Подключение и управление светодиодной лентой к arduino. Как подключать RGB светодиоды, схемы управления

В данной статье мы расскажем о цветных светодиодах, отличии простого RGB-светодиода от адресуемого, дополним информацией о сферах применения, о том, как они работают, каким образом осуществляется управление со схематическими картинками подключения светодиодов.

Светодиоды – электронный компонент, способный излучать свет. Сегодня они массово применяются в различной электронной технике: в фонариках, компьютерах, бытовой технике, машинах, телефонах и т.д. Многие проекты с микроконтроллерами так или иначе используют светодиоды.

Основных назначений у них два :

Демонстрация работы оборудования или оповещение о каком-либо событии;
применение в декоративных целях (подсветка и визуализация).

Внутри светодиод состоит из красного (red), зеленого (green) и синего (blue) кристаллов, собранных в одном корпусе. Отсюда такое название – RGB (рис.1).

2. С помощью микроконтроллеров

С помощью него можно получить множество различных оттенков света. Управление RGB-светодиодом осуществляется с помощью микроконтроллера (MK), например, Arduino (рис.2).

Конечно, можно обойтись простым блоком питания на 5 вольт, резисторами в 100-200 Ом для ограничения тока и тремя переключателями, но тогда управлять свечением и цветом придется вручную. В таком случае добиться желаемого оттенка света не получится (рис.3-4).

Проблема появляется тогда, когда нужно подсоединить к микроконтроллеру сотню цветных светодиодов. Количество выводов у контроллера ограничено, а каждому светодиоду нужно питание по четырем выводам, три из которых отвечают за цветность, а четвертый контакт является общим: в зависимости от типа светодиода он может быть анодом или катодом.

3. Контроллер для управление RGB

Для разгрузки выводов МК применяются специальные контроллеры WS2801 (5 вольт) или WS2812B (12 вольт) (рис.5).

С применением отдельного контроллера нет необходимости занимать несколько выходов MK, можно ограничиться лишь одним сигнальным выводом. МК подает сигнал на вход «Data» управляющего контроллера светодиода WS2801.

В таком сигнале содержится 24-битная информация о яркости цвета (3 канала по 8 бит на каждый цвет), а также информация для внутреннего сдвигового регистра. Именно сдвиговый регистр позволяет определять, к какому светодиоду информация адресовывается. Таким образом можно соединять несколько светодиодов последовательно, при этом использовать все так же один вывод микроконтроллера (рис.6).

4. Адресуемый светодиод

Это RGB-светодиод, только с интегрированным контроллером WS2801 непосредственно на кристалле. Корпус светодиода выполнен в виде SMD компонента для поверхностного монтажа. Такой подход позволяет расположить светодиоды максимально близко друг другу, делая свечение более детализированным (рис.7).

В интернет-магазинах можно встретить адресные светодиодные ленты, когда в одном метре умещается до 144 штук (рис.8).

Стоит учесть, что один светодиод потребляет при полной яркости всего 60-70 мА, при подключении ленты, например, на 90 светодиодов, потребуется мощный блок питания с током не менее 5 ампер. Ни в коем случае не питайте светодиодную ленту через контроллер, иначе он перегреется и сгорит от нагрузки. Используйте внешние источники питания (рис.9).

5. Недостаток адресуемых светодиодов

Адресуемая светодиодная лента не может работать при слишком низких температурах: при -15 контроллер начинает подглючивать, на более сильном морозе велик риск его выхода из строя.

Второй недостаток в том, что если выйдет из строя один светодиод, следом по цепочке откажутся работать и все остальные: внутренний сдвиговый регистр не сможет передать информацию дальше.

6. Применение адресуемых светодиодных лент

Адресуемые светодиодные ленты можно применять для декоративной подсветки машины, аквариума, фоторамок и картин, в дизайне помещений, в качестве новогодних украшений и т.д.

Получается интересное решение, если светодиодную ленту использовать в качестве фоновой подсветки Ambilight для монитора компьютера (рис.10-11).

Если вы будете использовать микроконтроллеры на базе Arduino, вам понадобится библиотека FastLed для упрощения работы со светодиодной лентой ().

На этом занятии мы будем использовать цифровые и аналоговые выходы с «широтно импульсной модуляцией» на плате Arduino для включения RGB светодиода с различными оттенками. Использование RGB LED ленты позволяет создать освещение интерьера с любым оттенком цвета. Расскажем про устройство и распиновку полноцветного (RGB) светодиода и рассмотрим директиву #define в языке C++.

Устройство и назначение RGB светодиода

Для отображения всей палитры оттенков вполне достаточно три цвета, используя RGB синтез (Red - красный, Green - зеленый, Blue - синий). RGB палитра используется не только в графических редакторах, но и в сайтостроении . Смешивая цвета в разной пропорции можно получить практически любой цвет. Преимущества RGB светодиодов в простоте конструкции, небольших габаритах и высоком КПД светоотдачи.

RGB светодиоды объединяют три кристалла разных цветов в одном корпусе. RGB LED имеет 4 вывода — один общий (анод или катод имеет самый длинный вывод) и три цветовых вывода. К каждому цветовому выходу следует подключать резистор. Кроме того, модуль RGB LED Arduino может сразу монтироваться на плате и иметь встроенные резисторы — этот вариант более удобный для занятий в кружке .

Фото. Распиновка RGB светодиода и модуль с RGB светодиодом для Ардуино

Распиновка RGB светодиода указана на фото выше. Заметим также, что для многих полноцветных светодиодов необходимы светорассеиватели, иначе будут видны составляющие цвета. Далее подключим RGB светодиод к Ардуино и заставим его светится всеми цветами радуги с помощью «широтно импульсной модуляции».

Управление RGB светодиодом на Ардуино

Аналоговые выходы на Ардуино используют «широтно импульсную модуляцию» для получения различной силы тока. Мы можем подавать на все три цветовых входа на светодиоде различное значение ШИМ-сигнала в диапазоне от 0 до 255, что позволит нам получить на RGB LED Arduino практически любой оттенок света.

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • RGB светодиод;
  • 3 резистора 220 Ом;
  • провода «папа-мама».

Фото. Схема подключения RGB LED к Ардуино на макетной плате

Модуль «RGB светодиод» можно подключить напрямую к плате, без проводов и макетной платы. Подключите модуль с полноцветным RGB светодиодом к следующим пинам: Минус — GND, B — Pin13, G — Pin12, R — Pin11 (смотри первое фото). Если вы используете RGB LED (Light Emitting Diode), то подключите его по схеме на фото. После подключения модуля и сборки схемы на Ардуино загрузите скетч.

Скетч для мигания RGB светодиодом

#define RED 11 // Присваиваем имя RED для пина 11 #define GREEN 12 // Присваиваем имя GREEN для пина 12 #define BLUE 13 // Присваиваем имя BLUE для пина 13 void setup () { pinMode(RED, OUTPUT ); pinMode(GREEN, OUTPUT ); // Используем Pin12 для вывода pinMode(BLUE, OUTPUT ); // Используем Pin13 для вывода } void loop () { digitalWrite (RED, HIGH ); // Включаем красный свет digitalWrite (GREEN, LOW ); digitalWrite (BLUE, LOW ); delay (1000); digitalWrite (RED, LOW ); digitalWrite (GREEN, HIGH ); // Включаем зеленый свет digitalWrite (BLUE, LOW ); delay (1000); // Устанавливаем паузу для эффекта digitalWrite (RED, LOW ); digitalWrite (GREEN, LOW ); digitalWrite (BLUE, HIGH ); // Включаем синий свет delay (1000); // Устанавливаем паузу для эффекта }

Пояснения к коду:

  1. с помощью директивы #define мы заменили номер пинов 11, 12 и 13 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
  2. в процедуре void setup() мы назначили пины 11, 12 и 13, как выходы;
  3. в процедуре void loop() мы поочередно включаем все три цвета на RGB LED.
  4. Плавное управление RGB светодиодом

    Управление rgb светодиодом на Arduino можно сделать плавным, используя аналоговые выходы с «широтно импульсной модуляцией». Для этого цветовые входы на светодиоде необходимо подключить к аналоговым выходам, например, к пинам 11, 10 и 9. И подавать на них различные значения ШИМ (PWM) для различных оттенков. После подключения модуля с помощью проводов «папа-мама» загрузите скетч.

    Скетч для плавного мигания RGB светодиода

    #define RED 9 // Присваиваем имя RED для пина 9 #define GREEN 10 // Присваиваем имя GREEN для пина 10 #define BLUE 11 // Присваиваем имя BLUE для пина 11 void setup () { pinMode (RED, OUTPUT ); // Используем Pin9 для вывода pinMode (GREEN, OUTPUT ); // Используем Pin10 для вывода pinMode (BLUE, OUTPUT ); // Используем Pin11 для вывода } void loop () { analogWrite (RED, 50); // Включаем красный свет analogWrite (GREEN, 250); // Включаем зеленый свет analogWrite (BLUE, 150); // Включаем синий свет }

    Пояснения к коду:

    1. с помощью директивы #define мы заменили номер пинов 9, 10 и 11 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
    2. пины 11, 12 и 13 мы использовали, как аналоговые выходы analogWrite .

Выделенные цветовые зоны в спальне или гостиной – это всегда эстетично и красиво. Конечно, для того чтобы грамотно выполнить все работы по монтажу потолка, установке светодиодной ленты и всего сопутствующего оборудования, нужно немало потрудиться. Но зато результат будет радовать при правильном исполнении очень долго.

Ассортимент цветных светодиодных лент достаточно обширен и их правильный выбор – дело довольно сложное. И все же, какими бы идеальными они ни были, для их правильной работы необходим блок питания 12 В (реже 24 В) и, конечно же, блок управления с параметрами, подходящими именно под выбранную световую полосу.

Но что же такое этот RGB-контроллер, какие функции он выполняет? И если он так необходим, возможно ли его изготовить своими руками в домашних условиях?

Принцип работы

По своей сути контроллер RGB – это мозг домашней подсветки. Все команды, подаваемые с пульта дистанционного управления, им обрабатываются, а уже после нужный сигнал подается на светодиодную ленту, зажигая тот или иной цвет. Проще говоря, именно подобным электронным устройством осуществляется полное управление RGB-лентой.

Контроллеры различаются как по мощности, так и по количеству выходов, т. е. подключаемых к нему световых полос. Есть устройства с пультом, а бывают и без ПДУ. Также есть различие и по сигналу, поступающему на ленту, т. к. полоса может быть либо аналоговой, либо цифровой. Различие между ними существенное, а вот сходство одно. Все они работают только с блоком питания (трансформатором), потому как светодиодная полоса имеет номинальное напряжение в 12 В, а не 220, как думают некоторые.

Дело в том, что аналоговая светодиодная лента при получении сигнала с прибора управления зажигается тем или иным, но одним цветом по всей длине. У цифровой же есть возможность включения каждого светодиода отдельным цветом. А потому и RGB-контроллер для цифровой световой полосы более высокотехнологичен и стоимость его выше.

Варианты подключения

Естественно, что самым простым способом подключения устройства управления RGB станет вариант, при котором подключена лишь одна светодиодная полоса или ее часть. Но такой способ не совсем практичен, хотя он и не требует включения в цепь каких либо дополнительных приборов. Дело все в том, что на одну линию такого устройства возможно подключение не более 5–6 метров световой полосы, что для подсветки комнаты будет явно недостаточным. Если же длина отрезка будет больше, то на ближайшие к контроллеру светодиоды возрастет нагрузка, в результате чего они просто перегорят.

Еще одна проблема при подключении длинных светодиодных полос – большая нагрузка по мощности на тончайшие провода RGB-светодиодной ленты. При их нагреве пластиковое основание начинает плавиться, и в итоге жилы остаются без изоляции либо просто прогорают.

А потому при необходимости осветить более длинные расстояния применяются следующие способы и схемы подключения.

Две светодиодные ленты

При таком подключении к контроллеру для RGB-световой полосы понадобится два устройства питания и усилитель. Особенность подобного подключения в том, что отрезки ленты должны подключаться именно параллельно. Хотя у них и одно, общее электронное устройство управления, питание должно подаваться на каждую в отдельности. Усилитель же используется для более ясного и четкого света диодов.

Иными словами, напряжение поступает на оба блока питания, после чего с одного из них идет на усилитель и далее на световую полосу. Со второго блока питание поступает на электронный блок управления. Между собой устройство управления и усилитель связаны второй светодиодной лентой. Схематически такое подключение выглядит как на схеме выше.

При таком подключении желательно применять также два блока питания, но если они имеют большой выход мощности, то можно воспользоваться и одним.

Четыре отрезка по пять метров подключаются опять же параллельно. Пара полос напрямую подключена к контроллеру, вторая пара к нему же, но через усилитель сигнала. При подключении второго блока питания напряжение от него идет напрямую на усилитель. Выглядит подобное подключение примерно как на картинке выше.

Разобравшись с методами подключения контроллеров и их видами, можно попробовать сделать такой прибор своими руками в домашних условиях. Необходимо лишь помнить, что нужно соизмерять мощность устройства и его выходное напряжение с длиной и энергопотребляемостью светодиодной ленты.

Контроллер своими руками


Схема подобного прибора не сложна, единственный минус в том, что у изготовленного своими руками контроллера будет мало каналов, хотя для домашнего использования этого вполне достаточно.

Наверняка у каждого в квартире найдется неисправная китайская гирлянда с маленькой коробочкой – блоком управления устройством. Так вот, основные детали как раз будут браться из нее.

Схема контроллера, сделанного своими руками

Как раз внутри этого блока управления гирляндой можно увидеть три тиристорных выхода. Это и будут направления R, G и B.

Как раз к ним и следует подключить светодиодную полосу. Никакого охлаждения тиристорам не требуется, ну а отсутствие блока питания легко решается. Не будет большой проблемой найти неисправный системный блок компьютера. Так вот трансформатор от него идеально подойдет для этой цели. И в итоге сэкономить получится не только на покупке контроллера, но и на приобретении блока питания, причем блок питания может стоить в разы дороже, чем само устройство управления светодиодной RGB-лентой.

Конечно, никакого пульта дистанционного управления не будет, но все же можно подключить светодиодную RGB-ленту к трехклавишному выключателю, не потратив ни копейки на приобретение дополнительных устройств.

Стоит ли игра свеч?

Если рассуждать с точки зрения логики обычного человека, не увлеченного радиотехникой, то, конечно, купить дешевый RGB-контроллер будет ненамного дороже. К тому же при этом не будет потеряно время на изготовление своими руками подобного прибора. Но для настоящего радиолюбителя, а иногда и просто увлеченного человека, собрать подобный прибор самому во сто крат приятнее, нежели приобретать где-то. А потому попробовать изготовить RGB-контроллер своими руками стоит. Ведь удовольствие от проделанной, а к тому же еще и удачной работы не заменит ничто.

Если вы хотите самостоятельно усовершенствовать свой компьютер какими-нибудь навороченными «фишками», проще всего использовать для этого светодиоды – они просты в работе, дёшевы и не требуют каких-то особых навыков и ухищрений. Светодиод способен украсить ваше рабочее место, придать ему дополнительное освещение, да и просто поднять настроение. Чтобы подключить светодиод, следуйте нашей пошаговой инструкции.

Вам понадобится

  • 1. светодиоды
  • 2. паяльник и всё, что необходимо для работы с ним
  • 3. резисторы, которые будут снижать напряжение и силу тока от источника питания
  • 4. разъёмы, необходимые для подключения светодиодов к компьютеру
  • 5. тестер для проверки напряжения
  • 6. кусачки, чтобы зачищать провода
  • 7. термоусадочная трубка

Инструкция

Перед началом работы убедитесь, что у вас есть все необходимые инструменты и приспособления для работы.

Подключение к разъёму 4-pin molex.Сначала давайте посмотрим, светодиод к разъёму 4-pin molex. Это довольно распространённый разъём в , поэтому вполне возможно, что в вашем компьютере он есть. Этот разъём содержит четыре :1. +12 В (жёлтый провод)
2. +5 В (красный провод)
3. Два контакта заземления (чёрные)Выберите, куда вы хотите диоды – к 12 или к 5 вольтам. Разъём приобретите или выньте из ненужного устройства. Тестером проверьте, соответствуют ли выбранные контакты, определите, где у положительный, а где отрицательный контакты.

Провода зачистите кусачками, резистор припаяйте к положительному контакту разъёма. Соединение закройте термоусадкой. Ко второму контакту резистора припаяйте положительный контакт светодиода. Закройте место термоусадочной трубкой. Возьмите отрицательный контакт светодиода и припаяйте его к контакту «земля» разъёма.

Подключение к USBМожно подключить светодиод и к кабелю с разъёмом USB. Такие кабели существуют двух видов, но принципиальной разницы в ходе работы у них нет, так что найдите любой ненужный кабель и приступайте.В USB находится четыре контакта, два из которых передают данные, один контакт – «земля», а ещё один передаёт напряжение. Вот к нему-то и нужно подключить светодиод. Тестером проверьте напряжение и определите положительный и отрицательный полюса у диода.Кусачками зачистите провода, передающие напряжения. Резистор припаяйте к положительному контакту, место спайки закройте термоусадкой. Ко второму контакту резистора присоедините положительный контакт светодиода и закройте место спайки. Отрицательный контакт диода припаяйте к контакту «земля», закройте место спайки термоусадкой. Подключите USB кабель к компьютеру и проверьте, работает ли он.

Многоцветные светодиоды, или как их еще называют RGB, используются для индикации и создания динамически изменяющейся по цвету подсветки. Фактически ничего особенного в них нет, давайте разберемся, как они работают и что такое RGB-светодиоды.

Внутреннее устройство

На самом деле RGB-светодиод - это три одноцветных кристалла совмещенные в одном корпусе. Название RGB расшифровывается, как Red - красный, Green - зеленый, Blue - синий соответственно цветам, которые излучает каждый из кристаллов.

Эти три цвета являются базовыми, и на их смешении формируется любой цвет, такая технология давно применяется в телевидении и фотографии. На картинке, что расположена выше, видно свечение каждого кристалла по отдельности.

На этой картинке вы видите принцип смешивания цветов, для получения всех оттенков.

Кристаллы в RGB-светодиоды могут быть соединены по схеме:

С общим анодом;

С общим катодом;

Не соединены.

В первых двух вариантах вы увидите, что у светодиода есть 4 вывода:

Или 6-тью выводами в последнем случае:

Вы можете видеть на фотографии под линзой четко видны три кристалла.

Для таких светодиодов продаются специальные монтажные площадки, на них даже указывают назначение выводов.

Нельзя оставить без внимания и RGBW - светодиоды, их отличие состоит в том, что в их корпусе есть еще один кристалл излучающий свет белого цвета.

Естественно не обошлось и без лент с такими светодиодами.

На этой картинке изображена лента с RGB-светодиодами , собранные по схеме с общим анодом, регулировка интенсивности свечения осуществляется путем управления «-» (минусом) источника питания.

Для изменения цвета RGB-ленты используются специальные RGB-контроллеры - устройства для коммутации напряжения подаваемого на ленту.

Вот цоколевка RGB SMD5050:

И ленты, особенностей работы с RGB-лентами нет, всё остается также как и с одноцветными моделями.

Для них есть и коннекторы для подсоединения светодиодной ленты без пайки.

Вот распиновка 5-ти мм РГБ-светодиода:

Как изменяется цвет свечения

Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали .

RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания - подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.

Да такого мощного устройства в корпусе размером с блок питания.

Они подключаются к ленте по такой схеме:

Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера.

Но можно выйти из положения, и не тянуть дополнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково.

А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.

Регулируем RGB-led своими руками

Итак, есть два варианта для управления RGB-светодиодами:

Вот вариант схемы без использования ардуин и других микроконтроллеров, с помощью трёх драйверов CAT4101, способных выдавать ток до 1А.

Однако сейчас достаточно дешево стоят контроллеры и если нужно регулировать светодиодную ленту - то лучше приобрести готовый вариант. Схемы с ардуино гораздо проще, тем более вы можете написать скетч, с которым вы будете либо вручную задавать цвет, либо перебор цветов будет автоматическим в соответствии с заданным алгоритмом.

Заключение

RGB-светодиоды позволяют сделать интересные световые эффекты используются в дизайне интерьеров, как подсветка для бытовой техники, для эффекта расширения экрана телевизора. Особых отличий при работе с ними от обычных светодиодов - нет.

Статьи по теме: