Самостоятельное изготовление мигающего светодиода. Как сделать мигающий светодиод

Начинать изучение основ электроники рекомендуется со сборки простых и наглядных схем, поэтому схема мигалки в различных исполнениях и вариантах, как нельзя лучше подойдет начинающем радиолюбителям в их нелегком пути. Кроме того эти конструкции могут пригодится и в повседневном использование. Например в роли праздничных световых украшений или в качестве муляжа сигнализации.


Элементарная схема мигалки на шести светодиодах, особенностью которой является простота и отсутствие активных управляющих элементов, такие как, транзисторы, тиристоры или микросхемы.

С третьим мигающим светодиодом красного цвета последовательно включено два обычных красных светодиода 1 и 2. Когда вспыхивает мигающий 3, вместе с ним светяться 1 и 2. При этом открывающийся диод шунтирует зеленые светодиоды 4-6, которые при этом тухнут. Когда мигающий гаснет, вместе с ним тухнут 1 и 2 светодиоды, при этом загорается группа зеленых светодиодов 4-6.

Эта схема управления миганием светодиодов позволяет создать эффект хаотичных вспышек. Принцип работы основан на лавинном пробое перехода .

При включении через сопротивление R1 начинает заряжаться емкость С1 и поэтому на нем начинает расти напряжение. Пока конденсатор заряжается, не что не меняется. Как только напряжение достигнет 12 вольт, произойдет лавинный пробой p-n перехода полупроводникового прибора, проводимость его увеличивается и поэтому, светодиод начинает гореть за счет энергии разряжающегося C1.

Когда напряжение на емкости снизится ниже 9 вольт, транзистор закрывается, и весь процесс повторяется с самого начала. Другие пять блоков схемы работают по аналогичному принципу.

Номиналы сопротивлений и конденсаторов задают частоту работы каждого отдельно взятого генератора. Сопротивления, кроме того, защищают транзисторы от выхода из строя во время лавинного пробоя.

Самым простой способ собрать мигающую конструкцию, это использовать специализированную микросхему LM3909, которую достаточно легко достать.

К микросборке достаточно подсоединить частотозадающую цепь, подать питание ну и, конечно, сам светодиод. Вот вам и готовое устройство имитации сигнализации в автомобиле.

При указанных номиналах частота мигания будет около 2,5 Герц

Отличительной чертой этой конструкции является возможность регулировать частоту мигания с помощью подстроечных сопротивлений R1 и R3.

Напряжение можно подавать от любого или от батареек, область использования на всю ширину вашей фантазии.

В данной конструкции используется в качестве генератора и периодически открывает и запирает полевой транзистор. Ну а транзистор включает цепочки уже обычных светодиодов.

Первая и вторая цепочки светодиодов соединены между собой параллельно и получают питание через сопротивление R4 и канал полевого транзистора.

Третья и четвертая цепочки подсоединены через диод VD1. Когда транзистор заперт, горят третья и четвертая цепочка. Если он открыт, то светят, первый и второй участок.

Мигающий светодиод подсоединен через сопротивления R1, R2, R3. Во время его вспышки осуществляется открытие полевого транзистора. Все детали, кроме батарейки, устанавливают на печатной плате.

Достаточно простые радиолюбительские конструкции получатся если использовать обычные . Правда, следует помнить об их особенностях работы, а именно о том, что они открываются при поступлении на управляющий электрод определенного уровня напряжения, а для их запирания нужно уменьшить ток анода до значения меньше тока удержания.

Конструкция состоит из генератора коротких импульсов на полевом транзисторе VT1 и двух каскадов на тиристорах. В анодную цепь одного из них подсоединена лампа накаливания EL1.

В начальный момент времени после включения питания оба тиристора закрыты и лампа не светится. Генератор создает короткие импульсы с интервалом, зависящим от цепочки R1C1. Первый импульс поступая на управляющие электроды, открывает их, зажигая лампу.

Через лампу потечет ток, VS2 останется открытым, а VS1 закроется, потому что его анодный ток, установленный сопротивлением R2, слишком мал. Емкость С2 начинает заряжаться через R2 и к моменту формирования второго импульса окажется уже заряженной. Этот импульс осуществит отпирание VS1, а вывод конденсатора С2 кратковременно подсоединится к катоду VS2 и закроет его, лампа потухнет. Как только С2 разрядится оба тиристора будут запертыми. Очередной импульс генератора приведет к повторению процесса повторится. Таким образом лампочка накаливания вспыхивает с частотой, вдвое меньшей заданной частоты генератора.

Основа конструкции простой мультивибратор на двух транзисторах. Они могут быть почти любые, необходимой проводимости.

Питание подключаю от габарита через сопротивление, второй провод - масса. Светодиоды закрепил в панельки от спидометра и тахометра.

Множество устройств дополняются мигающими светодиодами, обеспечивая подачу необходимых сигналов или простую подсветку.

  • Особенности светодиодов
    • Заставляем RGB мигать

Особенности светодиодов

Прежде чем сделать оригинальный мигающий светодиод, необходимо узнать некоторые моменты относительно этих устройств.

  • Излучаемый свет зависит от ряда показателей;
  • Коэффициент полезного действия может быть разным. Причем самые слабые — синие;
  • Как для полупроводниковых элементов, КПД у светодиодов (СД) достаточно мал. В большинстве случаев он не превышает 45 процентов;
  • Одновременно с низким КПД, светодиоды отличаются превосходной эффективностью превращения в световую энергию электричества;
  • На каждый Вт электроэнергии приходится количество фотонов, примерно в 6-7 раз превышающих показатели спирали накаливания при аналогичных потребительских условиях;
  • Такие возможности светодиодов объясняют популярность создания мигающих ламп на основе СД;
  • Светодиодам требуется достаточно маленькое напряжение, чтобы схема оказалась рабочей;
  • Чтобы добиться эффекта мигания, следует соответствующим образом подобрать пассивные и ключевые элементы. Тогда схема сможет выдавать мигание требуемой формы — скважность, частота следования или амплитуда.

Для создания своими руками мигающего устройства можно воспользоваться платформой Ардуино. Ардуино — это аппаратная вычислительная платформа. Что самое интересно, Ардуино предназначена для аматорского использования, позволяет создавать всевозможные схемы.

Питающие напряжения для светодиодов

Чтобы создать красный, синий, желтый или любой другой светодиод или полноценную светодиодную ленту, сделать это путем подключения к сети на 220 Вольт — не самое лучшее решение.

На практике подобные схемы через питание на 220 Вольт существуют, но самостоятельно добиться эффекта мигания крайне сложно.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Куда правильнее, когда схема использует более подходящее питающее напряжение.

  1. 5 Вольт. Такое напряжение вы можете встретить в зарядных устройствах для телефонов, во многих современных гаджетах. Величина выходного тока здесь небольшая, но обычно таковая и не требуется. Дополнительно 5 Вольт можно отыскать на шинах блока питания компьютера. В этой ситуации вы не будете ограничены по току. Питающий провод будет красный, а заземление — черный.
  2. 7-9 Вольт. Наиболее часто встречается подобное напряжение на рациях. Каждая компания выпускает свои рации со своими нюансами, потому конкретных рекомендаций дать проблематично. Но поскольку рации часто приходят в негодность, проблем с получением бесплатного зарядного устройства не возникает.
  3. 12 Вольт. 12 Вольт является стандартным показателем напряжения для сегмента микроэлектротехники. Встречаются 12 Вольт повсеместно. В тех же компьютерных блоках они присутствуют обязательно. Здесь изоляция — это синий, а не красный провод. 12 Вольт считается оптимальным решением, потому рекомендуем вам остановиться именно на нем.
  4. 3,3 В. Многие могут сказать, что подобный номинал слишком мал, потому особой популярностью пользоваться не будет. Частично это справедливое утверждение. Но исключением является ситуация, где в дело идет RGB светодиод SMD0603. Только учтите, что при падении в прямом направлении напряжения более 3 В, могут возникнуть проблемы.

Заставляем RGB мигать

Эта схема наиболее интересная, поскольку позволяет использовать указанные светодиоды SMD.

  • Для подключения SMD 0603 идеальным источником напряжения станет не батарейка, а блок питания от вашего компьютера. По меньшей мере, протестировать схему с его помощью можно;
  • Вам потребуется установить резисторный делитель;
  • Чтобы сделать это своими руками, вам потребуется схема и техническая документация. Они позволят дать оценку сопротивлением p-n переходов в прямом направлении, используя тестер;
  • Непосредственно прямое измерение здесь недопустимо;
  • Вместо этого собирается схема.

  1. Схема предоставлена уже вместе с номерами ножек, учитывая технические параметры.
  2. Питание идет на катод, из-за чего полярность является отрицательной. Для открытия p-n перехода напряжения в 3,3 Вольт будет вполне достаточно.
  3. Используя переменный резистор, за слишком большим его номиналом гнаться не стоит. Согласно рисунку, максимальный предел переменного резистора составляет 680 Ом. В таком положении элемент должен изначально располагаться.
  4. Зачастую показатели сопротивления у открытых p-n переходов небольшие. Однако нам необходимо получить приличный запас. Это позволит светодиодам не перегореть.
  5. Не забывайте, что максимальное прямое напряжение превышать 3 Вольт не должно.
  6. Учтите другой момент. Если вольтаж каждого диода окажется низким, сопротивление окажется на уровне 700 Ом.
  7. В случае параллельного включения параметры суммарного сопротивления вычисляются согласно формуле, приведенной ниже на изображении.
  8. Вставляем в эту формулу три входных параметра по 700 Ом и в результате получаем 233 Ом. Это и будет сопротивлением наших светодиодов на момент, когда они только начнут открываться.
  9. При выполнении подключений обязательно контролируйте режим с помощью тестера. Чтобы сделать это, старайтесь постоянно делать замеры напряжения на схеме, параллельно уменьшая сопротивление. Делается это до тех пор, пока разница потенциалов не окажется на уровне 2,5 Вольт.
  10. Повышать вольтаж до еще больших значений не рекомендуется, поскольку это уже опасно. Часто схема предусматривает использование около 2,2 Вольт, не доводя разницу потенциалов до 2,5 единиц. Но тут действуйте на свое усмотрение и следите за правильностью сборки схемы.
  11. После этого, исходя из пропорций, можно отыскать нужное нам сопротивление светодиодной схемы.
  12. Учтите, что провод с номиналом 3,3 В на компьютерном блоке питания не красный, а оранжевый. Заземление берется от черного. Подключать подобный модуль без нагрузок не рекомендуется. Используйте какой-то проигрыватель DVD или подобное ему устройство.

А где именно применить мигающие светодиоды? Тут вы действуйте на свое усмотрение. Вам же потребовалось для чего-то собрать схему для обеспечения мигания этих ламп? Соответственно, определенные задумки относительно применения схемы у вас имеются.

Красный, синий, желтый, оранжевый — светодиод может быть самым разнообразным. Это позволяет создавать целые оригинальные ленты из диодов. Некоторые могут работать от простой батарейки, либо от более серьезного источника питания.

При детальном изучении особенностей мигающих светодиодов, многим удается вскоре самостоятельно создать нечто вроде новогодних гирлянд с регулируемой частотой мигания. Принципиально сложного в подобных схемах ничего нет. Но начинать стоит с малого.

На уроках физики в некоторых школах проходят тему о создании , изучают их виды, принципы работы и пробуют самостоятельно создать прибор в лабораторных условиях. В современном мире люди очень часто сталкиваются со светодиодами в повседневной жизни, самым простым примером являются LED-лампочки. Так что же это такое и как сделать светодиод, чтобы он мигал, читайте в нашей статье.

Светодиод – это довольно простой механизм, преобразующий электрический ток в световое излучение. Всего существует два типа:
- Индикаторные – разработаны для декоративного светового эффекта, являются украшениями, используются в разработке гирлянд, баннеров с освещением, в вывесках, электронных игрушках со светящимися элементами.
- Осветительные – используются для увеличения освещения в помещении, то есть это люстры и светильники с LED-цоколями.

Также бывают мигающие и моргающие светодиоды, их можно приобрести в специализированном или же изготовить самостоятельно, у каждого хозяина найдутся необходимые элементы для их создания.

Самый простой способ создания мигающего светодиода

При помощи этого метода получится создать конструкцию при напряжении от 3 до 12 вольт. Как сделать самому мигающий светодиод, рассказано ниже. Для сборки потребуются следующие компоненты:
- Резистор 6.8 – 15 Ом (2 шт).
- Резисторы с сопротивлением 470 – 680 Ом (2 шт).
- Маломощные транзисторы со структурой «n-p-n» (2 шт).
- Электроконденсаторы с ёмкостью 47 – 100 мкФ (2 шт).
- Маломощный светодиод, цвет не имеет значение (1 шт).
- Паяльник, припой и флюс.

Напомним, перед началом работы рекомендуется зачистить выводы всех радиодеталей, а после залудить их. Не забываем о полярности включения электролитических конденсаторов. Ниже приведена схема подключения всех вышеуказанных компонентов. Создав правильную конструкцию напряжение на R2 перестанет доходить до Т2, в это время открытым останется Т3 и R1, именно через них пройдёт ток и дойдёт до светодиода. За счёт того, что подача тока осуществляется циклично, светодиод будет мигающий.

Метод создания моргающего светодиода на 5 вольт

Для создания данной модели понадобиться все вышеуказанные компоненты, а также одна обычная пальчиковая батарейка. Ниже предоставлена элементарная схема сборки.

В данной системе подключения имеются несколько цепочек заряда конденсаторов – это R1C1R2 и R3C2R2. После того, как С1 и С2 имеют необходимый заряд они открываются, второй конденсатор соединён с батарейкой. Их суммарное напряжение проходит через Т2 и проникает в светодиод, за счёт этого он начинает светиться, как только напряжение исчезает он тухнет, а С1 и С2 теряют энергию. Как только напряжение к ним возвращается, происходит новый круг подачи тока в светодиод, и он снова начинает светиться. Таким образом, за счёт батарейки и небольших познаний физики, можно в домашних условиях создать моргающий светодиод.

Мигалка на светодиоде

Взглянув на эту схему, любой человек хоть не много понимающий в механике найдёт сразу две ошибки. Первая заключается в том, что эмиттер и коллектор подключены не правильно, а вот вторая это «висящая» база. Несмотря на две технические особенности светодиод будет работать. Точка соединения КТ315 служит динистором, за счёт того, что в нём накапливается много напряжения, он отдаёт её транзистору, а тот, в свою очередь, открывается. Затем ток направляется к светодиоду и происходит свечение. По мере отступления напряжения он угасает. Далее всё происходит циклично.

В данной статье указаны сразу несколько методов создания мигающих светодиодов. Благодаря этому, можно легко починить игрушку ребёнка, освещение в доме и новогоднюю гирлянду. Углубив свои познания в технике, создание светодиодов можно применить в других механизмах, например в разработке светового сигнала при открытии или не полном закрытии дверцы холодильника, если в подъезде темно, то подобная мигающая конструкция поможет гостям найти звонок или выключатель.

Продвинутые техники могут создать сигнальный поворотник для велосипеда, это поможет пешеходам узнать, в каком направлении будет двигаться транспортное средство. В общем, мест для применения моргающих светодиодов огромное количество. Для их применения нужны элементарные познания, необходимые материалы и умелые руки!

Представляю 3 схемы мигалок и 2 схемы цветомузыки. Первая - на 2 светодиода, остальные для одного.

Транзисторы КТ209М pnp типа. Можно использовать и npn с изменением полярности питания, светодиодов и конденсаторов.

В интернете есть подобные схемы симметричного мультивибратора, где транзисторы соединены эмиттерами, а коллекторы вверху, например, как в этой схеме звукового генератора: Схема собрана на пластиковой карточке.

Вторая схема состоит из двух транзисторов pnp и npn, одного резистора, конденсатора и светодиода. Питается от двух аккумуляторов AA, как и все схемы этого обзора. Транзисторы: КТ3107И и КТ3102Б (а может быть Л(И) - цвет не однозначный), также тёмно-зелёная точка почему-то на округлой стороне транзистора, а не на плоской, как указано во всех справочниках.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

В третьей схеме добавлен второй резистор. Параметры мигания во всех схемах можно настраивать изменением ёмкость конденсаторов и сопротивления резисторов.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Светодиод мигает под музыку из компьютера или любого другого музыкального устройства. Подключается к одному из двух звуковых каналов. В схеме используется NPN транзистор С9014, резистор 10 кОм, мощный светодиод 3 Вт. Питается от литиевого аккумулятора напряжением 3,7 В.

Вместо аккумулятора можно использовать 5 Вольт из блока питания системника. Яркость изменяется подбором сопротивления резистора, напряжения питания и громкости на компьютере.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

На видео используется мощный светодиод с допустимым максимальным током 700 мА при падении напряжения 4 В. Поэтому, если взять обычный светодиод с током 20 мА, то важно не допустить сильного превышения этого значения тока.

Вторая схема цветомузыки, на мой взгляд менее удачная, но, может быть кому-то пригодится. Публикую фото, с подписанными значениями деталей. Сопротивление резистора и ёмкость конденсатора можно менять.

Новые статьи добавлены на второй сайт, на который можно перейти через кнопку "Спектроскопия" в меню сайта!

Часто на прилавках магазинов, торгующих радиодеталями, можно встретить мигающие светодиоды. Они бывают различными по силе и по цвету свечения. Мигающие светодиоды (МСД) представляют собой полупроводниковые элементы со встроенными интегральными генераторами импульсов, частота вспышек которых составляет 1,5-3Гц.

Многие радиолюбители считают, что эти приборы бесполезны и их лучше заменить более дешевыми индикаторными светодиодами. Возможно, в чем-то они и правы. Однако МСД тоже имеют право на существование. Попробуем разобраться, в чем же преимущества таких изделий.

Мигающие светодиоды, по сути, представляют собой завершенные функциональные устройства, основное назначение которых - привлечение внимания, то есть функция световой сигнализации. Стоит также отметить, что мигающие полупроводниковые элементы размерами не отличаются от стандартных индикаторных светодиодов. Однако, несмотря на компактные размеры, в МСД входят полупроводниковые чип-генераторы, а также некоторые дополнительные элементы. Если конструировать генератор импульсов на обычных радиокомпонентах, то эта конструкция имела бы довольно солидные размеры. Стоит отметить, что мигающие светодиоды довольно универсальны. Питающее напряжение таких элементов лежит в пределах 1,8-5 В для низковольтных приборов и 3-14 В для высоковольтных. На фото ниже приведен мигающий

Достоинства МСД:

Широкий диапазон питающего напряжения (до 14 вольт);

Довольно компактное устройство световой сигнализации;

Различные цвета излучения. Некоторые варианты мигающих светодиодов имеют несколько встроенных цветовых диодов с различной периодичностью вспышек (на фото представлен мигающий желтый светодиод);

Использование МСД оправдано в малых устройствах, в которых предъявляются жесткие требования к размерам элементной базы и Эти диоды, благодаря своей электронной схеме, собранной на МОП структурах, имеют низкое потребление тока при достаточно большой мощности свечения;

Мигающий может заменить даже функциональный узел.

На принципиальных схемах графическое изображение МСД отличается от обычного светодиода только пунктирными линиями стрелок, что символизирует мигающие свойства элемента.

Давайте рассмотрим более подробно конструкцию мигающих светодиодов. Сквозь прозрачный корпус элемента можно увидеть, что конструктивно диод состоит из двух частей. Светоизлучающий кристалл размещен на основании катодного (отрицательного) электрода, а чип-генератор находится на основании анода (положительного электрода). Все части этого устройства соединены тремя золотыми перемычками. Чип-генератор представляет собой высокочастотный задающий генератор, который работает постоянно, его частота колеблется в районе 100 кГц. Также на схеме мигающего диода присутствует делитель, собранный на логических элементах. Он делит значение высокой частоты до уровня 1,5-3 Гц. Вы можете спросить: "А для чего используется с делителем, почему нельзя было использовать низкочастотный генератор, и тем самым упростить конструкцию?" Это связано с тем, что для реализации генератора требуется наличие конденсатора большой емкости для времяопределяющей цепи. Для реализации такого конденсатора понадобилась бы площадь гораздо большего размера, чем под использование высокочастотного генератора.

Вот мы и рассмотрели, что же представляет собой мигающий светодиод. А на вопрос о том, что лучше - технология МСД или традиционных индикаторных диодов, ответим, что несмотря на дешевизну вторых, мигающие диоды также нашли свою сферу применения и не составляют конкуренции традиционным.

Статьи по теме: