Информация и ее обработка. Виды информации и способы ее обработки

На самом верхнем уровне можно выделить числовую и нечисловую обработку. При числовой обработке используются такие объекты, как переменные, векторы, матрицы, многомерные массивы, константы и т.д. При нечисловой обработке объектами могут быть файлы, записи, поля, иерархии, сети, отношения и т.д.

С точки зрения реализации на основе современных достижений вычислительной техники выделяют следующие виды обработки информации:

последовательная обработка , применяемая в традиционной фоннеймановской архитектуре ЭВМ, располагающей одним процессором;

параллельная обработка , применяемая при наличии нескольких процессоров в ЭВМ;

конвейерная обработка , связанная с использованием в архитектуре ЭВМ одних и тех же ресурсов для решения разных задач, причем если эти задачи тождественны, то это последовательный конвейер, если задачи одинаковые – векторный конвейер.

Принято относить существующие архитектуры ЭВМ с точки зрения обработки информации к одному из следующих классов (Классификация

параллельных архитектур по Флинну).

Архитектуры с одиночным потоком команд и данных (SISD). Традиционная архитектура фон Неймана + КЭШ + память + конвейеризация

Архитектуры с одиночными потоками команд и данных (SIMD). Особенностью данного класса является наличие одного (центрального) контроллера, управляющего рядом одинаковых процессоров.

Архитектуры с множественным потоком команд и одиночным

потоком данных (MISD). Один из немногих – систолический массив процессоров, в котором процессоры находятся в узлах регулярной решетки, роль ребер которой играют межпроцессорные соединения. К классу MISD ряд исследователей относит конвейерные ЭВМ, однако это не нашло окончательного признания, поэтому можно считать, что реальных систем – представителей данного класса не существует.

Архитектуры с множественным потоком команд и множественным потоком данных (MIMD). К этому классу могут быть отнесены следующие конфигурации: мультипроцессорные системы, системы с мультобработкой, вычислительные системы из многих машин, вычислительные сети.

Обработку данных можно разбить на следующие процессы: создание, модификация, контроль, поддержка принятия решений, представление.

Создание данных , как процесс обработки, предусматривает их образование в результате выполнения некоторого алгоритма и дальнейшее использование для преобразований на более высоком уровне.

Модификация данных связана с отображением изменений в реальной предметной области, осуществляемых путем включения новых данных и

удаления ненужных.

Контроль , безопасность и целостность направлены на адекватное отображение реального состояния предметной области в информационной модели и обеспечивают защиту информации от несанкционированного доступа (безопасность) и от сбоев и повреждений технических и программных средств.

Поддержка принятия решения является наиболее важным действием, выполняемым при обработке информации.

Создание документов , сводок, отчетов заключается в преобразовании информации в формы, пригодные для чтения как человеком, так и компьютером. С этим действием связаны и такие операции, как обработка, считывание, сканирование и сортировка документов.

При преобразовании информации осуществляется ее перевод из одной формы представления или существования в другую, что определяется потребностями, возникающими в процессе реализации информационных технологий.

В зависимости от степени информированности о состоянии управляемого процесса, полноты и точности моделей объекта и системы управления, взаимодействия с окружающей средой, процесс принятия решения протекает в различных условиях:

1. Принятие решений в условиях определенности . В этой задаче модели объекта и системы управления считаются заданными, а влияние внешней среды – несущественным. Поэтому между выбранной стратегией использования ресурсов и конечным результатом существует однозначная связь, откуда следует, что в условиях определенности достаточно использовать решающее правило для оценки полезности вариантов решений, принимая в качестве оптимального то, которое приводит к наибольшему

2. Принятие решений в условиях риска . В отличие от предыдущего случая для принятия решений в условиях риска необходимо учитывать влияние внешней среды, которое не поддается точному прогнозу, а известно только вероятностное распределение ее состояний. В этих условиях использование одной и той же стратегии может привести к различным исходам, вероятности появления которых считаются заданными или могут быть определены.

3. Принятие решений в условиях неопределенности . Как и в предыдущей задаче между выбором стратегии и конечным результатом отсутствует однозначная связь. Кроме того, неизвестны также значения вероятностей появления конечных результатов, которые либо не могут быть определены, либо не имеют в контексте содержательного смысла.

4. Принятие решений в условиях многокритериальности . В любой из перечисленных выше задач многокритериальность возникает в случае наличия нескольких самостоятельных, не сводимых одна к другой целей. Наличие большого числа решений усложняет оценку и выбор оптимальной стратегии. Одним из возможных путей решения является использование методов моделирования.

Для поддержки принятия решений обязательным является наличие

следующих компонент:

Обобщающего анализа;

Прогнозирования;

Ситуационного моделирования.

Аналитические системы поддержки принятия решений (СППР) позволяют решать три основных задачи: ведение отчётности, анализ информации в реальном времени (OLAP) и интеллектуальный анализ данных.

OLAP (On - Line Analitycal Processing ) – сервис представляет собой инструмент для анализа больших объемов данных в режиме реального времени. Взаимодействуя с OLAP-системой, пользователь сможет осуществлять гибкий просмотр информации, получать произвольные срезы данных, и выполнять аналитические операции детализации, свертки, сквозного распределения, сравнения во времени.

В зависимости от функционального наполнения интерфейса системы выделяют два основных типа систем поддержки принятия решений: EIS и DSS.

EIS (Execution Information System ) – информационные системы руководства предприятия. Эти системы ориентированы на неподготовленных пользователей, имеют упрощенный интерфейс, базовый набор предлагаемых возможностей, фиксированные формы представления информации.

DSS (Desicion Support System) – полнофункциональные системы анализа и исследования данных, рассчитанные на подготовленных пользователей, имеющих знания как в части предметной области исследования, так и в части компьютерной грамотности.

Можно выделить четыре основных вида информационных процессов : сбор, передача, обработка и накопление.

Накопление (хранение) информации

С накоплением информации связаны следующие понятия:

    Носитель информации – это физическая среда, которое непосредственно хранит информацию.

    Память человека можно условно назвать оперативной (понятие «оперативный» является синонимом понятию «быстрый»). Человек быстро воспроизводит сохраненные в памяти знания. Внутренней можно назвать память человека, а носителем информации – мозг. Внешними носителями (по отношению к человеку) являются все остальные носители: папирус, дерево, бумага, магнитный диск, флэш-накопитель и т.д.

    Хранилище информации – это специальным образом организованная информация на внешних носителях, которая предназначена для длительного хранения и постоянного использования (к примеру, архивы документов, библиотеки, картотеки, базы данных). Единицей хранилища информации является физический документ: анкета, журнал, книга, диск и др. Под организацией хранилища понимается упорядочивание, структурирование, классификация хранимых документов для удобства работы с ними.

    Основными свойствами хранилища информации является объем информации, надежность ее хранения, время доступа к ней (т.е. скорость поиска необходимых сведений), защита информации.

Определение 1

На устройствах компьютерной памяти информацию называют данными , а хранилища данных – базами и банками данных .

Т.к. человек может забыть какую-либо информацию, то внешние носители являются надежнее и на них можно дольше хранить необходимую информацию. Именно с помощью внешних носителей люди имеют возможность передавать свои знания из поколения в поколение.

Техническими средствами реализации накопления информации являются носители информации : оперативная память компьютера (ОЗУ), гибкие, оптические и жесткие диски, переносные запоминающие устройства – флэш-накопители и т.п.

Передача информации

Обмен информацией между людьми происходит в процессе ее передачи, которая может происходить при разговоре, с помощью переписки, используя технические средства связи: телефон, радио, телевидение, компьютерная сеть.

При передаче информации всегда существует источник и приемник информации . Источник передает информацию, а приемник ее получает. Смотря телевизор или слушая товарища, вы являетесь приемником информации, рассказывая выученный стих, при написании сочинения – источником информации. Каждый человек неоднократно из источника становится приемником информации и наоборот.

Информация хранится и передается в виде последовательности сигналов, символов. От источника к приёмнику сообщение передается с помощью некоторой материальной среды: при разговоре – с помощью звуковых волн, при переписке – почтовой связи, при телефонном разговоре – системы телефонной связи. В случае передачи сообщения с помощью технических средств связи их называют информационными каналами (каналами передачи информации). Органы чувств человека являются биологическими информационными каналами.

Таким образом, передача информации происходит по следующей схеме:

Рисунок 1.

В процессе передачи информация часто искажается или теряется, т.к. информационные каналы имеют плохое качество или на линии связи действуют помехи (шумы). Примером информационного канала плохого качества может быть плохая телефонная связь.

Передача информации происходит с какой-то скоростью, которая является информационным объемом сообщения, который передается в единицу времени. Поэтому единицы измерения скорости передачи информации бит/с, байт/с и др.

Обработка информации

Схема обработки информации :

Рисунок 2.

При обработке информации решается информационная задача , которая изначально может быть представлена в традиционной форме: из некоторого набора исходных данных необходимо получить определенные результаты. Переход от исходных данных к результату является процессом обработки. Объект или субъект, осуществляющий обработку, является исполнителем обработки.

Пример 1

Пусть ученику нужно решить математическую задачу: в прямоугольном треугольнике даны длины двух катетов, нужно найти гипотенузу. Для ее решения ученику кроме исходных данных нужно знать математическое правило – теорему Пифагора. Применяя эту теорему, он получит искомую величину. Новые данные получаются путем вычислений, которые выполняются над исходными данными.

Вычисление является только одним из вариантов обработки информации. В качестве способа обработки информации можно использовать не только математические расчеты, но и логические рассуждения.

Результатом процесса обработки информации не всегда является получение каких-либо новых сведений. Например, при переводе текста с английского языка на русский происходит обработка информации, которая изменяет ее форму, но не содержание.

Для успешной обработки информации исполнитель должен использовать алгоритм обработки, т.е. последовательность действий, которую нужно выполнить для достижения нужного результата.

Существует два вида обработки информации :

  • обработка, которая приводит к получению новой информации, нового содержания знаний (решение математических задач, анализ ситуации и др.);
  • обработка, которая приводит к изменению формы, но не содержания (кодирование, структурирование).

Рисунок 3.

Кодирование – преобразование информации в символьную форму, которая удобна для ее накопления, передачи, обработки и сбора. В начале XX столетия телеграфные сообщения кодировались и передавались с помощью азбуки Морзе. Кодирование активно используют при работе с информацией с помощью технических средств (телеграф, радио, компьютеры и т.д.).

Структурирование данных – упорядочивание информации в хранилище, классификация, каталогизация данных.

Ещё один вид обработки информации – поиск в некотором хранилище информации (в основном на внешних носителях: книгах, схемах, таблицах, карточках) нужных данных, которые удовлетворяют определенным условиям поиска (запросу).

Сбор (получение) информации

Определение 2

Получение информации – сбор сведений из различных источников (из хранилища данных, наблюдение за событиями и явлениями, общение, телевидение, компьютерная сеть и т.д.). Получение информации основано на отражении различных свойств процессов, объектов и явлений окружающей среды. Этот процесс выражается в восприятии с помощью органов чувств. Для улучшения восприятия информации существуют разнообразные индивидуальные устройства и приспособления – очки, бинокль, микроскоп, стетоскоп, различные датчики и т. д.

Контрольная работа по «Теории информационных процессов и систем»

Выполнила: Гринюк Е.В.

Южно-Российский государственный университет экономики и сервиса

Кафедра РТ и ИС

Введение

Обмен информацией был и является одной из отличительных особенностей человеческой деятельности. Общение людей друг с другом, их взаимоотношения с внешним миром, их производственная, научная и общественная деятельность тесно связаны с информационными процессами – процессами восприятия, передачи, обработки, поиска, хранения и отображения информации. Без обмена информацией невозможно управление различными объектами, организация производственной, научной и общественной жизни человека. Процессы общения также неразрывно связаны с информационным обменом, коммуникацией, установлением информационных связей между обучаемыми и обучающим.

Накопление человечеством опыта и знаний при освоении природы смешалось с освоением информации.

Сначала из поколения в поколение информация передавалась устно. Это были сведения о профессиональных навыках, например о приемах охоты, обработки охотничьих трофеев, способах земледелия и др. Но затем информацию стали фиксировать в виде графических образов окружающего мира. Так, первые наскальные рисунки, изображающие животных, растения, людей, появились примерно 20 – 30 тыс. лет назад.

Поиск более современных способов фиксирования информации привел к появлению письменности. Вначале люди записывали расчеты с покупателями, а затем написали и первое слово.

1. Что такое информация, информационный процесс.

В обыденной жизни информацию отождествляют с понятиями «сообщение», «сведения», «данные», «знания». Такое соотношение допустимо лишь до некоторой степени, так как у всех этих понятий есть одно общее важное свойство – они обозначают нечто, являющееся отображением реальных объектов и процессов. Однако, как только ставится вопрос о совершенствовании информационных процессов, подобное понимание термина «информация» обнаруживает ряд недостатков. Так, очевидным является то, что целью функционирования информационных систем не может быть выдача как можно большего количества информации (показателей, документов). Один лаконичный, грамотно составленный документ чаще всего полезнее «информативнее», чем несколько документов. Взяв ряд исходных показателей, можно получить множество различных производных, но увеличение числа последних не обязательно будет отражать прирост полезных сведений (знаний).

Следовательно, данные или сообщения содержат нечто такое, от чего зависит их сравнительная ценность, ради чего они собираются, передаются и обрабатываются. Именно поэтому под термином «информация» чаще всего понимают содержательный аспект данных, проводя, таким образом, различие между информацией и данными. Термин «данные» происходит от латинского слова data – факт, а термин «информация» – от латинского «informatio», что означает разъяснение, изложение.

В строго научном плане понятие «информация» связывается с вероятностью осуществления того или иного события. И чем выше вероятность конкретного исхода (результата) этого события, тем меньше количество информации возникает после его осуществления и наоборот. Следовательно, ИНФОРМАЦИЯ – это мера устранения неопределенности в отношении исхода интересующего нас события. Причем характерным является то обстоятельство, что информативность сообщения (количество информации в нем) не всегда пропорциональна объему (длине) этого сообщения.

Информация не существует сама по себе, так как она подразумевает наличие объекта (источника), отражающего информацию, и субъекта (приемника, потребителя), воспринимающего ее. Всякое событие, всякое явление служит источником информации.

Процесс передачи информации от источника к получателю называется Информационным процессом.

При телефонной передаче источник сообщения - говорящий. Кодирующее устройство, изменяющее звуки слов в электрические импульсы, - это микрофон. Канал, по которому передается информация - телефонный провод. Та часть трубки, которую мы подносим к уху, играет роль декодирующего устройства. Здесь электрические сигналы снова преобразуются в звуки. И, наконец, информация поступает в «принимающее устройство» - ухо человека на другом конце провода.

Источник помех

Общая схема передачи информации.

Информация - произвольная последовательность символов, т.е. любое слово, каждый новый символ увеличивает количество информации. Как же измерить количество информации? Для этого, как впрочем и для измерения длины, массы и т.д. нужен эталон. Какое же слово взять в качестве эталона информации? Прежде, чем выбрать это слово необходимо выбрать алфавит - материал, из которого будет сделано это слово. Обычно алфавит берут двухсимвольным. Например, он может состоять из цифр 1 и 0. Эталоном считается слово, состоящее из одного символа такого алфавита. Количество информации, содержащееся в этом слове, принимают за единицу, названную битом. Имея эталон количества информации можно сравнить любое слово с эталоном. Проще сравнивать те слова, которые записаны в том же двухсимвольном алфавите.

ЦЕННОСТЬ ИНФОРМАЦИИ

Количество информации в двух сообщениях может быть совершенно одинаковым, а смысл совершенно разным. Два слова, например «Мир» и «Рим», содержат одинаковое количество информации, состоят из одних и тех же букв, но смысл слов различен.

В повседневной жизни, как правило, оцениваются полученные сведения со смысловой стороны: новые сведения воспринимаем не как определенное количество информации, а как новое содержание.

Пассажиры едут в автобусе. Водитель объявляет остановку. Кое-кто выходит, остальные не обращают внимания на слова водителя - переданную им информацию. Почему? Потому что информация здесь имеет разную ценность для получателей, в роли которых в этом примере выступают пассажиры. Вышел тот, для кого информация была ценна. Значит, ценность можно определить как свойство информации, влияющей на поведение ее получателя.

2. Определение информационных систем и информационных технологий, их различия.

Информационная система – это коммуникационная система по сбору, передаче и переработке информации об объекте. Это прикладная программная подсистема, ориентированная на поиск, сбор, обработку и хранение информации. Каждый базовый компонент информационной системы является самостоятельной системой, имеет определенную структуру построения и цели функционирования.

Термин «технология» (от греческое «techne» – искусство, умение, мастерство и греческого «logos» – понятие, учение) определяется как совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материалов или полуфабрикатов, осуществляемых в процессе производства конечной продукции.

Технология неразрывно связана с машинизацией производственного или непроизводственного, прежде всего управленческого процесса. Управленческие технологии основываются на применении компьютеров и телекоммуникационной техники.

Согласно определению, принятому ЮНЕСКО, информационная технология – это комплекс взаимосвязанных, научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.

3. Обработка информации

Цели, задачи и виды обработки информации

Понятие обработки информации является весьма широким. Ведя речь об обработке информации, следует дать понятие инварианта обработки. Обычно им является смысл сообщения (смысл информации, заключенной в сообщении). При автоматизированной обработке информации объектом обработки служит сообщение, и здесь важно провести обработку таким образом, чтобы инварианты преобразований сообщения соответствовали инвариантам преобразования информации.

Цель обработки информации в целом определяется целью функционирования некоторой системы, с которой связан рассматриваемый информационный процесс. Однако для достижения цели всегда приходится решать ряд взаимосвязанных задач.

К примеру, начальная стадия информационного процесса – рецепция. В различных информационных системах рецепция выражается в таких конкретных процессах, как отбор информации (в системах научно-технической информации), преобразование физических величин в измерительный сигнал (в информационно-измерительных системах), раздражимость. и ощущения (в биологических системах) и т.п.

Процесс рецепции начинается на границе, отделяющей информационную систему от внешнего мира. Здесь, на границе, сигнал внешнего мира преобразуется в форму, удобную для дальнейшей обработки. Для биологических систем и многих технических систем, например читающих автоматов, эта граница более или менее четко выражена. В остальных случаях она в значительной степени условна и даже расплывчата. Что касается внутренней границы процесса рецепции, то она практически всегда условна и выбирается в каждом конкретном случае исходя из удобства исследования информационного процесса.

Следует отметить, что независимо от того, как «глубоко» будет отодвинута внутренняя граница, рецепцию всегда можно рассматривать как процесс классификации.

Формализованная модель обработки информации

Обратимся теперь к вопросу о том, в чем сходство и различие процессов обработки информации, связанных с различными составляющими информационного процесса, используя при этом формализованную модель обработки. Прежде всего заметим, что нельзя отрывать этот вопрос от потребителя информации (адресата), от семантического и прагматического аспектов информации. Наличие адресата, для которого предназначено сообщение (сигнал), определяет отсутствие однозначного соответствия между сообщением и содержащейся в нем информацией. Совершенно очевидно, что одно и то же сообщение может иметь различный смысл для разных адресатов и различное прагматическое значение.

(3.1)
Предположим, что с каждым конкретным потребителем информации связано некоторое множество I, элементами которого являются пары смысл-значение. Существует множество X сообщений, элементами которого могут быть символы, слова, фразы, значения физических величин и процессов – словом, любые знаки. Чтобы из сообщения X могла быть извлечена информация I, должно существовать некоторое отображение j

являющееся результатом действия по крайней мере трех факторов:

1) договоренности между отправителем и потребителем, что позволяет «осмысливать» сообщение;

2) наличием конкретной цели у адресата;

3) той ситуацией, в которой находится адресат.

Последние два фактора определяют значение сообщения. Отображение j называется правилом интерпретации сообщении. Оно может быть общим, понятным для многих потребителей информации, либо известным лишь паре отправитель-потребитель, а для других потребителей информации незнание правила j приводит к тому, что даже воспринятое сообщение не поддается интерпретации или ведет к ложной интерпретации.

Обработка информации не может быть осуществлена вне обработки содержащих ее сообщений.

Можно представить следующую формализованную модель обработки. Пусть X – множество возможных сообщений, фигурирующих в некоторой системе коммуникации. Под обработкой сообщений понимается некоторое отображение q:

следует рассматривать как интерпретацию обработанных сообщений Y. Здесь множество J есть также множество пар смысл-значение.

Представление обработки в форме (3.2), хотя и не охватывает всех видов обработки сообщений, тем не менее является достаточно общим, чтобы рассматривать многие виды обработки сообщений в технических системах.

Принимая во внимание правило обработки (3.2) и правила интерпретации (3.1) и (3.3), получаем следующую зависимость отображений j, y и q:

(3.4)

Из диаграммы видно, что каждому сообщению xÎX поставлен в соответствие ровно один образ j(x)ÎI и ровно один образ y(q(x))ÎJ. Действительно:

yÎY имеет образ y(y)ÎJ;

xÎX имеет образ q(x)ÎY, ;

xÎX имеет образ y(q(x)).

Учитывая это, на множествах I, J можно определить отношение h, которое может выражать такой смысл: иметь общий прообраз во множестве X. Данное отношение h не обязательно является отображением. Так, если отображение j не биективно, то элемент множества I может иметь более одного прообраза во множестве X. Каждый прообраз как элемент множества X имеет по одному образу в множестве J, и, следовательно, рассматриваемый элемент из множества I находится в отношении h с числом элементов из множества J, равным числу его прообразов в множестве X. В силу этого отношение h не является отображением.

Правило обработки j сообщения X называется сохраняющим информацию, если отношение h является отображением, а диаграмма (3.4) принимает вид

(3.5)

Из диаграммы следует, что произведение отношения jh равно произведению qy, т. е. диаграмма (3.4) является коммутативной. Определяющим отображением в диаграмме (3.4) является отображение h – правило обработки информации. Поэтому названия различных видов обработки сообщений происходят из смысла и имени правила h. Обычно при выборе вида обработки сообщений исходят из правила h с учетом правил интерпретации сообщений j и y.

Пусть q и h – взаимно однозначные отображения. Это относится к случаю, когда к правилу q предъявляется требование не терять информацию в процессе обработки, например при перемене носителя информации, переходе от одного вида модуляции к другому и т. и.

Рассмотрим пример из области сообщений на естественном языке. Очевидно, сообщение «ЭВМ облад. сп-стью обр-ки инф-ии», благодаря избыточности текста на естественном языке однозначно восстанавливается как «ЭВМ обладает способностью обработки информации».

В рассмотренных примерах существует обратное преобразование q-1, которое является однозначным, – позволяет восстановить исходный элемент xÎX по известному yÎY, т. е. исходное сообщение по обработанному.

Рассмотрим теперь случай, когда h является взаимно однозначным отображением, т.е. интерпретация исходного сообщения может быть произведена точно, а q взаимно однозначным отображением не является. Это значит, что множество X имеет большее число элементов, чем множество Y. Тогда q есть сжимающее отображение. В этом случае правило преобразования называется сжатием информации, хотя правильнее говорить о сжатии сообщения или сжатии сигнала.

Наконец, если отображение h не инъективно, то отображение q также не является взаимно однозначным. При этом происходит потеря части информации в обработанном сообщении yÎY по сравнению с той, которая содержится в исходном сообщении xÎX. Существует много видов обработки информации.

Задачи обнаружения сигнала

Сигнал s(t) распространяясь по каналу связи, искажается помехой, так что можно говорить о том, что на вход приемника приходит не сигнал s(t), а другой сигнал x(t).

В приемнике содержатся априорные сведения о сигнале:

1) известен вид функции s(t) и известно, что она не равна нулю на интервале времени (tн,tк),

2) известна статистика помехи (например, плотность вероятности ее амплитуды).

В приемнике решается, был ли передай сигнал на интервале времени (tн,tк) или нет. Очевидно, что решение нельзя принять до наступления момента времени tн, а в ряде случаев – и до наступления момента tк. Приемник анализирует сигнал x(t) на интервале (tн,tк) и в некоторый момент времени t0³tк должен выдать решение.

Рассмотрим решение данной задачи при следующих ограничениях (условиях):

1) известен вид сигнала s(t), действующего в интервале времени (0, t0);

2) помеха n(t) является аддитивной и представляет собой белый шум, т.е. спектральная плотность мощности помехи Gn(f)=C, где – постоянная величина.

Приемник является линейной системой, к которой применим принцип суперпозиции. На вход приемника поступает воздействие, представляющее собой смесь полезного сигнала s(t) и помехи n(t): x(t)=s(t)+n(t).

Реакцию такой системы на это входное воздействие можно представить как сумму p(t)=x(t)+e(t), где x(t) – реакция системы, вызванная воздействием полезного сигнала s(t); e(t) – результат преобразования системой помехи n(t). Такое разделение произвести можно, если приемник – линейная система.

Помеху, действующую в канале связи, практически нельзя уменьшить, поэтому для повышения помехоустойчивости и пропускной способности канала связи стремятся обычно увеличить мощность полезного сигнала s(t). Как правило, выбирают максимально возможную мощность, учитывая ограничения, накладываемые аппаратурой и самой линией связи, чтобы обеспечить максимальное отношение Pc/sn2, где Pc – мощность полезного сигнала, а sn2 – мощность помехи, отнесенные к входу приемника

Функция приемника – обработать сигнал, чтобы еще больше увеличить отношение сигнал/помеха. Рассмотрим задачу обнаружения сигнала на фоне помех как задачу синтеза линейного фильтра, на выходе которого в момент времени t0 имеет место максимум отношении x(t0)/se2, где se2 – мощность (дисперсия) помехи на выходе фильтра.

Рис. 3.1. Импульсная характеристика линейного фильтра

(3.6)
Синтез фильтра заключается в нахождении либо его частотной характеристики W(jf), либо его импульсной характеристики h(t). При этом необходимо, чтобы выполнялось условие

где k – произвольный постоянный коэффициент.

Учитывая, что спектр помехи e(t) на выходе фильтра зависит от его частотной характеристики:

определим мощность помехи:

Выходной сигнал фильтра в момент времени t0

Преобразуем выражение (3.6):

Интеграл представляет собой энергию сигнала и при заданной функции s(t) является постоянной величиной. Условием минимума является равенство нулю интеграла, т.е. .

Это условие эквивалентно равенству, означающему, что наибольшее отношение сигнал/помеха в момент времени t0 на выходе фильтра достигается тогда, когда импульсная характеристика фильтра является зеркальным отображением полезного сигнала s(t+t0) (рис. 3.1).

Сжатие и адаптивная дискретизация сигналов

Рассмотрим источники измерительной информации и измерительные сигналы. В качестве источников измерительной информации выступают физические объекты разнообразной природы. Для отбора измерительной информации используются различные измерительные преобразователи, основная функция которых состоит в превращении контролируемого параметра или параметров объекта измерения в сигналы. Поэтому ряд свойств измерительных сигналов определяются как видом объекта измерения, так и условиями измерения.

В измерительной технике актуальна проблема обработки больших потоков измерительной информации. Решая эту проблему, можно пойти двумя путями: увеличивать быстродействие средств обработки информации или же сократить объемы обрабатываемой информации.

Быстродействие средств обработки информации (ЭВМ, микропроцессоров) определяется уровнем развития науки и технологии, и путь, связанный с увеличением быстродействия, не обеспечивает быстрого решения проблемы. А вот сократить объем обрабатываемой измерительной информации во многих случаях можно. Взять хотя бы такой пример: испытывается серийный тип самолета. При этом из предыдущих испытаний самолетов того же типа достаточно подробно известны его важнейшие параметры. В этом случае нет необходимости передавать и обрабатывать параметры, пока они находятся в норме. Но если тот или иной параметр существенно отклонился от нормы, то его необходимо передавать и обрабатывать. Такой подход позволяет иногда во много раз сокращать объем обрабатываемой измерительной информации и время ее обработки.

Измерительные сигналы могут содержать избыточную информацию. Если устранить из измерительных сигналов избыточную информацию, можно повысить эффективность обработки измерительной информации.

Устранение избыточности информации измерительных сигналов получило название сжатия измерительных сигналов.

В общем виде задача сжатия формулируется следующим образом: найти преобразование сигнала, сохраняющее важную (полезную) информацию и обеспечивающее минимальный ее объем. При таком подходе понимания информации недостаточно, так как здесь приходится оперировать понятиями важности или ценности информации. Эти понятия по своему характеру являются эвристическими, обычно они выводятся из целевой функции (тоже эвристическое понятие), если эта целевая функция может быть достаточно четко определена.

Этот недостаток самой общей постановки задачи сжатия обусловил появление ряда менее общих постановок этой задачи, опирающихся на различные математические модели измерительных, сигналов. Иногда выбор модели диктуется условиями измерительного эксперимента, иногда же он достаточно произволен. Выбор удачной модели во многом зависит от экспериментатора, от его опыта и интуиции.

Один из подходов к решению задачи сжатия предложен академиком А.Н. Колмогоровым. Подход основывается на понятии e-энтропии класса функции, которую в данном случае следует понимать как количество информации, необходимое для описания любой функции этого класса с погрешностью, не превышающей e. Задать класс сигналов – это значит указать некоторые параметры (обычно границы этих параметров), определяющие этот класс. Например, можно определить класс сигналов, для которых первая производная (скорость изменения) не превышает по абсолютному значению некоторого предельного значения M, или класс сигналов, максимальная частота спектра которых не превышает Fmax, или класс сигналов – функций времени x(t), удовлетворяющих условию Липшица x(t2) - x(t1) £ L(t2 - t1), где L – некоторая постоянная.

Таким образом, класс сигналов задается полностью априорно. Вообще, чем больше объем априорной информации, тем большее сжатие может быть достигнуто.

Как и любые преобразования сигналов, сжатие может быть обратимым или необратимым. Сжатие считается обратимым, если по сжатым данным может быть восстановлен исходный сигнал с точностью до допустимой ошибки e, в противном случае сжатие необратимо.

Если входной сигнал, подлежащий сжатию, является непрерывным во времени (аналоговым), то говорят о сжатии процессов. Если же сигнал уже дискретизирован, т.е. существует в дискретные моменты времени в виде ряда отсчетов и эти отсчеты имеют вид числовых кодов, то говорят о сжатии числовых последовательностей.

Переработка текстовой информации

Переработка информации, представленной в виде текстов на естественном языке, имеет много аспектов. Сюда относятся такие виды информационных процессов, как понимание текстов, их перефразирование (пересказ, перевод на другой язык), сжатие семантической информации. Особенное значение имеет последний тип переработки; сюда относятся классификация и индексирование документов, аннотирование и реферирование их.

Структура сигнала измерительной информации передает и его значение. В текстовой информации это не всегда так. В силу специфики языка в форме сообщения, представленного в виде текста, не просматривается содержание, поэтому обработка текстов требует особых приемов, заключающихся в передаче смысла с помощью человека-интерпретатора либо с помощью различных искусственных методов.

Цель процедуры автоматизированного реферирования – выделить из текста документа наиболее важные положения, как можно более полно раскрывающие суть изложенного исследования. В качестве исходного материала для такого реферата служат предложения, составляющие текст документа. В результате отбора некоторых из них получается сокращенный вариант исходного документа, который не является рефератом в полном смысле этого слова. Этот сжатый таким образом текст принято называть квазирефератом.

Одна из первых систем автоматического квазиреферирования базировалась на предложении, что для каждого документа специфические слова, наиболее часто встречающиеся в нем, используются для передачи основной идеи, изложенной текстом. Разработчик этой системы Г. Лун пользовался следующей оценкой значимости каждого из предложений, составляющих документ: Vпр = Nзс2/Nc, где Vпр – значимость предложения; Nзс – число значимых слов в этом предложении, т.е. таких слов, которые являются специфическими для предметной области, к которой относится документ, и для самого этого документа; Nc – общее число слов в предложении. При такой методике квазиреферат составляет совокупность разрозненных фраз, так что понять смысл реферата можно только после дополнительной обработки полученного текста человеком.

Задача обработки связного текста и генерации таких текстов является довольно трудной, она слабо поддается формализации в полном объеме. Однако разработан ряд методик, позволяющих повысить связность текстов по сравнению с простым отбором наиболее значимых предложений. Одна из них заключается в том, что наиболее связанными считаются такие предложения, которые содержат наибольшее количество одних и тех же значимых слов.

Другая методика оценки семантической значимости предложений для отбора их в квазиреферат основана на определении количества информации, содержащейся в каждом из них. Для этого необходимо произвести частотный анализ текста с точки зрения встречаемости в нем важнейших терминов. По гипотезе автора этой методики В. Пурто, чем более важным является для некоторого текста тот или иной термин, тем чаще он встречается в нем. Поэтому для квазиреферата отбираются такие предложения, которые содержат наибольшее количество терминов, чаще всего повторяющихся в данном документе.

В теории информации в наше время разрабатывают много систем, методов, подходов, идей. Однако ученые считают, что к современным направлениям в теории информации добавятся новые, появятся новые идеи. В качестве доказательства правильности своих предположений они приводят «живой», развивающийся характер науки, указывают на то, что теория информации удивительно быстро и прочно внедряется в самые различные области человеческого знания. Теория информации проникла в физику, химию, биологию, медицину, философию, лингвистику, педагогику, экономику, логику, технические науки, эстетику. По признанию самих специалистов, учение об информации, возникшее в силу потребностей теории связи и кибернетики, перешагнуло их рамки. И теперь, пожалуй, мы вправе говорить об информации как научном понятии, дающем в руки исследователей теоретико-информационный метод, с помощью которого можно проникнуть во многие науки о живой и неживой природе, об обществе, что позволит не только взглянуть на все проблемы с новой стороны, но и увидеть еще не увиденное. Вот почему термин «информация» получил в наше время широкое распространение, став частью таких понятий, как информационная система, информационная культура, даже информационная этика.

Многие научные дисциплины используют теорию информации, чтобы подчеркнуть новое направление в старых науках. Так возникли, например, информационная география, информационная экономика, информационное право.

Но чрезвычайно большое значение приобрел термин «информация» в связи с развитием новейшей компьютерной техники, автоматизацией умственного труда, развитием новых средств связи и обработки информации и особенно с возникновением информатики.

Одной из важнейших задач теории информации является изучение природы и свойств информации, создание методов ее обработки, в частности преобразования самой различной современной информации в программы для ЭВМ, с помощью которых происходит автоматизация умственной работы – своеобразное усиление интеллекта, а значит, развитие интеллектуальных ресурсов общества.

Список литературы

1. Л.Ф. Куликовский, В.В. Мотов «Теоретические основы информационных процессов: Учеб. пособие для вузов». – М., 1987.

2. Л.Ф. Куликовский, В.К. Морозов, В.Г. Жиров «Элементы теории информационных процессов: Учеб. пособие. – Куйбышев, КПтИ, 1979.

3. В.П. Косарев и др. „Компьютерные системы и сети: Учеб. пособие. – М.: Финансы и статистика, 1999.

4. В. Дмитриев “Прикладная теория информации». – М., 1989.

Введение

Информация в 21 веке находится в открытом доступе. Телевидение, Интернет, печатные издания, радиовещание – это только малая часть ресурсов, откуда ее можно почерпнуть. Сейчас любой человек может найти сведения о чем угодно, набрав запрос в поисковой строке, – и вот все как на ладони. Но когда речь заходит о секретных материалах и конфиденциальной информации, не так-то просто становится найти нужные данные – будь то для личных целей или, например, для разоблачения тайн особо важных персон или организаций. Информация может быть уязвима, но для предотвращения пагубных последствий существует понятие защита информации.

Понятие информация

Слово «информация» происходит от латинского слова informatio, что в переводе означает сведение, разъяснение, ознакомление.

Понятие «информация» используется в различных науках, при этом в каждой науке понятие «информация» связано с различными системами понятий. Философский подход: информация – это взаимодействие, отражение, познание. Кибернетический подход: Информация – это характеристики управляющего сигнала, передаваемого по линии связи.

Можно выделить следующие подходы к определению информации:

· традиционный (обыденный) - используется в информатике: Информация – это сведения, знания, сообщения о положении дел, которые человек воспринимает из окружающего мира с помощью органов чувств (зрения, слуха, вкуса, обоняния, осязания).

· вероятностный - используется в теории об информации: Информация – это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределённости и неполноты знаний.

Качественно предоставляемая информация должна обладать следующими свойствами:

· Объективность – не зависит от чьего-либо мнения

· Достоверность – отражает истинное положение дел

· Полнота – достаточна для понимания и принятия решения

· Актуальность – важна и существенна для настоящего времени

· Ценность (полезность, значимость) – обеспечивает решение поставленной задачи, нужна для того, чтобы принимать правильные решения

· Понятность (ясность) – выражена на языке, доступном получателю

Классификация информации:

· По способам восприятия - визуальная, аудиальная, Тактильная, обонятельная, вкусовая;

· По формам представления – текстовая, числовая, графическая, музыкальная, комбинированная и т.д;

· По общественному значению:

§ Массовая – обыденная, общественно-политическая, эстетическая;

§ Специальная – научная, техническая, управленческая, производственная;

§ Личная – наши знания, умения, интуиция.

· на информацию с ограниченным доступом (которая в свою очередь делится на информацию, существующую в виде государственной тайны и информацию, существующую в виде конфиденциальной информации);

· открытую (общедоступную) информацию.

К открытой информации относится: вся не правовая информация, а также информация о выборах и референдуме; официальные документы, обязательно представляемая информация.

К сведениям конфиденциального характера согласно Указу Президента РФ от 06.03.1997 № 188 "Об утверждении Перечня сведений конфиденциального характера", отнесены:

· сведения о фактах, событиях и обстоятельствах частной жизни гражданина, позволяющие идентифицировать его личность (персональные данные), за исключением сведений, подлежащих распространению в средствах массовой информации в установленных федеральными законами случаях. При этом сведения, ставшие известными работнику органа записи актов гражданского состояния в связи с государственной регистрацией акта гражданского состояния, являются персональными данными;

· сведения, составляющие тайну следствия и судопроизводства, а также сведения о защищаемых лицах и мерах государственной защиты, осуществляемой в соответствии с Федеральным законом от 20.08.2004 К" 119-ФЗ "О государственной защите потерпевших, свидетелей и иных участников уголовного судопроизводства" и другими нормативными правовыми актами Российской Федерации;

· служебные сведения, доступ к которым ограничен органами государственной власти в соответствии с ГК РФ и федеральными законами (служебная тайна);

· сведения, связанные с профессиональной деятельностью, доступ к которым ограничен в соответствии с Конституцией РФ и федеральными законами (врачебная, нотариальная, адвокатская тайна, тайна переписки, телефонных переговоров, почтовых отправлений, телеграфных или иных сообщений и т.д.);

· сведения, связанные с коммерческой деятельностью, доступ к которым ограничен в соответствии с ГК РФ и федеральными законами (коммерческая тайна);

· сведения о сущности изобретения, полезной модели или промышленного образца до официальной публикации информации о них.

Хранение, обработка и передача информации

Сбор информации не является самоцелью. Чтобы полученная информация могла использоваться, причем многократно, необходимо ее хранить. Хранение информации - это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга – библиотека, картина – музей, фотография – альбом). Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур – главная особенность информационных систем, отличающих их от простых скоплений информационных материалов. Например, личная библиотека, в которой может ориентироваться только ее владелец, информационной системой не является. В публичных же библиотеках порядок размещения книг всегда строго определенный. Благодаря ему, поиск и выдача книг, а также размещение новых поступлений представляет собой стандартные, формализованные процедуры.

Нередко возникает потребность в передаче информации. В процессе передачи обязательно участвуют источник и приемник информации: первый передает информацию, второй ее получает. Между ними действует канал передачи информации - канал связи. Каналы связи могут быть разными в зависимости от технических устройств.

При получении или передаче информации также возникает необходимость ее обработки. Обработка информации - преобразование информации из одного вида в другой, осуществляемое по строгим формальным правилам.

Защита информации

Современные методы обработки, передачи и накопления информации поспособствовали появлению угроз, связанных с возможностью потери, искажения и раскрытия данных, адресованных или принадлежащих конечным пользователям. Поэтому обеспечение информационной безопасности компьютерных систем и сетей сейчас является одним из ведущих направлений развития ИТ.

Защита информации - это деятельность по предотвращению утечки защищаемой информации, несанкционированных и непреднамеренных воздействий на защищаемую информацию.

Цель защиты информации - желаемый результат защиты информации. Целью защиты информации может быть предотвращение ущерба собственнику, владельцу, пользователю информации в результате возможной утечки информации и/или несанкционированного и непреднамеренного воздействия на информацию.

Система защиты информации - совокупность органов и исполнителей, используемая ими техника защиты информации, а также объекты защиты, организованные и функционирующие по правилам, установленным соответствующими правовыми, организационно-распорядительными и нормативными документами по защите информации.

Под информационной безопасностью понимают защищенность информации от незаконного хранения, обработки и уничтожения, а также защищенность информационных ресурсов от воздействий, направленных на нарушение их работоспособности. Природа этих воздействий может быть самой разнообразной.

Это и попытки проникновения злоумышленников, и ошибки персонала, и выход из строя аппаратных и программных средств, и стихийные бедствия (землетрясение, ураган, пожар) и т. п.

Современная автоматизированная система (АС) обработки информации представляет собой сложную систему, состоящую из большого числа компонентов различной степени автономности, которые связаны между собой и обмениваются данными. Практически каждый компонент может подвергнуться внешнему воздействию или выйти из строя. Компоненты АС можно разбить на следующие группы:

Аппаратные средства - компьютеры и их составные части (процессоры, мониторы, терминалы, периферийные устройства - дисководы, принтеры, контроллеры, кабели, линии связи и т. д.);

Программное обеспечение - приобретенные программы, исходные, объектные, загрузочные модули; ОС и системные программы (компиляторы, компоновщики и др.), утилиты, диагностические программы и т. д.;

Данные - хранимые временно и постоянно, на магнитных носителях, печатные, архивы, системные журналы и т. д.;

Персонал - обслуживающий персонал и пользователи.

Существуют три базовых принципа, которые должны осуществляться. В случае несоблюдения принципов можно говорить о наличии утечки или искажении информации.

1. Конфиденциальность – обязательное для выполнения лицом, получившим доступ к определенной информации, требование не передавать такую информацию третьим лицам без согласия ее обладателя, а также обеспечение невозможности доступа к информации лицам, не имеющим соответствующего разрешения.

2. Целостность – отсутствие в защищаемой информации каких-либо несанкционированных изменений (как случайных, так и преднамеренных).

3. Достоверность – гарантия того, что информация получена из известного доверенного или из надежного источника.

Обработка информации

На различных этапах информационного цикла данные преобразовываются из одного вида в другой с помощью различных методов. Общая схема процесса обработки информации выглядит следующим образом (рис. 1.15).

Рис.1.15.

В процессе обработки информации решается некоторая информационная задача, для которой должны быть определены исходная (некоторый набор исходных данных) и итоговая (требуемые результаты) информация. Переход от исходных данных к результату и есть процесс обработки. Тот объект или субъект, который осуществляет обработку, называется исполнителем обработки. Это может быть человек или техническое устройство, в том числе компьютер.

Для успешного выполнения обработки информации исполнителю должен быть известен способ обработки, т. е. последовательность действий, которую нужно выполнить, чтобы достичь нужного результата. Описание такой последовательности действий в информатике принято называть алгоритмом обработки.

Можно выделить два типа обработки информации:

1. Обработка, связанная с получением новой информации, нового содержания знаний. К ней относится решение различных задач путем применения логических рассуждений.

2. Обработка, связанная с изменением формы, но не изменяющая содержания, например, перевод текста с одного языка на другой.

Обработка данных включает в себя множество разных операций, представляющих собой комплекс совершаемых технологических действий, в результате которых информация преобразуется. Основными операциями являются:

Формализация (приведение данных, поступающих из разных источников, к единой форме);

Фильтрация (устранение лишних данных, которые не нужны для принятия решений);

Сортировка (приведение в порядок данных по заданным признакам с целью удобства использования);

Архивация (сохранение данных в удобной и доступной форме);

Защита (комплекс мер, направленных на предотвращение потерь при воспроизведении и модификации данных);

Преобразование (преобразование данных из одной формы в другую или из одной структуры в другую или изменение типа носителя).

Обработка информации - это получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов.

Обработка является одним из основных процессов, выполняемых над информацией, и главным средством увеличения объема и разнообразия информации.

Средства обработки информации - всевозможные устройства и системы, созданные человечеством, и в первую очередь компьютер.

При обработке информации производится структурирование данных. Это определенный порядок, определенная организация в хранилище информации: расположение данных в алфавитном порядке, группировка по некоторым признакам классификации, использование табличного или графового представления - все это примеры структурирования. От способа организации информации зависит алгоритм поиска. Если информация структурирована, то поиск осуществляется быстрее.

Живые организмы и растения обрабатывают информацию с помощью своих органов и систем, компьютеры путем выполнения некоторых алгоритмов.

Вычислительные алгоритмы должны объединяться в вычислительный граф системы обработки информации в соответствии с требуемой технологической последовательностью решения задач.

По мере развития вычислительной техники совершенствуются и формы ее использования. Существуют разнообразные способы доступа и общения с ЭВМ. Индивидуальный и коллективный доступ к вычислительным ресурсам зависит от степени их концентрации и организационных форм функционирования. Централизованные формы применения вычислительных средств, которые существовали до массового использования ПЭВМ, предполагали их сосредоточение в одном месте и организацию информационно-вычислительных центров индивидуального (ИВЦ) и коллективного пользования (ИВЦКП).

Деятельность ИВЦ и ИВЦКП характеризовалась обработкой больших объемов информации, использованием нескольких средних и больших ЭВМ, квалифицированным персоналом для обслуживания техники и разработки программного обеспечения. Централизованное применение вычислительных и других технических средств позволяло организовать их надежную работу, планомерную загрузку и квалифицированное обслуживание.

Централизованная обработка информации наряду с положительными сторонами имеет и некоторые отрицательные черты, порожденные прежде всего отрывом конечного пользователя от технологического процесса обработки информации.

Децентрализованные формы использования вычислительных ресурсов начали формироваться со второй половины 80-х г ХХ в. Децентрализация предусматривает размещение ПЭВМ в местах возникновения и потребления информации, где создаются автономные пункты ее обработки. К ним относят абонентские пункты и автоматизированные рабочие места.

Автоматизированное рабочее место (АРМ) специалиста включает персональную ЭВМ, работающую автономно или в вычислительной сети, набор программных средств и информационных массивов для решения функциональных задач.

Технология электронной обработки информации - человеко-машинный процесс исполнения взаимосвязанных операций, протекающих в установленной последовательности с целью преобразования исходной (первичной) информации в результатную. Технологические операции разнообразны по сложности, назначению, технике реализации, выполняются на различном оборудовании, многими исполнителями.

Различают два основных типа организации технологических процессов: предметный и пооперационный.

Предметный тип организации технологии предполагает создание параллельно действующих технологических линий, специализирующихся на обработке информации и решении конкретных комплексов задач (учет нагрузки, качества прохождения сигнала и т. п.) и организующих пооперационную обработку данных внутри линии.

Пооперационный (поточный) тип построения технологического процесса предусматривает последовательное преобразование обрабатываемой информации согласно технологии, представленной в виде непрерывной последовательности сменяющих друг друга операций, выполняемых в автоматическом режиме.

Различают следующие режимы взаимодействия пользователя с ЭВМ: пакетный и интерактивный (запросный, диалоговый). Сами ЭВМ могут функционировать в следующих режимах: одно- и многопрограммном, разделения времени, реального времени, телеобработки.

Организация вычислительного процесса при пакетном режиме строилась без доступа пользователя к ЭВМ. Его функции ограничивались подготовкой исходных данных по комплексу информационно-взаимосвязанных задач и передачей их в центр обработки, где формировался пакет, включающий задание для ЭВМ на обработку, программы, исходные и справочные данные. Он вводился в ЭВМ и реализовывался в автоматическом режиме, при этом работа ЭВМ могла проходить в одно- или многопрограммном режиме.

Интерактивный режим предусматривает непосредственное взаимодействие пользователя с информационно-вычислительной системой, может носить характер запроса (как правило регламентированного) или диалога с ЭВМ.

Запросный режим необходим пользователям для взаимодействия с системой через значительное число абонентских терминальных устройств, в том числе удаленных на значительное расстояние от центра обработки. Такая необходимость обусловлена решением оперативных задач справочно-информационного характера.

Диалоговый режим открывает пользователю возможность непосредственно взаимодействовать с вычислительной системой в допустимом для него темпе работы, реализуя повторяющийся цикл выдачи задания, получения и анализа ответа. При этом ЭВМ сама может инициировать диалог, сообщая пользователю последовательность шагов (представление меню) для получения искомого результата.

Обе разновидности интерактивного режима (запросный, диалоговый) основываются на работе ЭВМ в режимах реального времени и телеобработки, которые являются дальнейшим развитием режима разделения времени, поэтому обязательными условиями функционирования системы в этих режимах являются, во-первых, постоянное хранение в запоминающих устройствах ЭВМ необходимой информации и программ и лишь в минимальном объеме поступление исходной информации от абонентов и, во-вторых, наличие у абонентов соответствующих средств связи с ЭВМ для обращения к ней в любой момент времени.

Рассмотренные технологические процессы и режимы работы пользователей в системе "человек-машина" особенно четко проявляются при интегрированной обработке информации, которая характерна для современного автоматизированного решения задач в многоуровневых информационных системах.

Статьи по теме: