Что такое соты в телефоне. Мобильная связь

В этой статье расскажем про историю появления мобильной связи

Первая система радиотелефонной связи появилась в 1946 году в США – Сент-Луисе. Радиотелефоны работали на фиксированных частотах и переключались вручную. В Советском Союзе радиотелефонная связь появилась в 1959 году и называлась системой «Алтай». Естественно, она была не общедоступной, а использовалась в качестве правительственной связи и спецслужбами. В 1990-1994 годах при развале СССР, из Советских НИИ, «бесплатно» вывозилась за кордон большая масса засекреченных разработок, в том числе и разработка многочастотной, многобазовой радиотелефонной связи. И в 1991 году в США, а в последствие и в Российской Федерации появился новый стандарт радиотелефонной – сотовой связи NMT-450 («Сотел»). Использовался аналоговый сигнал. В последствии появились цифровые стандарты – GSM-900 и GSM-1800.

С прогрессивным развитием сотовой связи мобильные телефонные аппараты стали широко доступны. Как правило, мобильный телефонный аппарат (далее МТА) может работать на расстоянии до 1500 м от базовой станции.

Как известно, каждому сотовому аппарату присваивается свой электронный серийный номер (ESN), который кодируется в микрочипе телефона при изготовлении телефона. Активируя SIM-карту (Subscriber Identity Module) - микрочип, в котором «прошит» абонентский номер, мобильный телефонный аппарат получает мобильный идентификационный номер (MIN).

Площадь, охватываемая сетью GSM (Global System for Mobile communications, - глобальная система мобильной связи), разбита на отдельные, прилегающие друг к другу ячейки (соты) - отсюда пошло название «сотовая связь», в центре которых находятся приемопередающие базовые станции. Обычно такая станция имеет шесть передатчиков, которые расположены с диаграммой направленности 120° и обеспечивают равномерное покрытие площади. Одна средняя современная станция одновременно может обслуживать до 1000 каналов. Площадь «соты» в городе составляет около 0,5-1 км 2 , вне города в зависимости от географического расположения она может достигать и 20, и 50 км 2 . Телефонный обмен в каждой «соте» управляется базовой станцией, которая принимает и передает сигналы в большом диапазоне радиочастот (выделенный канал - шаг для каждого сотового телефона минимальный). Базовая станция подключена к проводной телефонной сети и оснащена аппаратурой преобразования высокочастотного сигнала сотового телефона в низкочастотный сигнал проводного телефона и наоборот, чем обеспечивается сопряжение этих двух систем. Технически современная аппаратура базовой станции занимает площадь 1…3 м 2 и располагается в пределах одного небольшого помещения, где ее работа осуществляется в автоматическом режиме. Для стабильной работы такой станции необходимо лишь наличие проводной связи с телефонным узлом (АТС) и сетевое питание 220 В.

В городах и населенных пунктах с большим скоплением домов передатчики базовых станций располагаются прямо на крышах домов. В пригородах и на открытой местности используются вышки в несколько секций (их часто можно увидеть расположенными вдоль шоссе).

Зона покрытия соседних станций соприкасается. При передвижении телефонного аппарата между зонами покрытия соседних станций происходит его периодическая регистрация. Периодически, с интервалом 10…60 мин (в зависимости от оператора), базовая станция излучает служебный сигнал. Приняв его, мобильный телефон автоматически добавляет к нему свои MIN- и ESN-номера и передает получившуюся кодовую комбинацию на базовую станцию. Таким образом, осуществляется идентификация конкретного мобильного сотового телефонного аппарата, номера счета его владельца и привязка аппарата к определенной зоне, в которой он находится в данный момент времени. Этот момент весьма важен - уже на данном этапе можно контролировать передвижения того или иного объекта, а уж кому это выгодно, вопрос другой - главное есть возможность…

Когда пользователь соединяется с кем-либо по своему телефону, базовая станция выделяет ему одну из свободных частот той зоны, в которой он находится, вносит соответствующие изменения в его счет (производит списание средств) и передает его вызов по назначению.

Если мобильный пользователь во время разговора перемещается из одной зоны связи в другую, базовая станция покидаемой зоны (соты) автоматически переводит сигнал связи на свободную частоту соседней с ней зоны (соты).

Самыми уязвимыми с точки зрения возможности перехвата ведущихся переговоров (прослушивания) являются аналоговые мобильные сотовые телефоны. В нашем регионе (Санкт-Петербург) такой стандарт присутствовал до недавнего времени - это стандарт NMT450 (он присутствует также в Республике Беларусь). Уверенная связь и ее удаленность от базовой станции в таких системах напрямую зависят от мощности излучения передающего сотового телефона.

Аналоговый принцип передачи информации основан на излучении в эфир нецифрового радиосигнала, поэтому, настроившись на соответствующую частоту такого канала связи, теоретически можно прослушивать разговор. Однако стоит «остудить особо горячие головы»- прослушать переговоры сотовой связи данного стандарта не так-то просто, поскольку они шифруются (искажаются) и для точного распознавания речи нужен соответствующий дешифратор. Переговоры данного стандарта пеленговать проще, чем скажем, стандарта GSM- цифровой сотовой связи, мобильные телефоны которых передают и принимают информацию в виде цифрового кода. Легче всего пеленгуются стационарно расположенные или неподвижные объекты, осуществляющие сотовую связь, труднее - мобильные, т. к. перемещение абонента в процессе разговора сопровождается снижением мощности сигнала и переходом на другие частоты (при передачи сигнала от одной базовой станции к соседней).

Методы пеленгации

Приход в каждую семью сотовой связи (сегодня и школьники получают такие подарки), это реалии времени, комфорт становится уже незаменимым. Наличие у пользователя сотового телефона позволяет выявлять его местоположение, как в текущий момент времени, так и все его предыдущие перемещения до этого. Текущее положение может выявляться двумя способами.

Первый — метод целенаправленного пеленгования сотового телефона, определяющий направление на работающий передатчик из трех-шести точек и дающий засечку местоположения источника радиосигналов. Особенность такого метода в том, что он может применяться по чьему-либо распоряжению, например органов, уполномоченных по закону.

Второй метод - через оператора сотовой связи, который в автоматическом режиме постоянно регистрирует, где находится тот или иной абонент в данный момент времени даже в том случае, когда он не ведет никаких разговоров. Эта регистрация происходит автоматически по идентифицирующим служебным сигналам, автоматически передаваемым сотовым телефоном на базовую станцию (об этом шла речь ранее). Точность определения местонахождения абонента зависит от ряда факторов: топографии местности, наличия помех и отражения сигнала от зданий, от положения базовых станций и их загруженности (количества активных мобильных телефонов оператора в данной соте), размера соты. Отсюда, точность определения местонахождения абонента сотовой связи в городе заметно выше, чем в открытой местности, и может достигать пятна в несколько сотен метров. Анализ данных о сеансах связи абонента с различными базовыми станциями (с какой и на какую станцию подавался вызов, время вызова и тому подобное) позволяет восстановить картину всех перемещений абонента в прошлом. Данные автоматически регистрируются у оператора сотовой связи (для выписки счетов и не только…), поскольку оплата таких услуг основана на длительности использования системы связи. Эти данные могут храниться несколько лет, и это время пока не регламентируется федеральным законом, только ведомственными актами.
Можете сделать вывод – конфиденциальность обеспечивается, но не для всех. При необходимости прослушивания ваших переговоров, или определения вашего местоположения, практически любая «снаряженная» спецслужба, или преступное сообщество способны это сделать без каких либо усилий.

Труднее перехватить разговор, если он ведется с движущегося автомобиля, т.к. расстояние между пользователем сотового телефона и пеленгующей аппаратурой (если идет речь об аналоговой связи) постоянно изменяется и, если эти объекты удаляются друг от друга, особенно в пересеченной местности среди домов, сигнал ослабевает. При быстром перемещении сигнал переводится с одной базовой станции на другую, с одновременной сменой рабочей частоты - это затрудняет перехват всего разговора целиком (если он не ведется целенаправленно с участием оператора связи), поскольку для нахождения новой частоты требуется время.

Выводы из этого можно сделать самостоятельно. Отключайте свой сотовый телефон, если не желаете, чтобы ваше местонахождение стало известно.

Принцип работы радиосвязи

Радио (лат.radio- излучаю, испускаю лучи radius- луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Принцип работы
Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемыйсигналмодулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

Частотные диапазоны
Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

  • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
  • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
  • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
  • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
  • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
  • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
  • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)

В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на большиме расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.

Распространение радиоволн
Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называетсямноголучёвостью. Вследствие многолучёвости и изменений параметров среды, возникаютзамирания(англ.fading)- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Радиолокация

Радиолока́ция - область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн. Близким и отчасти перекрывающимся термином является радионавигация, однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации - радиолокационная станция (англ. Radar).

Различают активную, полуактивную, активную с пассивным ответом и пассивную РЛ. Подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки РЛС.

Принцип действия

Радиолокация основана на следующих физических явлениях:

  • Радиоволны рассеиваются на встретившихся на пути их распространения электрических неоднородностях (объектами с другими электрическими свойствами, отличными от свойств среды распространения). При этом отражённая волна, также, как и собственно, излучение цели, позволяет обнаружить цель.
  • На больших расстояниях от источника излучения можно считать, что радиоволны распространяются прямолинейно и с постоянной скоростью, благодаря чему имеется возможность измерять дальность и угловые координаты цели (Отклонения от этих правил, справедливых только в первом приближении, изучает специальная отрасль радиотехники - Распространение радиоволн. В радиолокации эти отклонения приводят к ошибкам измерения).
  • Частота принятого сигнала отличается от частоты излучаемых колебаний при взаимном перемещении точек приёма и излучения (эффект Доплера), что позволяет измерять радиальные скорости движения цели относительно РЛС.
  • Пассивная радиолокация использует излучение электромагнитных волн наблюдаемыми объектами, это может быть тепловое излучение, свойственное всем объектам, активное излучение, создаваемое техническими средствами объекта, или побочное излучение, создаваемое любыми объектами с работающими электрическими устройствами.

Сотовая связь

Сотовая связь , сеть подвижной связи - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Принцип действия сотовой связи

Основные составляющие сотовой сети - это сотовые телефоны и базовые станции, которые обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT-450) или по цифровому (DAMPS, CDMA, GSM, UMTS). Если телефон выходит из поля действия базовой станции (или качество радиосигнала сервисной соты ухудшается), он налаживает связь с другой (англ. handover ).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы могут заключать между собой договоры роуминга. Благодаря таким договорам абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора. Как правило, это осуществляется по повышенным тарифам. Возможность роуминга появилась лишь в стандартах 2G и является одним из главных отличий от сетей 1G.

Операторы могут совместно использовать инфраструктуру сети, сокращая затраты на развертывание сети и текущие издержки.

Услуги сотовой связи

Операторы сотовой связи предоставляют следующие услуги:

  • Голосовой звонок;
  • Автоответчик в сотовой связи (услуга);
  • Роуминг;
  • АОН (Автоматический определитель номера) и АнтиАОН;
  • Приём и передача коротких текстовых сообщений (SMS);
  • Приём и передача мультимедийных сообщений - изображений, мелодий, видео (MMS-сервис);
  • Мобильный банк (услуга);
  • Доступ в Интернет;
  • Видеозвонок и видеоконференция

Телевидение

Телеви́дение (греч. τήλε - далеко и лат. video - вижу; от новолатинского televisio - дальновидение) - комплекс устройств для передачи движущегося изображения и звука на расстояние. В обиходе используется также для обозначения организаций, занимающихся производством и распространением телевизионных программ.

Основные принципы

Телевидение основано на принципе последовательной передачи элементов изображения с помощью радиосигнала или по проводам. Разложение изображения на элементы происходит при помощи диска Нипкова, электронно-лучевой трубки или полупроводниковой матрицы. Количество элементов изображения выбирается в соответствии с полосой пропускания радиоканала и физиологическими критериями. Для сужения полосы передаваемых частот и уменьшения заметности мерцания экрана телевизора применяют чересстрочную развёртку. Также она позволяет увеличить плавность передачи движения.

Телевизионный тракт в общем виде включает в себя следующие устройства:

  1. Телевизионная передающая камера. Служит для преобразования изображения, получаемого при помощи объектива на мишени передающей трубки или полупроводниковой матрице, в телевизионный видеосигнал.
  2. Видеомагнитофон. Записывает и в нужный момент воспроизводит видеосигнал.
  3. Видеомикшер. Позволяет переключаться между несколькими источниками изображения: видеокамерами, видеомагнитофонами и другими.
  4. Передатчик. Сигнал радиочастоты модулируется телевизионным видеосигналом и передается по радио или по проводам.
  5. Приёмник - телевизор. С помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экране приемника (кинескоп, ЖК-дисплей, плазменная панель).

Кроме того, для создания телевизионной передачи используется звуковой тракт, аналогичный тракту радиопередачи. Звук передаётся на отдельной частоте обычно при помощи частотной модуляции, по технологии, аналогичной FM-радиостанциям. В цифровом телевидении звуковое сопровождение, часто многоканальное, передаётся в общем с изображением потоке данных.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

17 августа 2010

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь...

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети.

Сложно? Давайте разберемся подробнее.

Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых "светит" в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи.

Базовая Станция может работать в трех диапазонах:

900 МГц - сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий
1800 МГц - сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе
2100 МГц - Сеть 3G

Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя "дальность" некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров…

Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах.

Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется.

Еще мне рассказали о так называемой "проблеме верхних этажей". Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может "видеть" одну БС, а во второй - другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как "соседние" у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем.

Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга.

SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала.

Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками.

Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле.

С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС - это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую.

Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до "девушки", а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют "ежики". Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из "Большой Тройки":

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов.

Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет "мигать лампочка".

ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет "мигать лампочка".

Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается "инцидент", который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования.

За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.

Понимаю, что у вас осталась куча вопросов о том, как устроена сотовая сеть. Тема сложная, и я попросил специалиста из "Билайн" помочь мне отвечать на ваши комментарии. Единственная просьба - придерживайтесь темы. А вопросы типа "Билайн редиски. Украли у меня 3 рубля со счета" - адресуйте абонентской службе 0611.

Завтра будет пост о том, как передо мной выпрыгнул кит, а я не успел его сфотографировать. Stay Tuned!

Современные стандарты сотовой связи

Любая радиосвязь, позволяющая абоненту пользоваться ею без привязки к конкретному месту: сотовая, пейджинговая, с помощью радиотелефонов, радиоудлинителей, раций и т. д. называется мобильной. Сотовая связь - разновидность мобильной связи, организованная по принципу сот или ячеек {cells), путем размещения базовых станций {Base Transceiver Station ), которые покрывают локальную территорию.

Принцип построения сотовых систем состоит в следующем: в пределах территории действия сети устанавливается некоторое количество относительно маломощных стационарных приемопередающих станций (базовых станций), каждая из которых имеет небольшую зону действия (обычно несколько километров). При этом зоны действия соседних станций несколько перекрывают друг друга, чтобы обеспечить возможность перемещения абонента из одной зоны в другую без потери связи. Чтобы такое перекрытие было возможным, соседние станции должны использовать различные рабочие частоты. Для полного покрытия определенной территории требуются как минимум три различные частоты, чтобы расположенные в виде треугольника станции могли иметь перекрытие зон обслуживания. Четвертая же станция может снова использовать одну из этих трех частот, так как она граничит только с двумя зонами. При таком подходе форма зоны действия каждой базовой станции представляет собой шестиугольник, а расположение этих зон в точности повторяет структуру пчелиных сот, что и дало название системам связи с подобным принципом построения.

Совокупность локальных территорий составляет зону обслуживания оператора. Уровень сигнала в конкретном месте зависит от близости к базовой станции, рельефа местности, застройки, индустриальных помех и других факторов. Сигнал с базовой станции передается на коммутатор и обрабатывается им.

В состав оборудования системы сотовой связи входят базовые станции и центр коммутации, соединенные по выделенным проводным или радиорелейным каналам, как показано на рис. 7.2.

Рис. 7.2.

Центр коммуникации - это автоматическая телефонная станция системы сотовой связи, обеспечивающая все функции управления сетью: слежение за подвижными абонентами, организация их эстафетной передачи, переключение рабочих каналов в соте при появлении помех, соединение абонента с абонентом обычной телефонной сети.

Базовая станция представляет собой многоканальный приемопередатчик, работающий в режиме приема и передачи сигнала и служащий своеобразным интерфейсом между сотовым телефоном и центром коммуникации подвижной связи.

Число каналов базовой станции обычно кратно восьми: 8, 16, 32. Один из каналов является управляющим, или каналом вызова, поскольку именно на нем производится установление соединения при вызове подвижного абонента сети, однако разговор происходит после переключения на другой канал, свободный в данный момент. Сама идея сотовой сети мобильной связи заключается в том, что, еще не выйдя из зоны действия одной базовой станции, телефон и его владелец попадают в зону действия следующей и так вплоть до наружной границы всей зоны покрытия сети. При этом сотовая связь не обязательно подразумевает мобильность: сегодня во всем мире все большее распространение получает так называемая «сотовая фиксированная связь». Такое решение часто оказывается экономически выгодным -отпадает необходимость в дорогостоящей прокладке телефонного кабеля, а одной мощной базовой станции вполне достаточно для телефонизации целого микрорайона. Антенны базовых станций устанавливаются в городе на высоте 15-100 м от поверхности земли на уже существующих постройках (общественных, производственных зданиях, жилых домах, дымовых трубах), а за городом - на высоких мачтах.

Система сотовой связи функционирует по следующему алгоритму.

В режиме ожидания (трубка положена) приемное устройство радиотелефона постоянно сканирует либо все каналы системы, либо только управляющие.

Для вызова соответствующего абонента всеми базовыми станциями системы связи по управляющим каналам передается сигнал вызова.

Сотовый телефон вызываемого абонента при получении этого сигнала отвечает по одному из свободных каналов управления.

Базовые станции, принявшие ответный сигнал, передают информацию о его параметрах в центр коммуникации, который в свою очередь переключает разговор на ту базовую станцию, где зафиксирован максимальный уровень сигнала сотового телефона вызываемого абонента.

Число абонентов в каждой соте непостоянно, поскольку они перемешаются из соты в соту. При пересечении границы между сотами производится автоматическое переключение абонента на обслуживание в другой соте.

Первая система сотовой связи, состоящая из одного шестиканального передатчика, была создана в североамериканском городе Сент-Луисе еще в 1946 г. Активное же внедрение сотовой связи началось значительно позже. Первые коммерческие системы появились в Америке в 1979 г., а приобрели национальный масштаб только в 1980-х. Например, в 1981 г. в Европе появилась первая международная система, объединившая Норвегию, Данию, Швецию и Финляндию.

В итоге в начале 1980-х гг. в Европе уже существовало более двадцати различных не совместимых между собой аналоговых сетей. Несовместимость стандартов мешала распространению сотовой телефонии, усложняла жизнь и операторам, и абонентам. Невозможно было, к примеру, осуществлять автоматический роуминг при перемещении из зоны действия одной сети в зону действия другой. И абонентские устройства, сами сотовые телефоны были далеко не универсальными. Для каждого типа сотовой связи нужно было разрабатывать уникальную аппаратуру.

Существовавшие на тот момент стандарты относят к стандартам первого поколения (1G - first generation). Это стандарты аналоговой сотовой связи. Их примерами является скандинавская система NMT, английская TACS и американская AMPS. Одним из самых живучих стандартов первого поколения стал цифровой стандарт D-AMPS {Digital Advanced Mobile Phone Service ), который довольно долго был популярен в России, так же как и его аналоговый вариант AMPS.

В целях принятия единого стандарта в 1982 г. была создана специальная группа под названием Group Special Mobile (GSM), в которую вошли представители 24 западноевропейских стран. Разработчики новой системы резонно полагали, что цифровые методы сжатия и кодирования информации значительно расширят применения сотовой связи, обеспечат лучшее качество и предоставят пользователям невиданные ранее сервисы. В качестве стандарта была принята цифровая система компании «Mannesmann», внедренная в 1991 г. в Германии.

Таким образом, в середине 1991 г. началась коммерческая эксплуатация первой сети этого стандарта. Сегодня GSM является самой распространенной системой сотовой связи в мире, а ее название расшифровывается иначе - Global System for Mobile telecommunications -глобальная система мобильных телекоммуникаций. GSM на сегодняшний день является наиболее распространенным стандартом связи. По данным ассоциации GSMA на данный стандарт приходится 82 % мирового рынка мобильной связи. В GSMA в настоящее время входят операторы более чем 210 стран и территорий. GSM относится к сетям второго поколения (2 Generation).

В сотовой связи стандарта GSM используются радиочастоты 900, 1 800 или 1 900 МГц. Существуют также и довольно распространены мультидиапазонные (Dual-Band, Multi-Band) телефоны, способные работать в диапазонах 900/1 800 МГц, 850/1 900 МГц, 900/1 800/1 900 МГц.

В сравнении с аналоговыми стандартами, GSM имеет целый ряд преимуществ. Основное из них - применение маломощных передатчиков в абонентских аппаратах и в базовых станциях. Это удешевляет саму аппаратуру, но не сказывается на качестве связи. Кроме того, передача информации в цифровом виде позволяет легко обеспечить высокую степень конфиденциальности переговоров и широкий спектр сервисных функций.

Технология GSM - это на самом деле целый «букет» сложнейших технологий. Первая из них - технология оцифровки и кодирования звука. Поскольку эти операции требуют немалых вычислительных ресурсов, то в каждом сотовом телефоне, даже в самом дешевом, работает достаточно мощный специализированный процессор. Процессор реализует и технологию многоканального выравнивания. Дело в том, что в диапазоне 900 МГц и выше радиосигнал легко отражается от стен зданий и других препятствий. В результате телефон получает множество отличающихся по фазе сигналов, из которых выделяет нужный, а остальные игнорирует.

Еще одна любопытная особенность GSM - прерывистая передача. Когда мы молчим, телефон отключает передатчик. Как только заговорим - включает. Этот механизм позволяет свести к минимуму энергопотребление сотового телефона.

Все сотовые телефоны в зависимости от мощности встроенных радиопередатчиков подразделяются на несколько классов. Большинство популярных моделей имеют мощность до 0,8 Вт. Но обычно, когда базовая станция находится рядом с абонентским устройством (а «соты» GSM в больших городах располагаются достаточно густо, чтобы избежать «мертвых» зон между строениями), полная мощность передатчика телефона для поддержания устойчивой связи не нужна. Для регулировки мощности используется механизм анализа количества ошибок при передаче-приеме. На его основе мощность передатчика базовой станции и телефона понижается до уровня, когда качество связи достаточно стабильно.

Намного более сложным представляется с точки зрения рядового абонента система передачи сигнала от одной базовой станции к другой, выделения каналов связи и прочее.

Все операторы сотовой GSM-связи, кроме передачи речевых сообщений, предоставляют стандартный набор услуг по передаче данных: CSD, GPRS, EDGE, WAP.

CSD (Circuit Switched Data или GSM Data) - стандартная технология передачи данных с коммутацией каналов в сети GSM. Для того чтобы воспользоваться CSD-услугами, необходимо иметь мобильный телефон с поддержкой CSD. При этом абсолютное большинство мобильных телефонов поддерживает технологию CSD.

Преимущества CSD:

  • постоянная скорость передачи данных - 9,6 кбит/с;
  • наиболее обширная зона CSD-покрытия, которая соответствует зоне GSM-покрытия;
  • тарификация CSD-услуг не зависит от объема переданных и полученных данных;
  • стабильное CSD-соединение.

Особенности CSD:

  • при использовании CSD информация передается по одному выделенному и закрепленному за CSD-соединением радиоканалу;
  • CSD совместима со всеми самыми распространенными аналоговыми и цифровыми протоколами передачи данных.

Для доступа в Интернет непосредственно с мобильного телефона подключайте услугу WAP (Wireless Application Protocol). При этом для работы в Интернете Вам не нужен компьютер, достаточно только мобильного телефона, поддерживающего WAP. Многие сайты в Интернет имеют свои WAP-версии, оптимизированные специально для доступа с мобильных телефонов. Применение данной услуги будет более подробно рассмотрено далее.

Для скоростного доступа в Интернет обычно используется технологии GPRS или EDGE. GPRS (General Packet Radio Service) - это технология пакетной передачи данных, которая позволяет с помощью мобильного телефона получать и передавать информацию на более высоких скоростях по сравнению со стандартным голосовым каналом GSM (9,6 кбит/с). Максимальная скорость в GPRS составляет 171,2 кбит/с. Вы можете выйти в Интернет со своего мобильного телефона с помощью WAP-технологии как с использованием GPRS, так и без нее. EDGE (.Enhanced Data-Rates For GSM Evolution) - это логическое продолжение GPRS, обеспечивающее более высокую скорость передачи данных - до 384 кбит/с. EDGE предоставляет пользователю те же услуги, что и GPRS. Технология EDGE не требует дополнительных настроек, в зоне покрытия мобильный телефон выберет ее автоматически.

СОТОВАЯ СВЯЗЬ СОТОВАЯ СВЯЗЬ

СО́ТОВАЯ СВЯЗЬ (англ. cellular phone, подвижная радиорелейная связь), вид радиотелефонной связи, в которой конечные устройства - мобильные телефоны (см. МОБИЛЬНЫЙ ТЕЛЕФОН) - соединены друг с другом с помощью сотовой сети - совокупности специальных приемопередатчиков (базовых станций). Базовые станции связываются друг с другом с помощью каналов фиксированной связи, а с обслуживаемыми мобильными телефонами - с помощью радиоволн. Область, где могут находится обслуживаемые отдельной базовой станцией мобильные телефоны, называется сотой (ячейкой, англ. cell). Один сотовый телефон обычно в каждый момент времени виден несколькими базовыми станциями, и, согласно используемым в сотовой сети стандартам и протоколам, связывается с той базовой станцией, которая имеет наименьшее ослабление сигнала (и при этом у этой станции не исчерпан лимит на число обслуживаемых телефонов). Таким образом, когда мобильный телефон перемещается вместе с использующим его человеком, и попадает в области видимости разных базовых станций, то его соединение с сотовой сетью не разрывается, и он может совершать и принимать звонки, а также пользоваться всеми услугами сотовой сети.
Компании, которые предоставляют доступ к сотовым сетям, называются операторами сотовой связи.
Мощность радиопередатчика мобильного телефона в сотовой сети гораздо меньше (в сотни раз) мощности передатчика базовой станции, поэтому мобильные телефоны имеют сравнительно небольшие размеры и безопасны в использовании. Уровень излучения мобильных телефонов регламентируются специальными международными стандартами безопасности. Существует множество стандартов и технологий мобильной связи.
Сети мобильной связи первого поколения
Первые сотовые сети были построены с использованием аналоговых стандартов - стандартов первого поколения (1G, first generation). Самые распространенные из них - NMT и AMPS. Обычно рядом с названием стандарта записывают частоту в мегагерцах, рядом с которой выделен частотный диапазон для взаимодействия базовой станции с мобильными телефонами, например базовые станции сетей NMT-450 общаются с сотовыми телефонами на частоте 450 МГц.
Сеть на основе стандарта NMT (Nordic Mobile Telephone) - первого стандарта сотовой связи - начала работать в странах Северной Европы в 1981. Также NMT был первым стандартом мобильной связи, используемым в России (1991) и в США.
В аналоговых стандартах для обеспечения одновременной работы нескольких мобильных телефонов в одной соте, а также базовых станций различных сот, использовалось только разделение каналов по частоте (FDMA, Frequency Division Multiple Access, одновременный доступ с разделением по частоте), что в условиях дефицита свободных частот означает работу в одной соте максимум только 10-20 телефонов и большие размеры сот. Это было приемлемо только при относительно низкой распространенности мобильной связи. Также аналоговые стандарты не давали никакой защиты от помех, а подслушать разговор иногда можно было с помощью простого радиоприемника.
В 2000-е гг. везде в мире сети первого поколения вытесняются сетями второго и третьего поколений.
Сети мобильной связи второго поколения
В сетях второго поколения (2G, second generation) данные между базовыми станциями и мобильными телефонами передаются в цифровом виде. Это позволило использовать в стандартах DAMPS и пришедшему ему на смену GSM для одновременной работы с одной базовой станции нескольких телефонов временное разделение (TDMA, Time Division Multiple Access, одновременный доступ с разделением по времени) - каждый частотный канал разделен на несколько так называемых «таймслотов», т. е. интервалов времени, в течение которых канал занимает один телефон. Таким образом, одна базовая станция может обслуживать до нескольких сотен телефонов одновременно. А мощности передатчиков в мобильных телефонах второго поколения были снижены, так как потери при передаче оцифрованного звука гораздо ниже.
В стандарте CDMA (Code Division Multiple Access, одновременный доступ с разделением по коду) используются более сложные методы разделения радиоэфира между различными мобильными телефонами. Причем, как много ни было бы разных телефонов в соте, и сколько бы базовых станций ни было бы соседями, каждый мобильный телефон использует для приема и передачи целую частотную полосу (канал) сравнительно большой ширины - 1,25 МГц в стандарте CDMA2000 1x. Чтобы различать сигналы разных телефонов и базовых станций, каждый передатчик имеет собственный код, который распространяется по всей ширине канала.
Самым популярным стандартом сотовой связи является именно стандарт второго поколения GSM - Global System for Mobile Communications (Глобальная система мобильной связи). Мобильными телефонами этого стандарта сейчас пользуются более миллиарда человек во всем мире.
Технологии передачи данных в сетях второго поколения
Но главным следствием перехода к цифровой форме сигнала стала возможность использовать мобильные телефоны для передачи не только голоса (звука), но и других видов информации. Первой подобной услугой, сделавшей возможным передачу текста между мобильными телефонами, был так называемый «сервис коротких сообщений» - Short Message Service (сокращенно SMS). SMS впервые появился в стандарте GSM (в декабре 1992 в сети британского оператора Vodaphone был произведен эксперимент по рассылке SMS), но позднее был реализован и в сетях на основе других стандартов. С помощью технологии SMS можно передавать не только короткие текстовые сообщения, но и простые картинки и звуки, а также выражать свои эмоции с помощью специальных изображений - смайликов (от smile - улыбка). Для этого используются технологии EMS и Nokia Smart Messaging.
Позднее, с совершенствованием мобильных телефонов и развитием компьютеризации, в сетях GSM были введены технологии для передачи компьютерных данных, доступа к сети Интернет (см. ИНТЕРНЕТ) . Первой такой технологией была CSD (Circuit Switched Data, передача данных через прямое подключение), в которой выделенный телефону таймслот используется для передачи данных со скоростью 9.6 килобит в секунду - таймслот выделяется точно так же, как и при совершении телефонных звонков. При этом телефон нельзя использовать по своему прямому назначению. Для увеличения скорости передачи была создана технология HSCSD (High Speed CSD, высокоскоростная CSD) - телефон получает несколько таймслотов сразу, также применяется специальный алгоритм для коррекции ошибок в зависимости от качества соединения. При использовании этой технологии в соте может не хватить таймслотов для всех мобильных телефонов, поэтому она не стала распространенной.
Самой распространенной технологией передачи данных является GPRS (General Packet Radio Service, служба пакетной радиопередачи данных общего пользования), которая позволяет использовать выделенные таймслоты сразу нескольким мобильным телефонам, использует различные алгоритмы при разном качестве связи с БС, различной загруженности БС. Каждый телефон использует различное количество таймслотов, освобождая их при отсутствии необходимости или запрашивая новые. Таймслоты делятся между телефонами с помощью пакетного разделения, как в компьютерных сетях. Количество таймслотов, которое может использовать телефон, ограничено аппаратно, и зависит от класса GPRS мобильного телефона. Скорость передачи асимметрична - если для получения информации телефон класса может использовать до 4-х таймслотов при 8-м и 10-м классах GPRS, то для передачи всего 1-2. Теоретический предел скорости для GPRS при идеальном соединении (21,4 килобит в секунду) и 5-и выделенных таймслотах составляет 107 килобит в секунду. Но реально средняя скорость работы GPRS находится на уровне 56 килобит в секунду. Мобильным телефонам при использовании технологии GPRS выделяются IP-адреса в Интернете, в большинстве случаев не уникальные.
Дальнейшим развитием технологии GPRS стала технология EDGE (Enhanced Data Rates for GSM Evolution, повышенная скорость передачи данных для развития GSM). В этой технологии, по сравнению с GPRS, применены новые схемы кодирования информации, а также изменен алгоритм обработки ошибок (ошибочно переданные пакеты не передаются заново, передается только информация для их восстановления). В результате, максимальная скорость передачи достигает 384 килобит в секунду.
Иногда технологию GPRS называют технологией мобильной связи «поколения 2,5» - 2.5G, а технологию EDGE - технологией 2.75G.
Для сетей CDMA2000 создана технология 1xRTT, позволяющая достигать скорости 144 килобит в секунду.
Назначение технологий передачи данных в сетях мобильной связи
Первоначально эти технологии использовались в мобильных телефонах для доступа в Интернет с помощью персональных компьютеров, и лишь затем, с дальнейшим развитием мобильных телефонов, предоставили доступ в Интернет непосредственно с мобильного телефона. Для получения информации на мобильный телефон использовалась технология WAP (Wireless Application Protocol, протокол для беспроводных приложений), которая предъявляла сравнительно небольшие требования к техническим характеристикам мобильного телефона. Странички создавались на специальном языке WML (Wireless Markup Language), приспособленном к особенностям мобильных телефонов - небольшому размеру экрана, только клавишному управлению, небольшим скоростям передачи данных, задержкам при загрузке страниц, и так далее. Более того, ввиду низкой производительности процессора и малого объема памяти мобильного телефона, для максимального облегчения работы мобильного браузера странички на этом языке обрабатывались не непосредственно, а с помощью промежуточного сервера (так называемого WAP-шлюза), который компилировал их в специальный байт-код, выполняемый мобильным телефоном. Именно за это - работу промежуточного сервера - операторы сотовой связи так высоко оценивают эту услугу.
Однако с совершенствованием мобильных телефонов вскоре произошли изменения. Во-первых, отпала необходимость в промежуточном сервере - теперь браузеры современных мобильных телефонов выполняют его работу самостоятельно. Во-вторых, на смену специализированному языку WML приходит стандарт xHTML - он отличается от повсеместно используемого в Интернете языка HTML только соблюдением некоторых специальных правил, а именно, спецификации XML. В-третьих, современные мобильные телефоны обладают вполне достаточным размером экрана для отображения обычных, предназначенных для компьютеров, страниц Интернета. В-четвертых, с развитием современного Интернета оказалось, что код HTML-страниц стал упрощаться и структурироваться, в связи с тем, что теперь он пишется преимущественно машинно. В связи с этими изменениями, многие современные телефоны вполне могут самостоятельно обрабатывать HTML.
На базе этих технологий передачи данных также были созданы дополнительные сервисы для мобильных телефонов - например, MMS(Multimedia Messaging System, система fпередачи мультимедийных сообщений). С помощью мобильного телефона теперь легко можно составить сообщение, содержащее текст, изображение, звук, видео или другие компьютерные файлы. Многие элементы MMS могут быть объединены в слайды, и принявший MMS телефон может показать презентацию, состоящую из них. Технически, когда отправляется MMS-сообщение, используется специализированный протокол передачи данных через обычное Интернет-соединение, например, через GPRS.
MMS-сообщения с мобильного телефона можно отправлять не только на другие мобильные телефоны, но и на адреса электронной почты - на электронный ящик придут все файлы, из которых состоит MMS. Каждое сообщение может быть отправлено сразу по нескольким адресам.
Если адресатом является номер другого мобильного телефона, поддерживающего MMS, то он напрямую закачивает содержимое сообщения по специальному протоколу, либо автоматически, либо по специальному запросу. А если принимающий сообщение мобильный телефон не поддерживает MMS, то он получает SMS-сообщение, содержащее ссылку в Интернете, перейдя по которой можно через Web посмотреть содержимое MMS либо с самого мобильного телефона, либо с персонального компьютера.
Однако большинство современных мобильных телефонов оснащено программами - клиентами электронной почты, и, по мере их совершенствования, MMS становится ненужным, вытесняется другими сервисами, например, BlackBerry.
Доступ в Интернет с мобильных телефонов может использоваться для тех же целей, что и в персональных компьютерах, например, для использования различных служб обмена сообщениями, вроде ICQ.
Мобильная связь третьего поколения
Скорости передачи данных в сетях второго поколения недостаточны для реализации многих новых задач мобильной связи, в частности, передачи высококачественного видео в реальном времени (видеофонии), современных фотореалистичных компьютерных игр через Интернет и других. Для обеспечения необходимых скоростей созданы новые стандарты и протоколы:
1. Стандарт UMTS (Universal Mobile Telecommunications System, универсальная система мобильной связи) на базе технологии W-CDMA (Wideband Code Division Multiple Access, широкополосный CDMA), частично совместимой с GSM. Скорость приема и передачи данных достигает 1920 килобит в секунду.
2. Технология 1xEV (evolution, развитие) для сетей CDMA2000. Скорость приема данных достигает 3,1 мегабит в секунду, а передачи - 1,8 мегабит в секунду.
3. Технологии TD-SCMA, HSDPA и HSUPA. Позволяют достичь еще более высоких скоростей. По состоянию на 2006 технологии W-CDMA предоставляют часто поддержку HSDPA. TD-SCMA разрабатываются.
Таким образом, современные технологии мобильной связи - это не столько технологии мобильной телефонии, сколько универсальные технологии передачи информации.


Энциклопедический словарь . 2009 .

Смотреть что такое "СОТОВАЯ СВЯЗЬ" в других словарях:

    Сотовая связь, сеть подвижной связи один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных … Википедия

    Один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично… … Словарь бизнес-терминов

    Сотовая связь третьего поколения - Сети сотовой связи третьего поколения (3rd Generation, или 3G) работают на частотах диапазона около 2 гигагерц и обеспечивают передачу данных на скорости до 2 мегабит в секунду. Такие характеристики позволяют использовать мобильный телефон, в… … Энциклопедия ньюсмейкеров

    ООО «Екатеринбург 2000» Тип Оператор сотовой связи Расположение … Википедия

    Статья содержит ошибки и/или опечатки. Необходимо проверить содержание статьи на соответствие грамматическим нормам русского языка … Википедия

    В Московском метрополитене работают сотовые телефоны стандарта GSM следующих сотовых операторов на следующих станциях. Содержание 1 «МТС» 2 «Билайн» 3 «МегаФон» … Википедия

    - … Википедия

    Сотовая связь один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты … Википедия

    Координаты: 56°49′53.36″ с. ш. 60°35′14.81″ в. д. / 56.831489° с. ш. 60.587447° в. д. … Википедия

Статьи по теме: