магазинах; в данном случае главный виновник ошибок – не оптимальное расположение.


Воздушный поток: измерения и сравнения результатов

Естественно, нам хотелось подтвердить аргументы, высказанные на предыдущих страницах, использовав целый ряд различных сценариев установки системы охлаждения. Мы использовали корпус Antec Lanboy Air, прикрыв при этом картоном часть вентиляционных отверстий, чтобы воздух сквозь них проходил с трудом. Корпус Lanboy Air предназначен для монтажа блока питания как вверху, так и внизу. Результаты говорят сами за себя.

Глядя на температуру выходящего из блока питания воздуха, мы видим самое главное преимущество того, что БП установлен в нижней части нашего испытательного корпуса.


Здесь мы видим, что сборки, охлаждаемые кулером с воздушным потоком, направленным вниз, действительно выигрывают от применения боковой вентиляции.

Воздушный поток: обеспечьте видеокартам надлежащую вентиляцию

Вентиляция и охлаждение видеокарт

Прежде чем вы поспешите купить по интернету самые скоростные видеокарты, которые сможете себе позволить, убедитесь в том, что выбрали модели (и материнскую плату), которые способствуют созданию надлежащего воздушного потока.

Наилучший выбор для вас – это карта, способная выводить всё тепло через заднюю стенку корпуса, даже если на ней установлен центробежный вентилятор, имеющий склонность производить много шума. Обычно эталонные модели, разработанные компаниями AMD и nVidia, являются хорошими примерами, хотя Radeon HD 6990, GeForce GTX 590 и низкопроизводительные видеокарты GeForce не подпадают под общую массу наших предпочтений, то есть моделей выводящих тепло напрямую.


Вот что происходит, когда накапливается слишком много тепла. Наличие перфорации на заглушках слотовых отверстий могло бы предотвратить отклеивание стикера от видеокарты. Что ж, впредь вы не совершите подобной ошибки. Восемьсот ватт тепла, рассеянного в этом корпусе, обязательно окажут на компоненты неблагоприятное воздействие.

Схематические иллюстрации




Пока для видеокарты имеется возможность выводить тепло из корпуса, значения температуры останутся на приемлемом уровне. Даже массив multi-GPU имеет доступ к достаточному воздушному потоку, чтобы работать в пределах безопасных допустимых значений до тех пор, пока между видеокартами есть достаточно места. Если вы хотите воспользоваться преимуществами конфигурации CrossFire или SLI, купите материнскую плату хотя бы с одним слотом расширения между установленными двухслотовыми картами.


Если видеокарты расположены слишком близко друг к другу, как показано на рисунке выше, то заблокированная плата может легко перегреться даже при умеренной нагрузке. В конце концов, её вентилятор не может захватывать достаточно воздуха, чтобы поддерживать температуру графического процессора в допустимых пределах.

Похожая ситуация происходит и тогда, когда дело связано с видеокартами, оснащёнными осевыми вентиляторами. Несмотря на то, что они малошумные, эти устройства больше способствуют попаданию находящегося поблизости горячего воздуха в ваш корпус, а не выведению воздуха из него, что приводит к нежелательному накоплению тепла.


Во многих случаях проблему может решить боковой вентилятор. Даже несмотря на то, что этот тип вентиляторов постоянно критикуют, эффективность подобного устройства (а в результате ещё и улучшение охлаждения видеокарты) можно измерить и реально ощутить.


Варианты оптимизации

Существуют интересные альтернативы обычным заглушкам слотов – вспомните об этом, если у вас появятся трудности с охлаждением. При помощи слотового кулера можно в какой-то степени минимизировать накопление тепла, даже после того, как вы уже собрали свой компьютер.


В ожидании второй части статьи

Несмотря на то, что опытные пользователи сейчас снисходительно улыбаются, читая о простых ошибках сборки, мы знаем, что рано или поздно все делают ошибки. ПК, конечно же, стoят совсем не дёшево, и даже когда вы экономите деньги, самостоятельно собирая компьютер, машина, ориентированная на энтузиастов легко может преодолеть уровень цен в несколько тысяч долларов.

Вот почему так важно тщательно продумать план сборки, прежде чем вы начнёте покупать компоненты. Во-первых, найдите подходящий корпус, а затем проверьте, можно ли разместить внутри него выбранные вами компоненты. Не отмахивайтесь от старых решений, таких как боковые вентиляторы. Нам удалось показать, что они действительно могут поспособствовать лучшему охлаждению. Иногда нам приходилось всего лишь снять измерения, чтобы доказать свою точку зрения.


Что нас ждёт во второй части этой статьи?

Если вы не планируете превращать свой новый компьютер в "Машину для приготовления хот-догов", то во второй части мы поговорим о том, как правильно выбрать вентилятор, а затем удостоверимся в том, что наш кулер для ЦП установлен должным образом. Это означает, что специально для новичков мы приведём руководство по нанесению термопасты.

Также мы расскажем вам о том, как охладить "не поддающуюся воздействию" разогнанную видеокарту GeForce GTX 480 до 64°C при бюджете всего €12, в то же время поддерживая уровень шума 38 дБ(А). Наконец, мы оборудуем нашу низкопрофильную и почти бесшумную модель Radeon HD 6850 60-мм вентиляторами, что поспособствует её постоянному охлаждению.

Статьи по теме: