Сетевые файловые системы. Описание процесса обращения к файлу, расположенному на сервере NFS

На данный момент в вашем распоряжении должно быть работающее TCP/IP-подключение к вашей сети. Вы должны быть в состоянии пинговать другие компьютеры сети и, если вы соответствующим образом настроили шлюз, вы также должны быть в состоянии пинговать компьютеры в Интернете. Как известно, главной целью подключения компьютера к сети, является получение доступа к информации. Хотя некоторые люди могут подключать компьютер к сети просто так, большинство людей хотели бы предоставлять и получать доступ к файлам и принтерам. Они хотели бы получать доступ к документам в Интернете или играть в онлайновые игры. Установив в свою новую систему Slackware поддержку TCP/IP и необходимое программное обеспечение, вы всё это получите; однако, установив только поддержку TCP/IP, функциональность будет очень ограниченной. Чтобы предоставлять и получать общий доступ к файлам, нам потребуется переносить их туда и обратно, используя FTP или SCP. Мы не можем посматривать на нашем новой компьютере со Slackware дерево файлов через значки “Сетевое окружение” или “Вся сеть” с Windows-компьютеров. Мы хотели бы иметь возможность иметь постоянный доступ к файлам на других Unix-машинах.

В идеале мы хотели бы использовать сетевую файловую систему , позволяющую нам иметь прозрачный доступ к файлам на компьютерах. Программам, которые мы используем для работы с информацией, хранимой на компьютерах, на самом деле даже не надо знать на каком компьютере хранится нужный файл. Им нужно только знать, что этот файл существует, и способ для его получения. Дальнейшее уже является задачей операционной системы, обеспечивающей доступ к этому файлу с помощью доступных локальных и сетевых файловых систем. Две наиболее часто используемые сетевые файловые системы - это SMB (реализованная через Samba) и NFS.

5.6.1. SMB/Samba/CIFS

SMB (Server Message Block, блок серверных сообщений) - это потомок более старого протокола NetBIOS, изначально разработанного в IBM для их продукта LAN Manager. Компанию Microsoft в свою очередь всегда интересовал NetBIOS и его наследники (NetBEUI, SMB и CIFS). Проект Samba начал своё существование в 1991 году, когда он был написан для обеспечения связи между IBM PC и сервером Unix. Сегодня предоставление общего доступа к файлам и службам печати через сеть SMB является предпочитаемым методом практически для всего цивилизованного мира, поскольку его поддерживает и Windows.

Конфигурационный файл Samba /etc/samba/smb.conf является одним из самых хорошо документированных конфигурационных файлов, которые вы сможете найти. К вашим услугам уже готовые примеры с настройками общих ресурсов, так что вы можете просмотреть и изменить их согласно своим потребностям. Если же вам нужен ещё больший контроль, к вашим услугам страница руководства smb.conf. Поскольку Samba имеет такую хорошую документацию, мы не будем её здесь переписывать. Однако быстро остановимся на основных моментах.

smb.conf разбит на несколько разделов: по одному разделу на общий ресурс плюс один глобальный раздел для настройки параметров, которые используются везде. Некоторые параметры являются действительными только в глобальном разделе, а некоторые верны только за его пределами. Помните, что глобальный раздел может быть переопределён любым другим разделом. За дополнительной информацией обращайтесь к страницам руководства.

Вы скорее всего захотите отредактировать свой файл smb.conf, чтобы отразить в нём параметры своей локальной сети. Советуем вам изменить перечисленные ниже пункты:

Это будет описание вашего компьютера Slackware, показываемое в папке Сетевое окружение (или Вся сеть).

Вы почти наверняка захотите использовать в своей системе Slackware уровень безопасности user.

Если шифрование паролей не включено, вы не сможете использовать Samba с системами NT4.0, Win2k, WinXP и Win2003. Для предыдущих версий операционных систем Windows для предоставления доступа к общим ресурсам шифрование не требовалось.

SMB является протоколом с аутентификацией, т.е. вы можете указать имя пользователя и пароль, чтобы воспользоваться возможностями этой службы. Мы сообщаем серверу samba о том, что имена пользователей и пароли верны, посредством команды smbpasswd. smbpasswd допускает использование общих ключей для добавления как обычных пользователей, так и машин-пользователей (для SMB необходимо, чтобы вы добавили NETBIOS-имена компьютеров как машин-пользователей, ограничивая тем самым круг компьютеров, с которых может осуществляться аутентификация).

Важно учесть, что данное имя пользователя или имя машины должно уже существовать в файле /etc/passwd. Вы можете добиться этого с помощью команды adduser. Обратите внимание, что при использовании команды adduser для добавления имени компьютера к нему необходимо добавить знак доллара (“$”). Однако этого не нужно делать при работе с smbpasswd. Утилита smbpasswd самостоятельно добавляет знак доллара. Нарушение этого правила посредством adduser приведёт к ошибке при добавлении имени машины в samba.

#adduser machine$

5.6.2. Сетевая файловая система (NFS)

NFS (Network File System) изначально была написана компанией Sun для Solaris - их реализации системы Unix. И хотя её значительно легче поднять и настроить по сравнению с SMB, NFS гораздо менее безопасна. Главным слабым местом в безопасности является несложность подмены идентификаторов пользователя и группы одной машины на идентификаторы с другой машины. В протоколе NFS не реализована аутентификация. Было заявлено, что в будущих версиях протокола NFS безопасность будет повышена, однако на время написания этой книги это ещё не было сделано.

Настройка NFS осуществляется через файл /etc/exports. Когда вы загрузите стандартный файл /etc/exports в редактор, вы увидите пустой файл с комментарием вверху на две строки. Нам надо будет добавить строку в файл exports для каждого из каталогов, которые мы хотим экспортировать, с перечнем клиентских рабочих станций, которым будет разрешён доступ к этому каталогу. Например, если нам нужно экспортировать каталог /home/foo для рабочей станции Bar, нам надо будет добавить в наш файл /etc/exports такую строку:

Как видите, существует несколько различных опций, однако большинство из них должны быть понятными из этого примера.

NFS полагает, что заданный пользователь с одной из машин в сети имеет один и тот же идентификатор на всех остальных машинах. Когда NFS-клиент делает попытку чтения или записи на NFS-сервер, UID передаётся как часть запроса на чтение/запись. Этот UID считается таким же, как если бы запрос был выполнен с локальной машины. Как видите, если кто-то сможет произвольным образом указать заданный UID при обращении к ресурсам на удалённой машине, неприятности могут случиться и случаются. Средство, отчасти позволяющее избежать этого, заключается в монтировании всех каталогов с параметром root_squash . Это переопределяет UID любого пользователя, объявившего себя root"ом, на другой UID, предотвращая таким образом root"овый доступ к файлам и каталогам в экспортируемом каталоге. Похоже, что root_squash включается по умолчанию по соображениям безопасности, однако авторы всё равно рекомендуют явно указывать его в своём файле /etc/exports.

Вы также можете экспортировать каталог на сервере непосредственно из командной строки, воспользовавшись командой exportfs, как показано ниже:

# exportfs -o rw,no_root_squash Bar:/home/foo

Эта команда экспортирует каталог /home/foo для компьютера “Bar” и предоставляет ему доступ на чтение/запись. Кроме того на сервере NFS не включен параметр root_squash , означающий, что любой пользователь на Bar с UID “0” (UID root"а) будет иметь на сервере те же привилегии, что и root. Синтаксис выглядит довольно странно (обычно, когда вы указываете каталог в виде computer:/directory/file, вы ссылаетесь на файл в каталоге на заданном компьютере).

Дополнительную информацию о файле exports вы найдёте в странице руководства.

Файловая система NFS (Network File System) создана компанией Sun Microsystems. В настоящее время это стандартная сетевая файловая система для ОС семейства UNIX, кроме того, клиенты и серверы NFS реализованы для многих других ОС. Принципы ее организации на сегодня стандартизованы сообществом Интернета, последняя версия NFS v.4 описывается спецификацией RFC ЗОЮ, выпущенной в декабре 2000 года.

NFS представляет собой систему, поддерживающую схему удаленного доступа к файлам. Работа пользователя с удаленными файлами после выполнения операции монтирования становится полностью прозрачной - поддерево файловой системы сервера NFS становится поддеревом локальной файловой системы.

Одной из целей разработчиков NFS была поддержка неоднородных систем с клиентами и серверами, работающими под управлением различных ОС на различной аппаратной платформе. Этой цели способствует реализация NFS на основе механизма Sun RFC, поддерживающего по умолчанию средства XDR для унифицированного представления аргументов удаленных процедур.

Для обеспечения устойчивости клиентов к отказам серверов в NFS принят подход stateless, то есть серверы при работе с файлами не хранят данных об открытых клиентами файлах.

Основная идея NFS - позволить произвольной группе пользователей разделять общую файловую систему. Чаще всего все пользователи принадлежат одной локальной сети, но не обязательно. Можно выполнять NFS и на глобальной сети. Каждый NFS-сервер предоставляет один или более своих каталогов для доступа удаленным клиентам. Каталог объявляется достудным со всеми своими подкаталогами. Список каталогов, которые сервер передает, содержится в файле /etc/exports, так что эти каталоги экспортируются сразу автоматически при загрузке сервера. Клиенты получают доступ к экспортируемым каталогам путем монтирования. Многие рабочие станции Sun бездисковые, но и в этом случае можно монтировать удаленную файловую систему к корневому каталогу, при этом вся файловая система целиком располагается на сервере. Выполнение программ почти не зависит от того, где расположен файл: локально или на удаленном диске. Если два или более клиента одновременно смонтировали один и тот же каталог, то они могут связываться путем разделения файла.

В своей работе файловая система NFS использует два протокола.

Первый NFS-протокол управляет монтированием. Клиент посылает серверу полное имя каталога и запрашивает разрешение на монтирование этого каталога в какую-либо точку собственного дерева каталогов. При этом серверу не указывается, в какое место будет монтироваться каталог сервера. Получив имя, сервер проверяет законность этого запроса и возвращает клиенту дескриптор файла, являющегося удаленной точкой монтирования. Дескриптор включает описатель типа файловой системы, номер диска, номер индексного дескриптора (inode) каталога, который является удаленной точкой монтирования, информацию безопасности. Операции чтения и записи файлов из монтируемых файловых систем используют дескрипторы файлов вместо символьного имени.


Монтирование может выполняться автоматически, с помощью командных файлов при загрузке. Существует другой вариант автоматического монтирования: при загрузке ОС на рабочей станции удаленная файловая система не монтируется, но при первом открытии удаленного файла ОС посылает запросы каждому серверу и после обнаружения этого файла монтирует каталог того сервера, на котором расположен найденный файл.

Второй NFS-протокол используется для доступа к удаленным файлам и каталогам. Клиенты могут послать запрос серверу для выполнения какого-либо действия над каталогом или операции чтения или записи файла. Кроме того, они могут запросить атрибуты файла, такие как тип, размер, время создания и модификации. NFS поддерживается большая часть системных вызовов UNIX, за исключением open и close. Исключение open и close не случайно. Вместо операции открытия удаленного файла клиент посылает серверу сообщение, содержащее имя файла, с запросом отыскать его (lookup) и вернуть дескриптор файла. В отличие от вызова open вызов lookup не копирует никакой информации во внутренние системные таблицы. Вызов read содержит дескриптор того файла, который нужно читать, смещение в уже читаемом файле и количество байт, которые нужно прочитать. Преимуществом такой схемы является то, что сервер не запоминает ничего об открытых файлах. Таким образом, если сервер откажет, а затем будет восстановлен, информация об открытых файлах не потеряется, потому что она не поддерживается.

При отказе сервера клиент просто продолжает посылать на него команды чтения или записи в файлы, однако не получив ответа и исчерпав тайм-аут, клиент повторяет свои запросы. После перезагрузки сервер получает очередной повторный запрос клиента и отвечает на него. Таки образом, крах сервера вызывает только некоторую паузу в обслуживании клиентов, но никаких дополнительных действий по восстановлению соединений и повторному открытию файлов от клиентов не требуется.

К сожалению, NFS затрудняет блокировку файлов. Во многих ОС файл может быть открыт и заблокирован так, чтобы другие процессы не имели к нему доступа. Когда файл закрывается, блокировка снимается. В системах stateless, подобных NFS, блокирование не может быть связано с открытием файла, так как сервер не знает, какой файл открыт. Следовательно, NFS требует специальных дополнительных средств управления блокированием.

В NFS используется кэширование на стороне клиента, данные в кэш переносятся поблочно и применяется упреждающее чтение, при котором чтение блока в кэш по требованию приложения всегда сопровождается чтением следующего блока по инициативе системы. Метод кэширования NFS не сохраняет семантику UNIX для разделения файлов. Вместо этого используется не раз подвергавшаяся критике семантика, при которой изменения данных в кэшируемом клиентом файле видны другому клиенту, в зависимости от временных соотношений. Клиент при очередном открытии файла, имеющегося в его кэше, проверяет у сервера, когда файл был в последний раз модифицирован. Если это произошло после того, как файл был помещен в кэш, файл удаляется из кэша и от сервера получается новая копия файла. Клиенты распространяют модификации, сделанные в кэше, с периодом в 30 секунд, так что сервер может получить обновления с большой задержкой. В результате работы механизмов удаления данных из кэша и распространения модификаций данные, получаемые каким-либо клиентом, не всегда, являются самыми свежими.

Репликация в NFS не поддерживается.

Служба каталогов

Назначение и принципы организации

Подобно большой организации, большая компьютерная сеть нуждается в централизованном хранении как можно более полной справочной информации о самой себе. Решение многих задач в сети опирается на информацию о пользователях сети - их именах, используемых для логического входа в систему, паролях, правах доступа к ресурсам сети, а также о ресурсах и компонентах сети: серверах, клиентских компьютерах, маршрутизаторах, шлюзах, томах файловых систем, принтерах и т. п.

Приведем примеры наиболее важных задач, требующих наличия в сети централизованной базы справочной информации:

  • Одной из наиболее часто выполняемых в системе задач, опирающихся на справочную информацию о пользователях, является их аутентификация, на основе которой затем выполняется авторизация доступа. В сети должны каким-то образом централизованно храниться учетные записи пользователей, содержащие имена и пароли.
  • Наличия некоторой централизованной базы данных требует поддержка прозрачности доступа ко многим сетевым ресурсам. В такой базе должны храниться имена этих ресурсов и отображения имен на числовые идентификаторы (например, IP-адреса), позволяющие найти этот ресурс в сети. Прозрачность может обеспечиваться при доступе к серверам, томам файловой системы, интерфейсам процедур RPC, программным объектам распределенных приложений и многим другим сетевым ресурсам.
  • Электронная почта является еще одним популярным примером службы, для которой желательна единая для сети справочная служба, хранящая данные о почтовых именах пользователей.
  • В последнее время в сетях все чаще стали применяться средства управления качеством обслуживания трафика (Quality of Service, QoS), которые также требуют наличия сведений обо всех пользователях и приложениях системы, их требованиях к параметрам качества обслуживания трафика, а также обо всех сетевых устройствах, с помощью которых можно управлять трафиком (маршрутизаторах, коммутаторах, шлюзах и т. п.).
  • Организация распределенных приложений может существенно упроститься, если в сети имеется база, хранящая информацию об имеющихся программных модулях-объектах и их расположении на серверах сети. Приложение, которому необходимо выполнить некоторое стандартное действие, обращается с запросом к такой базе и получает адрес программного объекта, имеющего возможность выполнить требуемое действие.
  • Система управления сетью должна располагать базой для хранения информации о топологии сети и характеристиках всех сетевых элементов, таких как маршрутизаторы, коммутаторы, серверы и клиентские компьютеры. Наличие полной информации о составе сети и ее связях позволяет системе автоматизированного управления сетью правильно идентифицировать сообщения об аварийных событиях и находить их первопричину. Упорядоченная по подразделениям предприятия информация об имеющемся сетевом оборудовании и установленном программном обеспечении полезна сама по себе, так как помогает администраторам составить достоверную картину состояния сети и разработать планы по ее развитию.

Такие примеры можно продолжать, но нетрудно привести и контраргумент, заставляющий усомниться в необходимости использования в сети централизованной базы справочной информации - долгое время сети работали без единой справочной базы, а многие сети и сейчас работают без нее. Действительно, существует много частных решений, позволяющих достаточно эффективно организовать работу сети на основе частных баз справочной информации, которые могут быть представлены обычными текстовыми файлами или таблицами, хранящимися в теле приложения. Например, в ОС UNIX традиционно используется для хранения данных об именах и паролях пользователей файл passwd, который охватывает пользователей только одного компьютера. Имена адресатов электронной почты также можно хранить в локальном файле клиентского компьютера. И такие частные справочные системы неплохо работают - практика это подтверждает.

Однако это возражение справедливо только для сетей небольших и средних размеров, в крупных сетях отдельные локальные базы справочной информации теряют свою эффективность. Хорошим примером, подтверждающим неприменимость локальных решений для крупных сетей, является служба имен DNS, работающая в Интернете. Как только размеры Интернета превысили определенный предел, хранить информацию о соответствии имен и IP-адресов компьютеров сети в локальных текстовых файлах стало неэффективно. Потребовалось создать распределенную базу данных, поддерживаемую иерархически связанными серверами имен, и централизованную службу над этой базой, чтобы процедуры разрешения символьных имен в Интернете стали работать быстро и эффективно.

Для крупной сети неэффективным является также применение большого числа справочных служб узкого назначения: одной для аутентификации, другой - для управления сетью, третей - для разрешения имен компьютеров и т. д. Даже если каждая из таких служб хорошо организована и сочетает централизованный интерфейс с распределенной базой данных, большое число справочных служб приводит к дублированию больших объемов информации и усложняет администрирование и управление сетью. Например, в Windows NT имеется по крайней мере пять различных типов справочных баз данных. Главный справочник домена (NT Domain Directory Service) хранит информацию о пользователях, которая требуется при организации их логического входа в сеть. Данные о тех же пользователях могут содержаться и в другом справочнике, используемом электронной почтой Microsoft Mail. Еще три базы данных поддерживают разрешение адресов: WINS устанавливает соответствие Netbios-имен IP-адресам, справочник DNS (сервер имен домена) оказывается полезным при подключении NT-сети к Интернету, и наконец, справочник протокола DHCP используется для автоматического назначения IP-адресов компьютерам сети. Очевидно, что такое разнообразие справочных служб усложняет жизнь администратора и приводит к дополнительным ошибкам, когда учетные данные одного и того же пользователя нужно ввести в несколько баз данных. Поэтому в новой версии Windows 2000 большая часть справочной информации о системе может храниться службой Active Directory - единой централизованной справочной службой, использующей распределенную базу данных и интегрированной со службой имен DNS.

Результатом развития систем хранения справочной информации стало появление в сетевых операционных системах специальной службы - так называемой службы каталогов (Directory Services), называемой также справочной службой (directory - справочник, каталог). Служба каталогов хранит информацию обо всех пользователях и ресурсах сети в виде унифицированных объектов с определенными атрибутами, а также позволяет отражать взаимосвязи между хранимыми объектами, такие как принадлежность пользователей к определенной группе, права доступа пользователей к компьютерам, вхождение нескольких узлов в одну подсеть, коммуникационные связи между подсетями, производственную принадлежность серверов и т. д. Служба каталогов позволяет выполнять над хранимыми объектами набор некоторых базовых операций, таких как добавление и удаление объекта, включение объекта в другой объект, изменение значений атрибута объекта, чтение атрибутов и некоторые другие. Обычно над службой каталогов строятся различные специфические сетевые приложения, которые используют информацию службы для решения конкретных задач: управления сетью, аутентификации пользователей, обеспечения прозрачности служб и других, перечисленных выше. Служба каталогов обычно строится на основе модели клиент-сервер: серверы хранят базу справочной информации, которой пользуются клиенты, передавая серверам по сети соответствующие запросы. Для клиента службы каталогов она представляется единой централизованной системой, хотя большинство хороших служб каталогов имеют распределенную структуру, включающую большое количество серверов, но эта структура для клиентов прозрачна.

Важным вопросом является организация базы справочных данных. Единая база данных, хранящая справочную информацию большого объема, порождает все то же множество проблем, что и любая другая крупная база данных. Реализация справочной службы как локальной базы данных, хранящейся в виде одной копии на одном из серверов сети, не подходит для большой системы по нескольким причинам, и в первую очередь вследствие низкой производительности и низкой надежности такого решения. Производительность будет низкой из-за того, что запросы к базе от всех пользователей и приложений сети будут поступать на единственный сервер, который при большом количестве запросов обязательно перестанет справляться с их обработкой. То есть такое решение плохо масштабируется в отношении количества обслуживаемых пользователей и разделяемых ресурсов. Надежность также не может быть высокой в системе с единственной копией данных. Кроме снятия ограничений по производительности и надежности желательно, чтобы структура базы данных позволяла производить логическое группирование ресурсов и пользователей по структурным подразделениям предприятия и назначать для каждой такой группы своего администратора.

Проблемы сохранения производительности и надежности при увеличении масштаба сети обычно решаются за счет распределенных баз данных справочной информации. Разделение данных между несколькими серверами снижает нагрузку на каждый сервер, а надежность при этом достигается за счет наличия нескольких реплик каждой части базы данных. Для каждой части базы данных можно назначить своего администратора, который обладает правами доступа только к объектам своей порции информации обо всей системе. Для пользователя же (и для сетевых приложений) такая распределенная база данных представляется единой базой данных, которая обеспечивает доступ ко всем ресурсам сети вне зависимости от того, с какой рабочей станции поступил запрос.

Существуют два популярных стандарта для служб каталогов. Во-первых, это стандарт Х.500, разработанный ITU-T (во время разработки стандарта эта организация носила имя CCITT). Этот стандарт определяет функции, организацию справочной службы и протокол доступа к ней. Разработанный в первую очередь для использования вместе с почтовой службой Х.400 стандарт Х.500 позволяет эффективно организовать хранение любой справочной информации и служит хорошей основой для универсальной службы каталогов сети.

Другим стандартом является стандарт LDAP (Light-weight Directory Access Protocol), разработанный сообществом Интернета. Этот стандарт определяет упрощенный протокол доступа к службе каталогов, так как службы, построенные на основе стандарта Х.500, оказались чересчур громоздкими. Протокол LDAP получил широкое распространение и стал стандартом де-факто в качестве протокола доступа клиентов к ресурсам справочной службы.

Существует также несколько практических реализаций служб каталогов для сетевых ОС. Наибольшее распространение получила служба NDS компании Novell, разработанная в 1993 году для сетевой ОС NetWare 4.0, а сегодня реализованная также и для Windows NT/2000. Большой интерес вызывает служба каталогов Active Directory, разработанная компанией Microsoft для Windows 2000. Обе эти службы поддерживают протокол доступа LDAP и могут работать в очень крупных сетях благодаря своей распределенности.

Служба каталогов NDS

Служба NDS (NetWare Directory Services) - это глобальная справочная служба, опирающаяся на распределенную объектно-ориентированную базу данных сетевых ресурсов. База данных NDS содержит информацию обо всех сетевых ресурсах, включая информацию о пользователях, группах пользователей, принтерах, томах и компьютерах. ОС NetWare (а также другие клиенты NDS, работающие на других платформах) использует информацию NDS для обеспечения доступа к этим ресурсам.

База данных NDS заменила в свое время справочник bindery предыдущих версий NetWare. Справочник bindery - это «плоская», или одноуровневая база данных, разработанная для поддержки одного сервера. В ней также использовалось понятие «объект» для сетевого ресурса, но трактовка этого термина отличалась от общепринятой. Объекты bindery идентифицировались простыми числовыми значениями и имели определенные атрибуты. Однако для этих объектов не определялись явные взаимоотношения наследования классов объектов, поэтому взаимоотношения между объектами bindery устанавливались администратором произвольно, что часто приводило к нарушению целостности данных.

База данных службы NDS представляет собой многоуровневую базу данных, поддерживающую информацию о ресурсах всех серверов сети. Для совместимости с предыдущими версиями NetWare в службе NDS предусмотрен механизм эмуляции базы bindery.

Служба NDS - это значительный шаг вперед по сравнению с предыдущими версиями за счет:

  • распределенности;
  • реплицируемости;
  • прозрачности;
  • глобальности.

Распределенность заключается в том, что информация не хранится на одном сервере, а разделена на части, называемые разделами (partitions). NetWare хранит эти разделы на нескольких серверах сети (рис. 10.8). Это свойство значительно упрощает администрирование и управление большой сетью, так как она представляется администратору единой системой. Кроме того, обеспечивается более быстрый доступ к базе данных сетевых ресурсов за счет обращения к ближайшему серверу.

Рис. 10.8. Разделы базы данных NDS

Реплика - это копия информации раздела NDS. Можно создать неограниченное количество реплик каждого раздела и хранить их на разных серверах. Если один сервер останавливается, то копии этой информации могут быть получены с другого сервера. Это увеличивает отказоустойчивость системы, так как ни один из серверов не отвечает за всю информацию базы данных NDS.

Прозрачность заключается в том, что NDS автоматически создает связи между программными и аппаратными компонентами, которые обеспечивают пользователю доступ к сетевым ресурсам. NDS при этом не требует от пользователя знаний физического расположения этих ресурсов. Задавая сетевой ресурс по имени, вы получите к нему корректный доступ даже в случае изменения его сетевого адреса или места расположения.

Глобальность NDS заключается в том, что после входа вы получаете доступ к ресурсам всей сети, а не только одного сервера, как было в предыдущих версиях. Это достигается за счет процедуры глобального логического входа (global login). Вместо входа в отдельный сервер пользователь NDS входит в сеть, после чего он получает доступ к разрешенным для него ресурсам сети. Информация, предоставляемая во время логического входа, используется для идентификации пользователя. Позже, при попытке пользователя получить доступ к ресурсам, таким как серверы, тома или принтеры, фоновый процесс идентификации проверяет, имеет ли пользователь право на данный ресурс.

Важнейший компонент любой распределенной системы - файловая система, которая в этом случае также является распределенной. Как и в централизованных системах, функцией файловой системы является хранение программ и данных и предоставление клиентам доступа к ним. Распределенная файловая система поддерживается одним или более компьютерами, хранящими файлы. Файловые серверы обычно содержат иерархические файловые системы, каждая из которых имеет корневой каталог и каталоги более низких уровней. Во многих сетевых файловых системах клиентский компьютер может подсоединять и монтировать эти файловые системы к своим локальным файловым системам, обеспечивая пользователю удобный доступ к удаленным каталогам и файлам. При этом данные монтируемых файлов никуда не перемещаются физически, оставаясь на серверах.

С программной точки зрения распределенная файловая система (ФС) - это сетевая служба, включающая программы-серверы и программы-клиенты, взаимодействующие между собой по определенному протоколу. Файловая служба в распределенных файловых системах имеет две функционально различные части: собственно файловую службу и службу каталогов файловой системы. Первая имеет дело с операциями над отдельными файлами, такими как чтение, запись или добавление (изменение), а вторая - с созданием каталогов и управлением ими, добавлением и удалением файлов из каталогов и т. п.

В хорошо организованной распределенной системе пользователи не знают, как реализована файловая система (сколько файловых серверов, где они расположены, как они работают). В идеале для пользователя сетевая файловая система должна выглядеть так, как его собственная на его компьютере, т. е. быть совершенно прозрачной. Однако в реальности сетевые файловые системы пока еще не полностью соответствуют такому идеалу.

Сетевая файловая система в общем случае включает следующие элементы :

Локальные файловые системы;

Интерфейсы локальной файловой системы;

Серверы сетевой файловой системы;

Клиенты сетевой файловой системы;

Интерфейсы сетевой файловой системы;

Протокол клиент-сервер сетевой файловой системы.

Клиенты сетевой ФС - это программы, работающие на многочисленных компьютерах, подключенных к сети. Эти программы обслуживают запросы приложений на доступ к файлам, хранящимся на удаленных компьютерах. Клиент сетевой ФС передает по сети запросы другому программному компоненту - серверу сетевой ФС, работающему на удаленном компьютере. Сервер, получив запрос, может выполнить его самостоятельно либо, что является более распространенным вариантом, передать запрос для обработки локальной файловой системе. После получения ответа от локальной ФС сервер передает его по сети__

Клиент и сервер сетевой ФС взаимодействуют друг с другом по сети по определенному протоколу. В случае совпадения интерфейсов локальной и сетевой ФС этот протокол может быть достаточно простым. Одним из механизмов, используемых для этой цели, может быть механизм RPC.

В операционных системах Windows основной сетевой файловой службы является протокол SMB (Server Message Block), который был совместно разработан компаниями Microsoft, Intel и IBM. Его последние расширенные версии получили название Common Internet File System, CIFS.

Протокол работает на прикладном уровне модели OSI. Для передачи по сети своих сообщений SMB использует различные транспортные протоколы. Исторически первым таким протоколом был NetBIOS (и его более поздняя версия NetBEUI), но сейчас сообщения SMB могут передаваться и с помощью других протоколов (TCP/UDP и IPX).

SMB относится к классу протоколов, ориентированных на соединение. Его работа начинается с того, что клиент отправляет серверу специальное сообщение с запросом на установление соединения. Если сервер готов к установлению соединения, он отвечает сообщением-подтверждением. После установления соединения клиент может обращаться к серверу, передавая ему в сообщениях SMB команды манипулирования файлами и каталогами. В процессе работы возможно возникновение ряда ситуаций, которые могут повлиять на эффективность удаленного доступа к файлам :

1. Отказ компьютера, на котором выполняется сервер сетевой файловой системы, во время сеанса связи с клиентом. Локальная ФС запоминает состояние последовательных операций, которые приложение выполняет с одним и тем же файлом, за счет ведения__ внутренней таблицы открытых файлов (системные вызовы open, read, write изменяют состояние этой таблицы). При крахе системы таблица открытых файлов теряется после перезагрузки серверного компьютера. В этом случае приложение, работаю-щее на клиентском компьютере, не может продолжить работу с файлами, открытыми до краха.

Одно из решений проблемы основано на передаче функции ведения и хранения таблицы открытых файлов от сервера клиенту. При такой организации протокол клиент-сервер упрощается, так как перезагрузка сервера приводит только к паузе в обслуживании.

2. Большие задержки в обслуживании из-за запросов в сети и перезагрузки файлового сервера при подключении большого числа клиентов. Решением проблемы может быть кэширование файлов (частично или целиком) на стороне клиента. Однако в этом случае протокол должен учитывать возможность образования нескольких копий одного и того же файла, которые могут независимо модифицироваться разными пользователями, т. е. протокол должен обеспечивать согласованность копий файлов, имеющихся на разных компьютерах.

3. Потери данных и разрушение целостности файловой системы при сбоях и отказах компьютеров, играющих роль файловых серверов. Для повышения отказоустойчивости сетевой ФС можно хранить несколько копий каждого файла (или целиком всей ФС) на нескольких серверах. Такие копии файла называются репликами (replica).

Репликация файлов не только повышает отказоустойчивость, но и решает проблему перегрузки файловых серверов, так как запросы к файлам распределяются между несколькими серверами, что повышает производительность файловой системы.

4. Аутентификация выполняется на одном компьютере, например на клиентском, а авторизация, т. е. проверка прав доступа к каталогам или файлам, - на другом, выполняющем роль файлового сервера. Эта общая проблема всех сетевых служб должна учитываться протоколом взаимодействия клиентов и серверов файловой службы.

Перечисленные проблемы решаются комплексно путем создания службы центра лизованной аутентификации, репликации, кэширования и др. Эти дополнительные службы находят свое отражение в протоколе взаимодействия клиентов и серверов, в результате чего создаются различные протоколы этого типа, поддерживающие тот или иной набор дополнительных функций. Поэтому для одной и той же локальной ФС могут существовать различные протоколы сетевой ФС (рис. 5.30). Так, к файловой системе NTFS сегодня можно получить доступ с помощью протоколов SMB, NCP (NetWare Control Protocol) и NFS (Network File System - протокол сетевой ФС компании Sun Microsystems, используемой в различных вариантах ОС семейства UNIX).

С другой стороны, с помощью одного и того же протокола может реализоваться удаленный доступ к локальным ФС разного типа. Например, протокол SMB используется для доступа не только к ФС типа FAT, но и ФС NTFS, HPFS (рис. 5.31). Эти ФС могут располагаться как на разных, так и на одном компьютере.__

Контрольные вопросы к главе 5

1. Какими преимуществами обладают сети по сравнению с раздельным использованием компьютеров?

2. Всегда ли совпадают физическая и логическая топологии сети?

3. Как классифицируются сети по величине охватываемой территории?

4. Какой компьютер может выполнять роль сервера в сети?

5. Что такое файловый сервер и сервер печати?

6. Какие функции выполняют регистрационные серверы?

7. Какие функции выполняют серверы удаленного доступа?

8. Что такое прокси-сервер?

9. Перечислите возможных клиентов компьютерной сети.

10. Что такое ≪толстый≫ и ≪тонкий≫ клиенты в компьютерной сети?

11. Как вы понимаете термин ≪сегментация≫ сети?

12. Что такое МАС-адрес?

13. Чем распределенная ОС отличается от сетевой? Существуют ли в настоящее время по-настоящему распределенные сетевые системы?

14. Перечислите основные компоненты сетевой ОС. Что такое сетевая служба? Какие сетевые службы вы можете назвать?

15. Часть сетевых служб направлена не на пользователя, а на администратора. Какие это службы?

16. Что представляли собой первые сетевые ОС? Какие подходы к созданию сетевых ОС используются в настоящее время?

17. Назовите характерные черты одноранговых сетей. В чем основная особенность многоранговой сети?

18. Что такое серверная ОС? Какие они бывают? Чем серверная ОС отличается от клиентской?

19. Сколько вариантов двухзвенных схем используется для распределенной обработки приложений?

20. Чем хороша двухзвенная обработка приложений при сотрудничестве сервера и клиента?

21. Есть ли преимущества у трехзвенной схемы обработки приложений, в чем они заключаются?

22. Как могут взаимодействовать процессы в распределенных системах?

23. Какие основные примитивы используются в транспортной системе сетевой ОС?

24. Как организуется синхронизация процессов в сети?

25. Что понимается под вызовом удаленных процедур?

Network file system (NFS) - протокол сетевого доступа к файловым системам, позволяет подключать удалённые файловые системы.
Первоначально разработан Sun Microsystems в 1984 г. Основой является Sun RPC: вызов удаленной процедуры (Remote Procedure Call). NFS независим от типов файловых систем сервера и клиента. Существует множество реализаций NFS-серверов и клиентов для различных ОС. В настоящее время используется версия NFS v.4, поддерживающая различные средства аутентификации (в частности, Kerberos и LIPKEY с использованием протокола RPCSEC GSS) и списков контроля доступа (как POSIX, так и Windows-типов).
NFS предоставляет клиентам прозрачный доступ к файлам и файловой системе сервера. В отличие от FTP, протокол NFS осуществляет доступ только к тем частям файла, к которым обратился процесс, и основное достоинство его в том, что он делает этот доступ прозрачным. Благодаря этому любое приложение клиента, которое может работать с локальным файлом, с таким же успехом может работать и с NFS файлом, без изменений самой программы.
NFS клиенты получают доступ к файлам на NFS сервере путем отправки RPC-запросов на сервер. Это может быть реализовано с использованием обычных пользовательских процессов - а именно, NFS клиент может быть пользовательским процессом, который осуществляет конкретные RPC вызовы на сервер, который так же может быть пользовательским процессом.

Версии
NFSv1 была только для внутреннего пользования в экспериментальных целях. Детали реализации определены в RFC 1094.
NFSv2 (RFC 1094, март 1989 года) первоначально полностью работала по протоколу UDP.
NFSv3 (RFC 1813, июнь 1995 года). Описатели файлов в версии 2 - это массив фиксированного размера - 32 байта. В версии 3 - это массив переменного размера с размером до 64 байт. Массив переменной длины в XDR определяется 4-байтным счётчиком, за которым следуют реальные байты. Это уменьшает размер описателя файла в таких реализациях, как, например, UNIX, где требуется всего около 12 байт, однако позволяет не-Unix реализациям обмениваться дополнительной информацией.
Версия 2 ограничивает количество байт на процедуры READ или WRITE RPC размером 8192 байта. Это ограничение не действует в версии 3, что, в свою очередь, означает, что с использованием UDP ограничение будет только в размере IP датаграммы (65535 байт). Это позволяет использовать большие пакеты при чтении и записи в быстрых сетях.
Размеры файлов и начальное смещение в байтах для процедур READ и WRITE стали использовать 64-битную адресацию вместо 32-битной, что позволяет работать с файлами большего размера.
Атрибуты файла возвращаются в каждом вызове, который может повлиять на атрибуты.
Записи (WRITE) могут быть асинхронными, тогда как в версии 2 они должны были быть синхронными.
Одна процедура была удалена (STATFS) и семь были добавлены: ACCESS (проверка прав доступа к файлу), MKNOD (создание специального файла Unix), READDIRPLUS (возвращает имена файлов в директории вместе с их атрибутами), FSINFO (возвращает статистическую информацию о файловой системе), FSSTAT (возвращает динамическую информацию о файловой системе), PATHCONF (возвращает POSIX.1 информацию о файле) и COMMIT (передает ранее сделанные асинхронные записи на постоянное хранение).
На момент введения версии 3, разработчики стали больше использовать TCP как транспортный протокол. Хотя некоторые разработчики уже Использовали протокол TCP для NFSv2, Sun Microsystems добавили поддержку TCP в NFS версии 3. Это сделало использование NFS через Интернет более осуществимым.
NFSv4 (RFC 3010, декабрь 2000 г., RFC 3530, пересмотренная в апреле 2003), под влиянием AFS и CIFS, включила в себя улучшение производительности, высокую безопасность, и предстала полноценным протоколом. Версия 4 стала первой версией, разработанной совместно с Internet Engineering Task Force (IETF), после того, как Sun Microsystems передала развитие протоколов NFS. NFS версии v4.1 была одобрена IESG в январе 2010 года, и получила номер RFC 5661. Важным нововведением версии 4.1 является спецификация pNFS - Parallel NFS, механизма параллельного доступа NFS-клиента к данным множества распределенных NFS-серверов. Наличие такого механизма в стандарте сетевой файловой системы поможет строить распределённые "облачные" ("cloud") хранилища и информационные системы.

Структура NFS
Структура NFS включает три компонента разного уровня:
Прикладной уровень (собственно NFS) - это вызовы удаленных процедур (rpc), которые и выполняют необходимые операции с файлами и каталогами на стороне сервера.
Функции уровня представления выполняет протокол XDR (eXternal Data Representation), который является межплатформенным стандартом абстракции данных. Протокол XDR описывает унифицированную, каноническую, форму представления данных, не зависящую от архитектуры вычислительной системы. При передаче пакетов RPC-клиент переводит локальные данные в каноническую форму, а сервер проделывает обратную операцию.
Сервис RPC (Remote Procedure Call), обеспечивающий запрос удаленных процедур клиентом и их выполнение на сервере, представляет функции сеансового уровня.Подключение сетевых ресурсов
Процедура подключения сетевого ресурса средствами NFS называется "экспортированием". Клиент может запросить у сервера список представляемых им экспортируемых ресурсов. Сам сервер NFS не занимается широковещательной рассылкой списка своих экспортируемых ресурсов.
В зависимости от заданных опций, экспортируемый ресурс может быть смонтирован (присоединён) "только для чтения", можно определить список хостов, которым разрешено монтирование, указать использование защищенного RPC (secureRPC) и пр. Одна из опций определяет способ монтирования: "жесткое" (hard) или "мягкое" (soft).
При "жестком" монтировании клиент будет пытаться смонтировать файловую систему во что бы то ни стало. Если сервер не работает, это приведет к тому, что весь сервис NFS как бы зависнет: процессы, обращающиеся к файловой системе, перейдут в состояние ожидания окончания выполнения запросов RPC. С точки зрения пользовательских процессов файловая система будет выглядеть как очень медленный локальный диск. При возврате сервера в рабочее состояние сервис NFS продолжит функционирование.
При "мягком" монтировании клиент NFS сделает несколько попыток подключиться к серверу. Если сервер не откликается, то система выдает сообщение об ошибке и прекращает попытки произвести монтирование. С точки зрения логики файловых операций при отказе сервера "мягкое" монтирование эмулирует сбой локального диска.
Выбор режима зависит от ситуации. Если данные на клиенте и сервере должны быть синхронизированы при временном отказе сервиса, то "жесткое" монтирование оказывается предпочтительнее. Этот режим незаменим также в случаях, когда монтируемые файловые системы содержат в своем составе программы и файлы, жизненно важные для работы клиента, в частности для бездисковых машин. В других случаях, особенно когда речь идет о системах "только для чтения", режим "мягкого" монтирования представляется более удобным.

Общий доступ в смешанной сети
Сервис NFS идеально подходит для сетей на основе UNIX, так как поставляется с большинством версий этой операционной системы. Более того, поддержка NFS реализована на уровне ядра UNIX. Использование NFS на клиентских компьютерах с Windows создает определенные проблемы, связанные с необходимостью установки специализированного и довольно дорогого клиентского ПО. В таких сетях использование средств разделения ресурсов на основе протокола SMB/CIFS, в частности ПО Samba, выглядит более предпочтительным.

Стандарты
RFC 1094 NFS: Network File System Protocol Specification] (March 1989)
RFC 1813 NFS Version 3 Protocol Specification] (June 1995)
RFC 2224 NFS URL Scheme
RFC 2339 An Agreement Between the Internet Society, the IETF, and Sun Microsystems, Inc. in the matter of NFS V.4 Protocols
RFC 2623 NFS Version 2 and Version 3 Security Issues and the NFS Protocol’s Use of RPCSEC_GSS and Kerberos V5
RFC 2624 NFS Version 4 Design Considerations
RFC 3010 NFS version 4 Protocol
RFC 3530 Network File System (NFS) version 4 Protocol
RFC 5661 Network File System (NFS) Version 4 Minor Version 1 Protocol

Используемые источники
1. ru.wikipedia.org
2. ru.science.wikia.com
3. phone16.ru
4. 4stud.info
5. yandex.ru
6. gogle.com

Протокол сетевой файловой службы (Network File Server, NFS) - это открытый стандарт на предоставление пользователю удаленного доступа к файловым системам. Созданные на его основе централизованные файловые системы облегчают ежедневное выполнение таких задач, как резервное копирование или проверка на вирусы, а объединенные дисковые разделы проще обслуживать, чем множество небольших и распределенных.

Кроме того, что система NFS предоставляет возможность централизованного хранения, oна оказалась весьма полезной и для других приложений, включая работу с бездисковыми и тонкими клиентами, разбиение сети на кластеры, а также для совместно работающего межплатформенного ПО.

Лучшее понимание как самого протокола, так и деталей его реализации позволит легче справиться с практическими задачами. Данная статья посвящена NFS и состоит из двух логических частей: вначале описывается сам протокол и цели, поставленные при его разработке, а затем реализации NFS в Solaris и UNIX.

С ЧЕГО ВСЕ НАЧИНАЛОСЬ...

Протокол NFS разработан компанией Sun Microsystems и в 1989 г. появился в Internet в виде документа RFC 1094 под следующим названием: «Спецификация протокола сетевой файловой системы» (Network File System Protocol Specification, NFS). Интересно отметить, что и стратегия компании Novell в то время была направлена на дальнейшее усовершенствование файловых служб. До недавнего времени, пока движение за открытые коды еще не набрало силу, Sun не стремилась раскрывать секреты своих сетевых решений, однако даже тогда в компании понимали всю важность обеспечения взаимодействия с другими системами.

В документе RFC 1094 содержались две первоначальные спецификации. К моменту его публикации Sun разрабатывала уже следующую, третью версию спецификации, которая изложена в RFC 1813 «Спецификация протокола NFS, версия 3» (NFS Version 3 Protocol Specification). Версия 4 данного протокола определена в RFC 3010 «Спецификация протокола NFS, версия 4» (NFS Version 4 Protocol).

NFS широко используется на всех типах узлов UNIX, в сетях Microsoft и Novell, а также в таких решениях компании IBM, как AS400 и OS/390. Будучи неизвестной за пределами сетевого «королевства», NFS, пожалуй, самая распространенная платформенно-независимая сетевая файловая система.

ПРАРОДИТЕЛЕМ БЫЛ UNIX

Хотя NFS - платформенно-независимая система, ее прародителем является UNIX. Другими словами, иерархичность архитектуры и методы доступа к файлам, включая структуру файловой системы, способы идентификации пользователей и групп и приемы работы с файлами - все это очень напоминает файловую систему UNIX. Например, файловая система NFS, будучи по структуре идентичной файловой системе UNIX, монтируется непосредственно в ней. При работе с NFS на других операционных системах идентификационные параметры пользователей и права доступа к файлам подвергаются преобразованию (mapping).

NFS

Система NFS предназначена для применения в клиент-серверной архитектуре. Клиент получает доступ к файловой системе, экспортируемой сервером NFS, посредством точки монтирования на клиенте. Такой доступ обычно прозрачен для клиентского приложения.

В отличие от многих клиент-серверных систем, NFS для обмена информацией использует вызовы удаленных процедур (Remote Procedure Calls, RPC). Обычно клиент устанавливает соединение с заранее известным портом и затем, в соответствии с особенностями протокола, посылает запрос на выполнение определенного действия. В случае вызова удаленных процедур клиент создает вызов процедуры и затем отправляет его на исполнение серверу. Подробное описание NFS будет представлено ниже.

В качестве примера предположим, что некий клиент смонтировал каталог usr2 в локальной корневой файловой системе:

/root/usr2/ -> remote:/root/usr/

Если клиентскому приложению необходимы ресурсы этого каталога, оно просто посылает запрос операционной системе на него и на имя файла, а та предоставляет доступ через клиента NFS. Для примера рассмотрим простую команду UNIX cd, которая «ничего не знает» о сетевых протоколах. Команда

Cd /root/usr2/

разместит рабочий каталог на удаленной файловой системе, «даже не догадываясь» (пользователю тоже нет в этом необходимости), что файловая система является удаленной.

Получив запрос, сервер NFS проверит наличие у данного пользователя права на выполнение запрашиваемого действия и в случае положительного ответа осуществит его.

ПОЗНАКОМИМСЯ ПОБЛИЖЕ

С точки зрения клиента, процесс локального монтирования удаленной файловой системы средствами NFS состоит из нескольких шагов. Как уже упоминалось, клиент NFS подаст вызов удаленной процедуры для выполнения ее на сервере. Заметим, что в UNIX клиент представляет собой одну программу (команда mount), в то время как сервер на самом деле реализован в виде нескольких программ со следующим минимальным набором: служба преобразования портов (port mapper), демон монтирования (mount daemon) и сервер NFS.

Вначале клиентская команда mount взаимодействует со службой преобразования портов сервера, ожидающей запросы через порт 111. Большинство реализаций клиентской команды mount поддерживает несколько версий NFS, что повышает вероятность нахождения общей для клиента и сервера версии протокола. Поиск ведется, начиная с самой старшей версии, поэтому, когда общая будет найдена, она автоматически станет и самой новой версией из поддерживаемых клиентом и сервером.

(Излагаемый материал ориентирован на третью версию NFS, поскольку она наиболее распространена на данный момент. Четвертая версия большинством реализаций пока не поддерживается.)

Служба преобразования портов сервера откликается на запросы в соответствии с поддерживаемым протоколом и портом, на котором работает демон монтирования. Клиентская программа mount вначале устанавливает соединение с демоном монтирования сервера, а затем передает ему с помощью RPC команду mount. Если данная процедура выполнена успешно, то клиентское приложение соединяется с сервером NFS (порт 2049) и, используя одну из 20 удаленных процедур, которые определены в RFC 1813 и приводятся нами в Таблице 1, получает доступ к удаленной файловой системе.

Смысл большинства команд интуитивно понятен и не вызывает каких-либо затруднений у системных администраторов. Приведенный ниже листинг, полученный с помощью tcdump, иллюстрирует команду чтения, создаваемую командой UNIX cat для прочтения файла с именем test-file:

10:30:16.012010 eth0 > 192.168.1.254. 3476097947 > 192.168.1.252.2049: 144 lookup fh 32,0/ 224145 "test-file" 10:30:16.012010 eth0 > 192.168.1.254. 3476097947 > 192.168.1.252.2049: 144 lookup fh 32,0/ 224145 "test-file" 10:30:16.012729 eth0 192.168.1.254.3476097947: reply ok 128 lookup fh 32,0/224307 (DF) 10:30:16.012729 eth0 192.168.1.254.3476097947: reply ok 128 lookup fh 32,0/224307 (DF) 10:30:16.013124 eth0 > 192.168.1.254. 3492875163 > 192.168.1.252.2049: 140 read fh 32,0/ 224307 4096 bytes @ 0 10:30:16.013124 eth0 > 192.168.1.254. 3492875163 > 192.168.1.252.2049: 140 read fh 32,0/ 224307 4096 bytes @ 0 10:30:16.013650 eth0 192.168.1.254.3492875163: reply ok 108 read (DF) 10:30:16.013650 eth0 192.168.1.254.3492875163: reply ok 108 read (DF)

NFS традиционно реализуется на основе UDP. Однако некоторые версии NFS поддерживают TCP (в спецификации протокола определена поддержка TCP). Главное преимущество TCP - более эффективный механизм повторной передачи в ненадежно работающих сетях. (В случае UDP, если произошла ошибка, то полное сообщение RPC, состоящее из нескольких пакетов UDP, пересылается заново. При наличии TCP заново пересылается лишь испорченный фрагмент.)

ДОСТУП В NFS

В реализациях NFS обычно поддерживаются четыре способа предоставления прав доступа: посредством атрибутов пользователя/файла, на уровне разделяемых ресурсов, на уровне главного узла, а также в виде комбинации других методов доступа.

Первый способ основывается на встроенной в UNIX системе прав доступа к файлам для индивидуального пользователя или группы. Для упрощения обслуживания идентификация пользователей и групп должна быть единообразной для всех клиентов и серверов NFS. Защиту следует тщательно продумать: в NFS можно по неосторожности предоставить такой доступ к файлам, который не планировался при их создании.

Доступ на уровне разделяемых ресурсов позволяет ограничивать права, разрешив только определенные действия, независимо от принадлежности файла или привилегий UNIX. Например, работу с файловой системой NFS можно ограничить только чтением. Большинство реализаций NFS позволяет дополнительно ограничить доступ на уровне разделяемых ресурсов конкретными пользователями и/или группами. Например, группе «Отдел кадров» разрешается просмотр информации и не более того.

Доступ на уровне главного узла позволяет монтировать файловую систему только на конкретных узлах, что, вообще говоря, хорошая идея, поскольку файловые системы могут легко создаваться на любых узлах, поддерживающих NFS.

Комбинированный доступ просто объединяет вышеописанные виды (например, доступ на уровне разделяемых ресурсов с доступом, предоставляемым конкретному пользователю) или разрешает пользователям работу с NFS только с определенного узла.

NFS В СТИЛЕ «ПИНГВИН»

Относящийся к Linux излагаемый материал основывается на системе Red Hat 6.2 с ядром версии 2.4.9, которая поставляется с пакетом nfs-utils версии 0.1.6. Существуют и более новые версии: на момент написания этой статьи самое последнее обновление пакета nfs-utils имело номер 0.3.1. Его можно загрузить по адресу: .

Пакет nfs-utils содержит следующие исполняемые файлы: exportfs, lockd, mountd, nfsd, nfsstat, nhfsstone, rquotad, showmount и statd.

К сожалению, иногда поддержка NFS вызывает путаницу у администраторов Linux, поскольку наличие той или иной функциональной возможности напрямую зависит от номеров версий как ядра, так и пакета nfs-utils. К счастью, в настоящее время положение дел в этой области улучшается: последние дистрибутивные комплекты включают самые новые версии и того, и другого. Для предыдущих выпусков в разделе 2.4 документа NFS-HOWTO приводится полный список функциональных возможностей системы, имеющихся в наличии для каждой комбинации ядра и пакета nfs-utils. Разработчики поддерживают обратную совместимость пакета с более ранними версиями, уделяя много внимания обеспечению безопасности и устранению программных ошибок.

Поддержку NFS следует инициировать во время компиляции ядра. Если необходимо, в ядро нужно добавить и возможность работы с NFS версии 3.

Для дистрибутивов, поддерживающих linuxconf, легко сконфигурировать службы NFS как для клиентов, так и для серверов. Однако быстрый способ установки NFS с помощью linuxconf не дает информации о том, какие файлы были созданы или отредактированы, что очень важно знать администратору для понимания ситуации в случае сбоя системы. Архитектура NFS в Linux имеет слабую связь с версией BSD, поэтому необходимые файлы и программы поддержки легко найти администраторам, работающим с BSD, Sun OS 2.5 или более ранними версиями NFS.

Файл /etc/exports, как и в более ранних версиях BSD, определяет файловые системы, к которым разрешен доступ клиентам NFS. Кроме того, он содержит ряд дополнительных возможностей, относящихся к вопросам управления и безопасности, предоставляя администратору средство для тонкой настройки. Это текстовый файл, состоящий из записей, пустых или закомментированных строк (комментарии начинаются с символа #).

Предположим, что мы хотим предоставить клиентам доступ только для чтения к каталогу /home на узле Lefty. Этому в /etc/exports будет соответствовать следующая запись:

/home (ro)

Здесь нам необходимо сообщить системе, какие каталоги мы собираемся сделать доступными с помощью демона монтирования rpc.mountd:

# exportfs -r exportfs: В /home (ro) не указано имя узла, введите *(ro) чтобы избежать предупреждения #

При запуске команда exportfs выводит предупреждение о том, что /etc/ exports не ограничивает доступ к отдельному узлу, и создает соответствующую запись в /var/lib/nfs/etab из /etc/exports, сообщающую, какие ресурсы можно просмотреть с помощью cat:

# cat /var/lib/nfs/etab /home (ro,async,wdelay,hide,secure,root_ squash, no_all_squash,subtree_check, secure_locks, mapping=identity,anonuid= -2,anongid=-2)

Другие параметры, перечисленные в виде списка в etab, включают значения по умолчанию, используемые NFS. Детали будут описаны ниже. Чтобы предоставить доступ к каталогу /home, необходимо запустить соответствующие службы NFS:

# portmap # rpc.mountd # rpc.nfsd # rpc.statd # rpc.rquotad

В любой момент после запуска демона монтирования (rpc.mountd) cправиться об отдельных файлах, доступных для вывода, можно, просмотрев содержимое файла /proc/fs/nfs/exports:

# cat /proc/fs/nfs/exports # Version 1.0 # Path Client(Flags) # IPs /home 192.168.1.252(ro,root_squash,async, wdelay) # 192.168.1.252 #

То же самое можно просмотреть и с помощью команды showmount с параметром -e:

# showmount -e Export list for lefty: /home (everyone) #

Забегая несколько вперед, скажу, что команду showmount можно также использовать для определения всех смонтированных файловых систем, или, другими словами, чтобы выяснить, какие узлы являются клиентами NFS для системы, на которой запущена команда showmount. Команда showmount -a выведет все клиентские точки монтирования:

# showmount -a All mount points on lefty: 192.168.1.252:/home #

Как указывалось выше, большинство реализаций NFS поддерживает различные версии этого протокола. Реализация в Linux позволяет ограничивать список запускаемых версий NFS путем указания ключа -N для демона монтирования. Например, для запуска NFS третьей версии, и только ее, введите следующую команду:

# rpc.mountd -N 1 -N 2

Привередливым пользователям может показаться неудобным, что в Linux демон NFS (rpc.nfsd) находится в режиме ожидания пакетов версий 1 и 2, хотя это и достигает желаемого эффекта отказа от поддержки соответствующего протокола. Будем надеяться, что разработчики следующих версий внесут необходимые исправления и сумеют добиться большей согласованности компонентов пакета в отношении различных версий протокола.

«ЗАПЛЫВ С ПИНГВИНАМИ»

Доступ к сконфигурированной выше Lefty, экспортируемой файловой системе NFS на базе Linux, зависит от клиентской операционной системы. Стиль установок для большинства операционных систем семейства UNIX совпадает со стилем либо исходных систем Sun OS и BSD, либо более новой Solaris. Так как данная статья посвящена обеим системам, Linux и Solaris, давайте рассмотрим клиентскую конфигурацию Solaris 2.6 с точки зрения установления соединения с Linux-версией NFS, описанной нами выше.

Благодаря свойствам, унаследованным Solaris 2.6, ее легко сконфигурировать для работы в качестве клиента NFS. Для этого требуется лишь одна команда:

# mount -F nfs 192.168.1.254:/home /tmp/tmp2

Предположим, что предыдущая команда mount выполнена успешно, тогда команда mount без параметров выведет следующее:

# mount / on /dev/dsk/c0t0d0s0 read/write/setuid/ largefiles on Mon Sep 3 10:17:56 2001 ... ... /tmp/tmp2 on 192.168.1.254:/home read/ write/remote on Mon Sep 3 23:19:25 2001

Давайте проанализируем вывод tcpdump, полученный на узле Lefty, после того, как пользователь ввел команду ls /tmp/tmp2 на узле Sunny:

# tcpdump host lefty and host sunny -s512 06:07:43.490583 sunny.2191983953 > lefty.mcwrite.n.nfs: 128 getattr fh Unknown/1 (DF) 06:07:43.490678 lefty.mcwrite.n.nfs > sunny.2191983953: reply ok 112 getattr DIR 40755 ids 0/0 sz 0x000001000 (DF) 06:07:43.491397 sunny.2191983954 > lefty.mcwrite.n.nfs: 132 access fh Unknown/10001 (DF) 06:07:43.491463 lefty.mcwrite.n.nfs > sunny.2191983954: reply ok 120 access c0001 (DF) 06:07:43.492296 sunny.2191983955 > lefty.mcwrite.n.nfs: 152 readdirplus fh 0,1/16777984 1048 bytes @ 0x000000000 (DF) 06:07:43.492417 lefty.mcwrite.n.nfs > sunny.2191983955: reply ok 1000 readdirplus (DF)

Мы видим, что узел Sunny запрашивает для ls описатель файла (fh), на что узел Lefty в ответ посылает OK и возвращает структуру каталога. Затем Sunny проверяет разрешение на право доступа к содержимому каталога (132 access fh) и получает ответ с разрешением от Lefty. После этого узел Sunny, используя процедуру readdirplus, считывает полное содержимое каталога. Вызовы удаленных процедур описаны в документе RFC 1813 и приведены нами в начале данной статьи.

Хотя последовательность команд для доступа к удаленным файловым системам очень проста, ряд обстоятельств может привести к некорректному монтированию системы. Перед монтированием каталога точка монтирования должна уже существовать, в противном случае ее необходимо создать с помощью команды mkdir. Обычно единственной причиной ошибок на клиентской стороне является отсутствие локального каталога для монтирования. Большинство же проблем, связанных с NFS, обязано своим происхождением несоответствию между клиентом и сервером или некорректной конфигурации сервера.

Проще всего устранить проблемы на сервере с узла, на котором работает сервер. Однако, когда администрированием сервера занимается вместо вас кто-то другой, это не всегда возможно. Быстрый способ убедиться, что соответствующие службы сервера правильно сконфигурированы, - использовать команду rpcinfo с параметром -p. С узла Solaris Sunny можно определить, какие процессы RPC зарегистрированы на узле Linux:

# rpcinfo -p 192.168.1.254 program vers proto port service 100000 2 tcp 111 rpcbind 100000 2 udp 111 rpcbind 100024 1 udp 692 status 100024 1 tcp 694 status 100005 3 udp 1024 mountd /100005 3 tcp 1024 mountd 100003 2 udp 2049 nfs 100003 3 udp 2049 nfs 100021 1 udp 1026 nlockmgr 100021 3 udp 1026 nlockmgr 100021 4 udp 1026 nlockmgr #

Заметим, что здесь же приводится информация о версиях, что достаточно полезно, когда для работы системы требуется поддержка различных протоколов NFS. Если какая-либо служба не запущена на сервере, то такая ситуация должна быть исправлена. В случае неудачного монтирования приводимая ниже команда rpcinfo -p позволит выяснить, что служба mountd на сервере не работает:

# rpcinfo -p 192.168.1.254 program vers proto port service 100000 2 tcp 111 rpcbind ... ... 100021 4 udp 1026 nlockmgr #

Команда rpcinfo очень полезна для выяснения, активен ли тот или иной удаленный процесс. Параметр -p - самый важный из ключей. Для ознакомления со всеми возможностями rpcinfo обратитесь к справочной странице man.

Другое полезное средство - команда nfsstat. С ее помощью можно узнать, обращаются ли в действительности клиенты к экспортируемой файловой системе, а также вывести статистическую информацию в соответствии с версией протокола.

Наконец, еще одним достаточно полезным инструментом определения причин сбоев системы является tcpdump:

# tcpdump host lefty and host sunny -s512 tcpdump: listening on eth0 06:29:51.773646 sunny.2191984020 > lefty.mcwrite.n.nfs: 140 lookup fh Unknown/1"test.c" (DF) 06:29:51.773819 lefty.mcwrite.n.nfs > sunny.2191984020: reply ok 116 lookup ERROR: No such file or directory (DF) 06:29:51.774593 sunny.2191984021 > lefty.mcwrite.n.nfs: 128 getattr fh Unknown/1 (DF) 06:29:51.774670 lefty.mcwrite.n.nfs > sunny.2191984021: reply ok 112 getattr DIR 40755 ids 0/0 sz 0x000001000 (DF) 06:29:51.775289 sunny.2191984022 > lefty.mcwrite.n.nfs: 140 lookup fh Unknown/1"test.c" (DF) 06:29:51.775357 lefty.mcwrite.n.nfs > sunny.2191984022: reply ok 116 lookup ERROR: No such file or directory (DF) 06:29:51.776029 sunny.2191984023 > lefty.mcwrite.n.nfs: 184 create fh Unknown/1 "test.c" (DF) 06:29:51.776169 lefty.mcwrite.n.nfs > sunny.2191984023: reply ok 120 create ERROR: Permission denied (DF)

Вышеприведенный листинг, полученный после выполнения инструкции touch test.c, отражает следующую последовательность действий: сначала команда touch пытается получить доступ к файлу по имени test.c, затем она ищет каталог с этим же именем, а после неудачных попыток пытается создать файл test.c, что также не приводит к успеху.

Если файловая система смонтирована, то большинство типичных ошибок связано с обычными правами доступа UNIX. Использование uid или NIS+ в Sun помогает избежать глобального установления прав доступа на все файловые системы. Некоторые администраторы практикуют «открытые» каталоги, когда права доступа на их чтение даются «всему миру». Однако этого следует избегать по причинам безопасности. Даже отбросив в сторону проблемы защиты, все равно придется признать такой подход порочной практикой, поскольку пользователи редко создают данные с намерением сделать их доступными для чтения всем подряд.

Обращения привилегированного пользователя (root) к смонтированным файловым системам NFS трактуются по-особому. Чтобы избежать предоставления привилегированному пользователю неограниченного доступа, запросы от него трактуются так, как будто бы они поступают от пользователя nobody («никто»). Этот действенный механизм ограничивает доступ привилегированного пользователя глобально доступными для чтения и разрешенными для записи файлами.

СЕРВЕР NFS, ВЕРСИЯ SOLARIS

Конфигурирование Solaris для работы в качестве сервера NFS так же просто, как и в случае с Linux. Однако команды и местоположение файлов несколько отличаются. При начальной загрузке Solaris по достижении уровня загрузки 3 (run level 3) автоматически запускаются службы NFS и экспортируются все файловые системы. Для запуска этих процессов вручную введите команду:

#/usr/lib/nfs/mountd

Для запуска демона монтирования и сервера NFS введите:

#/usr/lib/nfs/nfsd

Начиная с версии 2.6 в Solaris для указания экспортируемых файловых систем больше не используется файл экспорта. Теперь файлы экспортируются с помощью команды share. Предположим, мы хотим позволить удаленным узлам смонтировать /export/home. Введем для этого следующую команду:

Share -F nfs /export/home

Мероприятия по обеспечению безопасности

БЕЗОПАСНОСТЬ В LINUX

Некоторые системные службы NFS на основе Linux имеют дополнительный механизм ограничения доступа посредством управляющих списков или таблиц. На внутреннем уровне этот механизм реализован с помощью библиотеки tcp_wrapper, которая для формирования списков контроля доступа использует два файла: /etc/hosts.allow и /etc/hosts/deny. Исчерпывающий обзор правил работы с tcp_wrapper выходит за рамки данной статьи, основной же принцип состоит в следующем: сопоставление вначале производится с etc/hosts.allow, а затем с /etc/hosts. deny. Если правило не найдено, то запрашиваемая системная служба не представляется. Чтобы обойти последнее требование и обеспечить очень высокий уровень безопасности, в конец /etc/hosts.deny можно добавить следующую запись:

ALL: All

После этого можно использовать /etc/ hosts.allow, чтобы установить тот или иной режим работы. Например, файл /etc/hosts. allow, который я использовал при написании данной статьи, содержал следующие строки:

Lockd:192.168.1.0/255.255.255.0 mountd:192.168.1.0/255.255.255.0 portmap:192.168.1.0/255.255.255.0 rquotad:192.168.1.0/255.255.255.0 statd:192.168.1.0/255.255.255.0

При этом разрешается определенный вид доступа к узлам до того, как будет предоставлен доступ на уровне приложений. В Linux доступом на уровне приложений управляет файл /etc/exports. Он состоит из записей в следующем формате:

Экспортируемый каталог {пробел} узел|сеть(опции)

«Экспортируемый каталог» - это каталог, обработка запроса к которому разрешена демону nfsd. «Узел|сеть» - это узел или сеть, имеющие доступ к экспортируемой файловой системе, а «опции» определяют те ограничения, какие демон nfsd налагает на использование данного разделяемого ресурса, - доступ только для чтения или преобразование идентификатора пользователя (user id mapping).

В следующем примере всему домену mcwrite.net предоставлен доступ в режиме только для чтения к /home/mcwrite.net:

/home/mcwrite.net *.mcwrite.net(ro)

Другие примеры можно найти на справочной странице exports man.

БЕЗОПАСНОСТЬ NFS В SOLARIS

В Solaris возможности по предоставлению доступа к NFS аналогичны Linux, однако в этом случае ограничения задаются с помощью определенных параметров в команде share с ключом -o. Следующий пример показывает, как разрешить монтирование в режиме только для чтения /export/mcwrite.net на любом узле домена mcwrite.net:

#share -F nfs -o ro=.mcwrite.net/ export/ mcwrite.net

Справочная страница man для share_nfs подробно описывает предоставление доступа с помощью управляющих списков в Solaris.

Ресурсы Internet

В NFS и RPC не обошлось без «дыр». Вообще говоря, NFS не следует использовать при работе в Internet. Нельзя делать «дыры» в брандмауэрах, предоставляя какой бы то ни было доступ посредством NFS. Необходимо тщательно следить за всеми появляющимися заплатами для RPC и NFS, в чем могут помочь многочисленные источники информации по вопросам безопасности. Два наиболее популярных источника - Bugtraq и CERT:

Первый можно регулярно просматривать в поисках необходимой информации или воспользоваться подпиской на периодическую рассылку новостей. Второй предоставляет, может быть, не столь оперативную, по сравнению с другими, информацию, зато в достаточно полном объеме и без оттенка сенсационности, свойственной некоторым сайтам, посвященным информационной безопасности.

Статьи по теме: