Полудуплексный и дуплексный режим. Дуплексный режим работы канала

Эти режимы определяют в какой степени возможны одновременные приемо- передачи.

Симплексная передача – только в одном направлении (радиовещание). Для передачи данных не применяется, т.к. нет возможности подтверждения правильности приема.

Полудуплексный обмен – передача возможна в двух направлениях, но только не одновременно, а поочередно. Применяется преимущественно в одном направлении, например, как при обмене факсами. Отличается простотой реализации, т.к. не нужно бороться с эхом и с проникновением шумов из обратного канала.

С другой стороны даже при преимущественной передаче в одном направлении требуется некоторое время при переключении для получения обратных подтверждений, отводимая на пересинхронизацию приемника и передатчика. Из-за этого скорость обмена снижается. Проблема снимается при использовании 4-хпроводной линии.

Дуплексная передача.

Возможен одновременный обмен в двух направлениях. Реализуется по-разному:

1. 4-хпроводная реализация – просто, но дорого.

2. 2-хпроводная реализация с частотным разделением каналов. Канал расщепляется на 2 логических подканала, каждый из которых используется для своего направления. В зависимости от того, равны подканалы ширине или нет, различают симметричный и асимметричный дуплекс. Последний используется, если передача идет преимущественно в одном направлении. В любом случае часть ширины канала уходит на зазор для ослабления наводок между ними.

Симметричный дуплекс с эхоподавлением.

Отраженный от АТС собственный выходной сигнал накладывается на входной, искажая его. Для обеспечения эхоподавления на этапе соединения модем с эхоподавлением посылает зондирующие сигналы и определяет параметры эха. Затем он как бы вычитает из входного сигнала эхо.

6. Шина pci

Шина PCI (Peripheral Component Interconnect bus – взаимосвязь периферийных компонентов) - шина соединения периферийных компонентов. Была анонсирована компанией Intel в июне 1992 года.

Эта шина занимает особое место в современной PC-архитектуре, являясь мостом между локальной шиной процессора и шиной ввода-вывода ISA/EISA или MCA. Эта шина разрабатывалась в расчете на Pentium-системы, но хорошо сочетается и с 486 процессорами, а также с не-Intel"овскими процессорами. Шина PCI является четко стандартизованной высокопроизводительной шиной расширения ввода-вывода. PCI – мультиплексная 32-разрядная шина. Существует также 64-разрядная версия. Частота шины 20-33 МГц. Стандарт PCI 2.1 допускает и частоту 66 МГц. Теоретическая максимальная скорость 132/264 Mбайт/с для 32/64 бит при 33 МГц, и 528 Мбайт/с при 66 МГц.

На одной шине PCI может быть не более четырех устройств (слотов). Мост шины PCI (PCI Bridge) - это аппаратные средства подключения шины PCI к другим шинам. Host Bridge - главный мост - используется для подключения PCI к системной шине (шине процессора или процессоров). Peer-to-Peer Bridge - одноранговый мост - используется для соединения двух шин PCI. Две и более шины PCI применяются в мощных серверных платформах - дополнительные шины PCI позволяют увеличить количество подключаемых устройств.

Автоконфигурирование устройств (выбор адресов, запросов прерывания) поддерживается средствами BIOS. Стандарт PCI определяет для каждого слота конфигурационное пространство размером до 256 восьмибитных регистров, не приписанных ни к пространству памяти, ни к пространству ввода-вывода. Доступ к ним осуществляется по специальным циклам шины Configuration Read и Configuration Write, вырабатываемым контроллером при обращении процессора к регистрам контроллера шины PCI, расположенным в его пространстве ввода-вывода.

Шина PCI все обмены трактует как пакетные: каждый кадр начинается фазой адреса, за которой может следовать одна или несколько фаз данных. Количество фаз данных в пакете неопределенно, но ограничено таймером, определяющим максимальное время, в течении которого устройство может пользоваться шиной. Каждое устройство имеет собственный таймер, значение для которого задается при конфигурировании устройств шины.

В каждом обмене участвуют два устройства - инициатор обмена (Initiator) и целевое устройство (Target). Арбитражем запросов на использование шины занимается специальный функциональный узел, входящий в состав чипсета системной платы. Для согласования быстродействия устройств-участников обмена предусмотрены два сигнала готовности.

Шина имеет версии с питанием 5 В, 3.3 В. Также существует универсальная версия (с переключением линий +V I/O c 5 В на 3.3 В). Ключами являются пропущенные ряды контактов. Для 5 В-слота ключ расположен на месте контактов 50, 51; для 3 В - 12, 13; для универсального - два ключа: 12, 13 и 50, 51. Ключи не позволяют установить карту в слот с неподходящим напряжением питания.

В отличие от адаптеров остальных шин, компоненты карт PCI расположены на левой поверхности плат. По этой причине крайний PCI-слот обычно разделяет использование посадочного места адаптера с соседним ISA-слотом (Shared slot).

В современных системах произошел отказ от шин ISA, и шина PCI выходит на главные позиции. Некоторые фирмы для этой шины выпускают карты-прототипы, но, конечно же, доукомплектовать их периферийным адаптером или устройством собственной разработки гораздо сложнее, чем карту ISA. Здесь сказываются и более сложные протоколы, и более высокие частоты (8 МГц у шины ISA против 33 или 66 МГц у шины PCI). Также шина PCI обладает плохой помехоустойчивостью, поэтому для построения измерительных систем и промышленных компьютеров используется не всегда.

В настоящее время на новых системных платах используется PCI 2.2. Она совместима по используемым устройствам с PCI 2.1, отличительная ее особенность – возможность работы на нестандартных частотах - 75, 83, 100 МГц.

Невозможны одновременная передача, приём беспроводной связью единой частоты. Результатом станет ужасная интерференция. Андре Голдсмит «Беспроводные коммуникации»

Дуплексная радиосвязь предусматривает одновременную двустороннюю передачу информации. Исторически первыми концепцию реализовали трансатлантический телеграф (1870-е), телетайпы (1890-е). Идея вызвана необходимостью экономии спектра физического канала. Океанический кабель слишком дорого стоил. Случай телетайпов немного отличен: идея уже была известна, некто придумал способ получения дополнительной прибыли, пользуясь скромными запросами печатающих устройств (ниже голосовой линии).

Примеры симплексных систем

Лучше прочувствовать принцип действия симплексной передачи информации помогут примеры систем однонаправленного потока информации:

  1. Вещание.
  2. Микрофоны звукозаписи.
  3. Наушники.
  4. Радионяни.
  5. Беспроводная система управления рольставнями.
  6. Камеры слежения.

Симплекс характеризуется отсутствием необходимости, возможности двухсторонней передачи информации.

Принцип действия

Дуплексная коммуникационная система обычно соединяет две точки (противопоставляя себя вещанию). Современными компьютерными портами (Ethernet) часто осуществляется аналогичный ход, выделяют отдельную витую пару каналам приёма, передачи. После телеграфа, телетайпа концепция настигла телефонные линии. Общеизвестно: абоненты могут говорить одновременно. Расслышать собеседника – вопрос десятый.

Цифровая техника предоставляет видимость эффекта дуплексной радиосвязи. Передатчик давно сжёг бы приёмник, работай каналы одновременно. Однако временное деление функционирует быстро, пакеты коммутируются столь искусно, что собеседники бессильны заметить «подвох». Дуплекс бывает неполным. Полудуплексный метод применяется рациями. Канал разбивается, благодаря внедрению кодовых вызывных комбинаций слов, произносимых абонентами.

Временное деление каналов

Разделение каналов с выделением временных слотов абонентам демонстрирует весомые преимущества на линиях с несимметричными скоростями (загрузка, выгрузка данных). Типичный пример – интернет. Весомое неравенство каналов входящей, исходящей информации сделало возможным спутниковый доступ (запрос по местной мобильной сети, ответ – из космоса). Примеры:

  • Стандарт третьего поколения сотовой связи 3G.
  • Беспроводная телефония DECT.
  • WiMAX (3G+).
  • Некоторые разновидности LTE.

Широкое распространение методики дало внедрение импульсных устройств (середина 60-х годов XX века). Причиной существующего положения эксперты называют появление твердотельной электроники. Ламповые дискретные устройства занимали слишком большое пространство. Приёмопередающее оборудование требовало наличия просторного помещения. Первоначально создали два режима сжатия канала:

  1. Синхронная (циклическая) передача подразумевает периодическое подключение к линии абонентов. Последовательность строго оговорена. Разрабатывается структура кадра, внедряются синхронизирующие сигналы. Характер кодирования безразличен.
  2. Асинхронная передача практикуется цифровыми системами. Информация посылается заблаговременно сформированными пакетами размером сотни-тысячи бит. Наличие адресов делает возможным асинхронную схему взаимодействия. Сегодня принцип использует даже сотовая связь. Современные протоколы предусматривают пакеты с чётным количеством байтов. Поэтому отсутствие синхронизации чисто формальное.

Пакет дополнен заголовком. Состав информации определён стандартом протокола. Канал загружается периодически, с частотой передачи пакетов. Традиционные советские системы использовали 8 кГц (телефонный сигнал дискретизируется со скоростью 64 кбит/с). Методы модуляции несущей:

  • Широтно-импульсная.
  • Амплитудно-импульсная.
  • Время-импульсная.

Двоичный сигнал кодируют прямоугольными импульсами. Спектр выходит бесконечно широким, реальный сигнал обрезают фильтрами. В результате фронты сглаживаются. Растягивание вызывает межимпульсную интерференцию. Помехи по соседнему каналу вызваны пересечением спектров. Параметры систем временного разделения каналов стандартизированы, иерархия получила название плезиохронной:

  1. Первая ступень несёт 32 канала (32 х 64 = 2048 кбит/с). 2 канала отдают служебным сообщениям.
  2. Следующие ступени (120, 480, 1920) формируются путём уплотнения 4 цифровых потоков побитным мультиплексированием. Причём некоторые разделы стандарта были сформированы заблаговременно, не найдя немедленной аппаратной реализации.

Оптоволоконной альтернативой приведённому методу называют синхронную цифровую иерархию. Алгоритм нацелен обеспечивать крупные ветви сети, где скорости значительные. Требуется повальная синхронизация узлов. Длительность блока (синхронного транспортного модуля) составляет прежние 125 мс (8 кГц). Цифровая длина – 2340 байт. Заголовку отводится 90. Сформирована 5-ступенчатая иерархия согласно размеру пакетов. Мелкие могут являться составными частями крупных.

Частотное деление

Впервые применил частотное деление войсковой связист Игнатьев Г.Г. (1880). Военный подразумевал повторить опыт трансатлантического кабеля. Хотел расширить рамки проложенного кабеля (поле боя оставляет мало времени сантиментам). Передающая аппаратура формирует набор стандартных аналоговых сигналов (обычно 12) стандартной ширины 300-3500 Гц. Блок включает нужное число генераторов выбранного диапазона связи. Канальный промежуток составляет 900 Гц (ДВ).

Групповой аналоговый сигнал занимает 48 кГц. Сегодня приёмопередающее оборудование задействует одновременно две частоты (минимум). Принцип широко используется любительской радиосвязью. Дальнобойщики хорошо знают каналы бедствия, вызова. Пример универсален, касается двустороннего общения радиолюбителей планеты. Первые аналоговые сети использовали внеполосный цифровой вызов станции – слабый пример дуплекса.

Частотное деление – идеальный вариант организации канала симметричного трафика. Базовые станции перестают слышать друг друга, устраняется интерференция. Примеры:

  1. ADSL.
  2. CDMA2000.
  3. IEEE 802.16 (разновидность WiMAX).

Кодовое деление

Частота выборки телефонного сигнала – 64 кГц, используется фазовая манипуляция:

  • 1 – 0 градусов.
  • 0 – 180 градусов.

Чтобы закодировать цифровой сигнал, бит дополнительно разбивают. Впервые методика продемонстрирована системой Зелёный шершень времён Второй мировой войны. Наложение псевдошумового сигнала сильно озадачило фашистов. Союзники, разделённые Атлантическим океаном, провели свыше 3000 совместных конференций.

Длину кода называют базой сигнала. Графически нули и единицы наложенной последовательности обозначают +1 и -1, явно отличая от основного информационного сообщения. Наложение расширяет спектр в число раз, равное базе. Искусственное увеличение позволяет избежать интерференции. Особенность прямо касается вышек сотовой связи. Каждый канал получает фиксированную кодирующую последовательность, осуществляя концепцию ортогональности. Число совпадающих битов равно числу не совпадающих.

Приёмник корреляционного типа. Часто заменяют согласованным фильтром. Опорным выступает код канала с фазовой манипуляцией. Пытаясь снизить ширины спектры, применяют специальные коды. Хорошо себя зарекомендовал псевдошумовой сигнал. Межканальные помехи вызваны искажениями группового сигнала:

  • Коррективы, вносимые полосами пропускания радиоэлектронных устройств.
  • Мультипликативные помехи эфира.
  • Недостаточная ортогональность кодов.

Стандарт IS95 стал основой сотовых сетей CDMA, спутниковой связи Globalstar.

Устранение эхо

Двусторонние системы громкой связи создают эффект положительной обратной связи, выражающийся резким свистом. Звук динамика достигает микрофона, усиливается, передаётся оппоненту. Визави повторяет порядок преобразований, возвращая послание. Громкость нарастает.

Стандарты модемов, компьютерных шин предусматривают подавление эха. Лишённая техники блокировки отражённого сигнала система бессильна развить полную скорость. Работа цифровых сетей требует жёсткой синхронизации.

Под дуплексным режимом работы модема понимается возможность передавать и принимать информацию одновременно. Проблема для модема заключается не в способности канала передавать дуплексную информацию, т.к. обычный телефонный канал – дуплексный, а в возможности демодулятора модема распознать входной сигнал на фоне отраженного от аппаратуры АТС собственного выходного сигнала. При этом его мощность может быть не только сравнима, но в большинстве случаев значительно превосходить мощность принимаемого полезного сигнала (так как объединение и разделение передачи и приема производится с помощью дифсистем, которые невозможно идеально настроить на полное подавление сигнала передатчика местного модема). Поэтому, могут ли модемы передавать информацию одновременно в обе стороны определяется возможностями протокола физического уровня.

Соединение абонента передачи данных с телефонным каналом может осуществляться с помощью четырехпроводного окончания (главным образом с арендованными каналами) и/или двухпроводным окончанием (в основном с коммутируемыми каналами). При четырехпроводном окончании передача и прием осуществляются независимо друг от друга. В этом случае каждая пара используется для передачи информации только в одном направлении и проблемы разделения входного сигала и отраженного выходного не существует.

Передача данных по телефонным каналам с двухпроводным окончанием организуется с использованием одного из следующих методов:

    поочередной передачи в каждом из направлений (полудуплексный режим);

    частотного разделения направлений передачи (дуплексный режим: симметричный или ассимметричный – в зависимости от равенства или неравенства скоростей передачи в разных направлениях);

    одновременной передачи в обоих направлениях с подавлением на приеме отраженного сигнала собственного передатчика (дуплексный режим с эхокомпенсацией).

Наиболее простым в реализации и наименее эффективным по использованию канала связи является метод поочередной передачи (полудуплексный), т.к. передача ведется только в одном направлении, и имеют место потери времени на смену направлений передачи. Ввиду отсутствия проблем с взаимным проникновением подканалов передачи, а также с эхо-отражением, полудуплексные протоколы в общем случае характеризуются большей помехоустойчивостью и возможностью использования всей ширины полосы пропускания канала. Этот метод применяется при малых скоростях передачи. Все протоколы, предназначенные для факсимильной связи – полудуплексные. С освоением более высоких скоростей появилась возможность организации на базе этого метода псевдодуплексной передачи (дуплексный режим оконечного оборудования данных при полудуплексной передаче в канале) – т.н. метод "ping-pong".

Модемные протоколы

Модемы можно классифицировать в соответствии с реализованными в них протоколами. Все протоколы, регламентирующие те или иные аспекты функционирования модемов могут быть отнесены к двум большим группам: международные и фирменные.

Протоколы международного уровня разрабатываются под эгидой ITU-T и принимаются им в качестве рекомендаций (ранее ITU-T назывался Международным консультативным комитетом по телефонии и телеграфии – МККТ, международная аббревиатура CCITT). Все рекомендации ITU-T относительно модемов относятся к серии V. Фирменные протоколы разрабатываются отдельными компаниями – производителями модемов, с целью преуспеть в конкурентной борьбе. Часто фирменные протоколы становятся стандартными протоколами де-факто и принимаются частично либо полностью в качестве рекомендаций ITU-T, как это случилось с рядом протоколов фирмы Microcom. Наиболее активно разработкой новых протоколов и стандартов занимаются такие известные фирмы, как AT&T, Motorolla, U.S.Robotics, ZyXEL и другие.

С функциональной точки зрения модемные протоколы могут быть разделены на следующие группы:

    Протоколы, регламентирующие соединение и алгоритмы взаимодействия модема и DTE (V.10, V.11, V.24, V.25, V.25bis, V.28);

    Протоколы модуляции, определяющие основные характеристики модемовб предназначенных для коммутируемых и выделенных телефонных каналов. К ним относятся такие протоколы, как V.17, V.22, V.32, V.34, HST, ZyX и большое количество других;

    Протоколы защиты от ошибок (V.41, V.42, MNP1-MNP4);

    Протоколы зжатия передаваемых данных, такие как MNP5, MNP7, V.42bis;

    Протоколы согласования параметров связи на этапе ее установления (HandShaking ), например V.8.

Приставки “bis” и “ter” в названиях протоколов обозначают, соответственно, вторую и третью модификацию существующих протоколов или протокол, связанный с исходным протоколом. При этом исходный протокол, как правило, остается поддерживаемым.

Некоторую ясность среди многообразия модемных протоколов может внести их условная классификация, приведенная на схеме.

И др.).

  • Реализующее дуплексный способ связи устройство может в любой момент времени и передавать , и принимать информацию . Передача и приём ведутся устройством одновременно по двум физически разделённым каналам связи (по отдельным проводникам, на двух различных частотах и др. за исключением разделения во времени - поочерёдной передачи). Пример дуплексной связи - разговор двух людей (корреспондентов) по городскому телефону : каждый из говорящих в один момент времени может и говорить, и слушать своего корреспондента. Дуплексный способ связи иногда называют полнодуплексным (от англ. full-duplex ); это синонимы.

Помимо дуплексной, выделяют полудуплексную и симплексную связь.

  • Реализующее полудуплексный (англ. half-duplex ) способ связи устройство в один момент времени может либо передавать, либо принимать информацию. Как правило, такое устройство строится по трансиверной схеме . Пример полудуплексной связи - разговор по рации : каждый из корреспондентов в один момент времени либо говорит, либо слушает. Для обозначения конца передачи и перехода в режим приёма корреспондент произносит слово «приём» (англ. «over »). Управление режимом работы радиостанции (приём или передача) может быть ручным (англ. Push-to-Talk  (PTT ) - кнопка или тангента переключения приём-передача, другое обозначение - MOX от англ. Manual control ), голосовым (VOX - от англ. Voice control ) или программным.

Энциклопедичный YouTube

  • 1 / 3

    Режим, когда передача данных может производиться одновременно с приёмом данных (иногда его также называют «полнодуплексным », для того чтобы яснее показать разницу с полудуплексным).

    Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - исходящая для второго устройства и входящая для первого.

    Суммарная скорость обмена информацией по каналу связи в данном режиме может достигать своего максимума. Например, если используется технология Fast Ethernet со скоростью 100 Мбит / , то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

    В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, Gigabit Ethernet 1000BASE-T).

    Полудуплексный режим

    В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям .

    Терминология в Регламенте радиосвязи

    Как правило, под симплексной связью понимают одностороннюю связь (например радиовещание , когда радиопередача ведётся в одном направлении: от радиостанции к слушателям), в то время как дуплексная и полудуплексная связь - двухсторонняя (передача возможна в обоих направлениях: дуплексная - одновременно, полудуплексная - с разделением во времени). Однако Регламент радиосвязи даёт отличные определения симплексной и полудуплексной связи, что является причиной недоразумений:

    Симплекс (Simplex) Симплексная связь - способ связи, при котором передача возможна попеременно в каждом из двух направлений канала электросвязи посредством, например, ручного управления (ст. 1.125).

    Дуплекс (Duplex) Дуплексная связь - способ связи, при котором передача возможна в обоих направлениях канала электросвязи (ст. 1.126).

    Полудуплекс (Half-duplex) Полудуплексная связь - способ симплексной связи на одном конце линии и дуплексной связи на другом (ст. 1.127).

    Одновременно. В режиме полудуплекс - или передавать, или принимать информацию.

    Полудуплексный режим

    Режим, при котором передача ведётся в обоих направлениях, но с разделением по времени называют полудуплексным. В каждый момент времени передача ведётся только в одном направлении.

    Разделение во времени вызвано тем, что передающий узел в конкретный момент времени полностью занимает канал передачи. Явление, когда несколько передающих узлов пытаются в один и тот же момент времени осуществлять передачу, называется коллизией и при методе управления доступом CSMA/CD считается нормальным, хотя и нежелательным явлением.

    Этот режим применяется тогда, когда в сети используется коаксиальный кабель или в качестве активного оборудования используются концентраторы .

    В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям .

    Дуплексный режим

    Режим, при котором, в отличие от полудуплексного, передача данных может производиться одновременно с приёмом данных.

    Суммарная скорость обмена информацией в данном режиме может достигать вдвое большего значения. Например, если используется технология Fast Ethernet со скоростью 100 Мбит / , то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

    В качестве наглядного примера можно привести разговор двух человек по рации (полудуплексный режим) - когда в один момент времени человек либо говорит, либо слушает, и по телефону (полный дуплекс) - когда человек может одновременно и говорить, и слушать.

    Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - входящая для первого устройства и исходящая для второго.

    В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, GigabitEthernet).


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Полный дуплекс" в других словарях:

      Двойная спираль с Уотсона-крика дуплекс - Двойная спираль, с. Уотсона крика, дуплекс * падвойная спіраль, с. Уотсана крыка, дуплекс * double helix or d. h. DNA or Watson Crick h. or duplex модель Уотсона Крика, описывающая структуру ДНК как спираль, которая образована из двух… … Генетика. Энциклопедический словарь

      режим полного дуплекса - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] полный дуплекс Одновременная двусторонняя передача. (полный) дуплекс… …

      Кабель UTP с разъемом 8P8C (ошибочно называемый RJ 45), используемый в Ethernet сетях стандартов 10BASE T, 100BASE T(x) и 1 … Википедия

      Название: Teletype network Уровень (по модели OSI): Прикладной Семейство: TCP/IP Порт/ID: 23/TCP Назначение протокола: виртуальный текстовый терминал Спецификация: RFC 854 / STD 8 … Википедия

      Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия

      Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия - сетевая карта сетевой адаптер сетевой интерфейс Компонент компьютера для подключения к вычислительной сети. сетевой адаптер Периферийное устройство (плата), обеспечивающее соединение компьютера и ЛВС.… … Справочник технического переводчика

Статьи по теме: