Что такое режим истинного цвета true color. Двоичное кодирование графической информации

| Кодирование графической информации, звуковой и видеоинформации

Урок 9
Кодирование графической информации, звуковой и видеоинформации
§16. Кодирование графических изображений. §17. Кодирование звуковой и видеоинформации

§16. Кодирование графических изображений
§17. Кодирование звуковой и видеоинформации

§16. Кодирование графических изображений

Кодирование цвета

Что делать, если рисунок цветной? В этом случае для кодирования цвета пикселя уже не обойтись одним битом. Например, в показанном на рис. 2.17, а (см. также цветной рисунок на форзаце) изображении российского флага 4 цвета: чёрный, синий, красный и белый. Для кодирования одного из четырёх вариантов нужно 2 бита, поэтому код каждого цвета (и код каждого пикселя) будет состоять из двух битов. Пусть 00 обозначает чёрный цвет, 01 - красный, 10 - синий и 11 - белый. Получаем таблицу (рис. 2.17, б).

Проблема только в том, что при выводе на экран нужно как-то определить, какой цвет соответствует тому или другому коду. То есть информацию о цвете для вывода на экран нужно выразить в виде числа (или набора чисел).

Человек воспринимает свет как множество электромагнитных волн. Определенная длина волны соответствует некоторому цвету. Например, волны длиной 500-565 нм - это зелёный цвет. Так называемый «белый» свет на самом деле представляет собой смесь волн, длины которых охватывают весь видимый диапазон.

Согласно современному представлению о цветном зрении (теории Юнга-Гельмгольца), глаз человека содержит чувствительные элементы (рецепторы) трёх типов. Каждый из них воспринимает весь поток света, но первые наиболее чувствительны в области красного цвета, вторые - в области зелёного цвета, а третьи - в области синего цвета. Цвет - это результат возбуждения всех трёх типов рецепторов. Поэтому считается, что любой цвет (т. е. ощущения человека, воспринимающего волны определённой длины) можно имитировать, используя только три световых луча (красный, зелёный и синий) разной яркости. Следовательно, любой цвет (в том числе и «белый») приближённо раскладывается на три составляющих - красную, зелёную и синюю. Меняя силу этих составляющих, можно составить любые цвета (рис. 2.18 и цветной рисунок на форзаце). Эта модель цвета получила название RGB по начальным буквам английских слов «red» (красный), «green» (зелёный) и «blue» (синий).

В модели RGB яркость каждой составляющей (или, как говорят, каждого канала) чаще всего кодируется целым числом от О до 255. При этом код цвета - это тройка чисел (R, G, В) - яркости отдельных каналов. Цвет (О, О, 0) - это чёрный цвет, а (255, 255, 255) - белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета: от чёрного до белого.

Чтобы сделать светло-красный (розовый) цвет, нужно при максимальной яркости красного цвета (255, 0, 0) одинаково увеличить яркость зелёного и синего каналов, например, цвет (255, 150, 150) - это розовый. Равномерное уменьшение яркости всех каналов создаёт тёмный цвет, например цвет с кодом (100, 0, 0) - тёмно-красный.

При кодировании цвета на веб-страницах также используется модель RGB, но яркости каналов записываются в шестнадцатеричной системе счисления (от 00 16 до FF 16), а перед кодом цвета ставится знак #. Например, код красного цвета записывается как #FF0000, а код синего - как #0000FF. Коды некоторых цветов приведены в табл. 2.8.

1 Пурпурный цвет получается при смешении синего и красного.


Всего есть по 256 вариантов яркости каждого из трёх основных цветов. Это позволяет закодировать 256 3 = 16 777 216 оттенков, что более чем достаточно для человека. Так как 256 = 2 8 , каждая из трёх составляющих занимает в памяти 8 битов, или 1 байт, а вся информация о каком-то цвете - 24 бита (3 байта). Эта величина называется глубиной цвета.

Глубина цвета - это количество битов, используемое для кодирования цвета пикселя.

24-битовое кодирование цвета часто называют режимом истинного цвета (англ. True Color - истинный цвет). Для вычисления объёма рисунка в байтах при таком кодировании нужно определить общее количество пикселей (перемножить ширину и высоту) и умножить результат на 3, так как цвет каждого пикселя кодируется тремя байтами. Например, рисунок размером 20 х 30 пикселей, закодированный в режиме истинного цвета, будет занимать 20 30 3 = 1800 байтов. Конечно, здесь не учитывается сжатие (уменьшение объёма файлов с помощью специальных алгоритмов), которое применяется во всех современных форматах графических файлов. Кроме того, в реальных файлах есть заголовок, в котором записана служебная информация например, размеры рисунка).

Кроме режима истинного цвета используется также 16-битное кодирование (англ. High Color - «высокий» цвет), когда на красную и синюю составляющие отводится по 5 битов, а на зелёную, к которой человеческий глаз более чувствителен, - 6 битов. В режиме High Color можно закодировать 2 16 = 65 536 различных цветов. В мобильных телефонах иногда применяют 12-битное кодирование цвета (4 бита на канал, 4096 цветов).

Как правило, чем меньше цветов используется, тем больше будет искажаться цветное изображение. Таким образом, при кодировании цвета тоже есть неизбежная потеря информации, которая «добавляется» к потерям, вызванным дискретизацией. Однако при увеличении количества используемых цветов растёт объём файла. Например, в режиме истинного цвета файл получится в два раза больше, чем при 12-битном кодировании.

Очень часто (например, в схемах, диаграммах и чертежах) количество цветов в изображении невелико (не более 256). В этом случае применяют кодирование с палитрой .

Цветовая палитра - это таблица, в которой каждому цвету, заданному в виде составляющих в модели RGB, сопоставляется числовой код.

Кодирование с палитрой выполняется следующим образом:

Выбирается количество цветов N (как правило, не более 256);
из палитры истинного цвета (16 777 216 цветов) выбираются любые N цветов и для каждого из них находятся составляющие в модели RGB;
каждому из выбранных цветов присваивается номер (код) от 0 до N - 1;
составляется палитра: сначала записываются RGB-составляющие цвета, имеющего код 0, затем - составляющие цвета с кодом 1 и т. д.;
цвет каждого пикселя кодируется не в виде значений RGB-составляющих, а как номер цвета в палитре.

Например, при кодировании изображения российского флага (см. выше) были выбраны 4 цвета:

Чёрный: RGB-код (0, 0, 0); двоичный код 002;
красный: RGB-код (255, 0, 0); двоичный код 012;
синий: RGB-код (0, 0, 255); двоичный код 102;
белый: RGB-код (255, 255, 255); двоичный код 112;

Поэтому палитра, которая обычно записывается в специальную служебную область в начале файла (эту область называют заголовком файла ), представляет собой четыре трёхбайтных блока:

Код каждого пикселя занимает всего два бита.

Чтобы примерно оценить информационный объём рисунка с палитрой, включающей N цветов, нужно:

Определить размер палитры: 3 N байтов, или 24 N битов;
определить глубину цвета (количество битов на пиксель), т. е. найти наименьшее натуральное число k, такое что 2k ≥ N;
вычислить общее количество пикселей М, перемножив размеры рисунка;
определить информационный объём рисунка (без учёта палитры): М k битов.

В таблице 2.9 приведены данные по некоторым вариантам кодирования с палитрой.

Палитры с количеством цветов более 256 на практике не используются.

RGB-кодирование лучше всего описывает цвет, который излучается некоторым устройством, например экраном монитора или ноутбука (рис. 2.19, а и цветной рисунок на форзаце). Когда же мы смотрим на изображение, отпечатанное на бумаге, ситуация совершенно другая. Мы видим не прямые лучи источника, попадающие в глаз, а отражённые от поверхности. «Белый свет» от какого-то источника (солнца, лампочки), содержащий волны во всём видимом диапазоне, попадает на бумагу, на которой нанесена краска. Краска поглощает часть лучей (их энергия уходит на нагрев), а оставшиеся попадают в глаз, это и есть тот цвет, который мы видим (рис. 2.19, б и цветной рисунок на форзаце).

Например, если краска поглощает красные лучи, остаются только синие и зелёные (см. рис. 2.19, б) - мы видим голубой цвет. В этом смысле красный и голубой цвета дополняют друг друга, так же как и пары зелёный - пурпурный и синий - жёлтый. Действительно, если из белого цвета (его RGB-код #FFFFFF) «вычесть» зелёный, то получится цвет #FFOOFF (пурпурный), а если «вычесть» синий, то получится цвет #FFFFOO (жёлтый).

На трёх дополнительных цветах - голубом, пурпурном и жёлтом - строится цветовая модель CMY (англ. Cyan - голубой, Magenta - пурпурный, Yellow - жёлтый), которая применяется для вывода изображения на печать. Значения С = М = Y = О говорят о том, что на белую бумагу не наносится никакая краска, поэтому все лучи отражаются, мы видим белый цвет. Если нанести на бумагу голубой цвет, красные лучи будут поглощаться, останутся только синие и зелёные. Если сверху нанести ещё жёлтую краску, которая поглощает синие лучи, останется только зелёный цвет (рис. 2.20 и цветной рисунок на форзаце).

При наложении голубой, пурпурной и жёлтой красок теоретически должен получиться чёрный цвет, все лучи поглощаются. Однако на практике всё не так просто. Краски не идеальны, поэтому вместо чёрного цвета получается грязно-коричневый. Кроме того, при печати черных областей приходится «выливать» тройную порцию краски в одно место. Нужно также учитывать, что обычно на принтерах часто распечатывают чёрный текст, а цветные чернила значительно дороже чёрных.

Чтобы решить эту проблему, в набор красок добавляют чёрную краску, это так называемый ключевой цвет (англ. Key color), поэтому получившуюся модель обозначают CMYK. Изображение, которое печатает большинство принтеров, состоит из то чек этих четырёх цветов, которые расположены в виде узора очень близко друг к другу. Это создаёт иллюзию того, что в рисунке есть разные цвета.

Кроме цветовых моделей RGB и CMY (CMYK) существуют и другие модели. Наиболее интересная из них - модель HSB 1 (англ. Hue - тон, оттенок; Saturation - насыщенность, Brightness - яркость), которая ближе всего к естественному восприятию человека. Тон - это, например, синий, зелёный, жёлтый. Насыщенность - это чистота тона, при уменьшении насыщенности до нуля получается серый цвет. Яркость определяет, насколько цвет светлый или тёмный. Любой цвет при снижении яркости до нуля превращается в черный.

1 Или HSV (англ. Hue - тон, оттенок; Saturation - насыщенность, Value - величина).


Строго говоря, цвет, кодируемый в моделях RGB, CMYK и HSB, зависит от устройства, на котором этот цвет будет изображаться. Для кодирования «абсолютного» цвета применяют модель Lab (англ. Lighntess - светлота, а и b - параметры, определяющие тон и насыщенность цвета), которая является международным стандартом. Эта модель используется, например, для перевода цвета из модели RGB в модель CMYK и обратно.

Обычно изображения, предназначенные для печати, готовятся на компьютере (в режиме RGB), а потом переводятся в цветовую модель CMYK. При этом стоит задача - получить при печати такой же цвет, что и на мониторе. И вот тут возникают проблемы. Дело в том, что при выводе пикселей на экран монитор получает некоторые числа (RGB-коды), на основании которых нужно «выкрасить» пиксели тем или иным цветом. Отсюда следует важный вывод.

Цвет, который мы видим на мониторе, зависит от характеристик и настроек монитора .

Это значит, что, например, красный цвет (R = 255, G = В = 0) на разных мониторах будет разным. Наверняка вы видели этот эффект в магазине, где продают телевизоры и мониторы, - одна и та же картинка на каждом из них выглядит по-разному. Что же делать?

Во-первых, выполняется калибровка монитора - настройка яркости, контрастности, белого, чёрного и серого цветов. Во-вторых, профессионалы, работающие с цветными изображениями, используют цветовые профили мониторов, сканеров, принтеров и других устройств. В профилях хранится информация о том, каким реальным цветам соответствуют различные RGB-коды или CMYK-коды. Для создания профиля используют специальные приборы - калибраторы (колориметры), которые «измеряют» цвет с помощью трёх датчиков, принимающих лучи в красном, зелёном и синем диапазонах. Современные форматы графических файлов (например, формат PSD программы Adobe Photoshop) вместе с кодами пикселей хранят и профиль монитора, на котором создавался рисунок.

Для того чтобы результат печати на принтере был максимально похож на изображение на мониторе, нужно (используя профиль монитора) определить «абсолютный» цвет (например, в модели Lab), который видел пользователь, а потом (используя профиль принтера) найти CMYK-код, который даст при печати наиболее близкий цвет.

Проблема состоит в том, что не все цвета RGB-модели могут быть напечатаны. В первую очередь это относится к ярким и насыщенным цветам. Например, ярко-красный цвет (R = 255, G = В = 0) нельзя напечатать, ближайший к нему цвет в модели CMYK (С = 0, М = Y = 255, К = 0) при обратном переводе в RGB может дать значения 2 в районе R = 237, G = 28, В = 26. Поэтому при преобразовании ярких цветов в модель CMYK (и при печати ярких рисунков) они становятся тусклее. Это обязательно должны учитывать профессиональные дизайнеры.

2 Как вы понимаете, точные цифры зависят от профилей монитора и принтера.

Следующая страница

Что делать, если рисунок цветной? В этом случае для кодирования цвета пикселя уже не обойтись одним битом. Например, в показанном на рисунке изображении российского флага 4 цвета: черный, синий, красный и белый. Для кодирования одного из четырех вариантов нужно 2 бита, поэтому код каждого цвета (и код каждого пикселя) будет состоять из двух бит. Пусть 00 обозначает черный цвет, 01 - красный, 10 - синий и 11 - белый. Тогда получаем такую таблицу:

Проблема только в том, что при выводе на экран нужно как?то определить, какой цвет соответствует тому или другому коду. То есть информацию о цвете нужно выразить в виде числа (или набора чисел).

Человек воспринимает свет как множество электромагнитных волн. Определенная длина волны соответствуют некоторому цвету. Например, волны длиной 500?565 м - это зеленый цвет. Так называемый «белый» свет на самом деле представляет собой смесь волн, длины которых охватывают весь видимый диапазон.

В модели RBG яркость каждой составляющей

(или, как говорят, каждого канала) чаще всего

кодируется целым числом от 0 до 255. При этом

код цвета - это тройка чисел (R,G,B), яркости

отдельных каналов. Цвет (0,0,0) - это черный

цвет, а (255,255,255) - белый. Если все составляющие Рис.5

имеют равную яркость, получаются оттенки серого цвета, от черного до белого. При кодировании цвета на веб-страницах также используется модель RGB, но яркости каналов записываются в шестнадцатеричной системе счисления (от 00 16 до FF 16), а перед кодом цвета ставится знак #. Например, код красного цвета записывается как #FF0000, а код синего - как #0000FF.

Вот коды некоторых цветов:

Таблица 1

Всего есть по 256 вариантов яркости каждого из трех цветов. Это позволяет закодировать 256 3 = 16 777 216 оттенков, что более чем достаточно для человека. Так как 256 = 2 8 , каждая из трех составляющих занимает в памяти 8 бит или 1 байт, а вся информация о каком-то цвете - 24 бита (или 3 байта). Эта величина называется глубиной цвета.

Глубина цвета - это количество бит, используемое для кодирования цвета пикселя. кодирование графический информация

24-битное кодирование цвета часто называют режимом истинного цвета (англ. TrueColor - истинный цвет). Для вычисления объема рисунка в байтах при таком кодировании нужно определить общее количество пикселей (перемножить ширину и высоту) и умножить результат на 3, так как цвет каждого пикселя кодируется тремя байтами. Например, рисунок размером 20Ч30 пикселей, закодированный в режиме истинного цвета, будет занимать 20Ч30Ч3 = 1800 байт. Конечно, здесь не учитывается сжатие, которое применяется во всех современных форматах графических файлов. Кроме того, в реальных файлах есть заголовок, в котором записана служебная информация (например, размеры рисунка). Кроме режима истинного цвета используется также 16-битное кодирование (англ. HighColor - «высокий» цвет), когда на красную и синюю составляющую отводится по 5 бит, а на зеленую, к которой человеческий глаз более чувствителен - 6 бит. В режиме HighColor можно закодировать 2 16 = 65 536 различных цветов. В мобильных телефон 12-битное кодирование цвета (4 бита на канал, 4096 цветов). Как правило, чем меньше цветов используется, тем больше будет искажаться цветное изображение. Таким образом, при кодировании цвета тоже есть неизбежная потеря информации, которая «добавляется» к потерям, вызванным дискретизацией. Однако при увеличении количества используемых цветов одновременно растет объем файла. Например, в режиме истинного цвета файл получится в два раза больше, чем при 12-битном кодировании. Очень часто (например, в схемах, диаграммах и чертежах) количество цветов в изображении невелико (не более 256). В этом случае применяют кодирование с палитрой.

Цветовая палитра - это таблица, в которой каждому цвету, заданному в виде составляющих в модели RGB, сопоставляется числовой код.

Кодирование с палитрой выполняется следующим образом:

  • · выбираем количество цветов N (как правило, не более 256);
  • · из палитры истинного цвета (16 777 216 цветов) выбираем любые N цветов и для каждого
  • · из них находим составляющие в модели RGB;
  • · каждому из цветов присваиваем номер (код) от 0 до N-1;
  • · составляем палитру, записывая сначала RGB-составляющие цвета, имеющего код 0, затем составляющие цвета с кодом 1 и т.д.
  • · цвет каждого пикселя кодируется не в виде значений RGB-составляющих, а как номер цвета в палитре.

Например, при кодировании изображения российского флага (см. выше) были выбраны 4 цвета:

  • · черный: RGB-код (0,0,0); двоичный код 002;
  • · красный: RGB-код (255,0,0); двоичный код 012
  • · синий: RGB-код (0,0,255); двоичный код 102;
  • · белый: RGB-код (255,255,255); двоичный код 112.

Поэтому палитра, которая обычно записывается в специальную служебную область в начале файла, представляет собой четыре трехбайтных блока:

Код каждого пикселя занимает всего два бита. Чтобы примерно оценить объем рисунка с палитрой, включающей N цветов (без учета сжатия), нужно:

  • · определить размер палитры, 3ЧN байт или 24ЧN бит;
  • · определить глубину цвета (количество бит на пиксель), то есть найти наименьшее натуральное число k, такое что 2 k ? N;
  • · вычислить общее количество пикселей M, перемножив размеры рисунка;
  • · определить информационный объем основной части MЧk бит.

В таблице приведены данные по некоторым вариантам кодирования с палитрой:

Таблица 2

Палитры с количеством цветом более 256 на практике не используются. RGB-кодирование лучше всего описывает цвет, который излучается некоторым устройством, например, монитором или экраном ноутбука. Когда же мы смотрим на изображение, отпечатанное на бумаге, ситуация совершенно другая. Мы видим не прямые лучи источника, попадающие в глаз, а отраженные от поверхности. «Белый свет» от какого-то источника (солнца, лампочки), содержащий волны во всем видимом диапазоне, попадает на бумагу, на которой нанесена краска. Краска поглощает часть лучей (их энергия уходит на нагрев), а оставшиеся попадают в глаз, это и есть тот цвет, который мы видим.


Например, если краска поглощает красные лучи, остаются только синие и зеленые - мы видим голубой цвет. В этом смысле красный и голубой цвета дополняют друг друга, так же, как и пары зеленый - фиолетовый и синий - желтый.

Действительно, если из белого цвета (его RGB - код #FFFFFF) «вычесть» зеленый, то получится цвет #FF00FF (фиолетовый, пурпурный), а если «вычесть» синий, то получится цвет #FFFF00 (желтый).

На трех дополнительных цветах - голубом,

фиолетовом и желтом -строится цветовая

модель CMY (англ. Cyan - голубой, Magenta -

фиолетовый, Yellow - желтый), которая применяется

для вывода на печать. Рис.8

Значения C=M=Y=0 говорят о том, что на белую бумагу не наносится никакая краска, поэтому все лучи отражаются, это белый цвет. Если добавить голубого цвета, красные лучи поглощаются, остаются только синие и зеленые. Если сверху нанести еще желтую краску, которая поглощает синие лучи, остается только зеленый.

При наложении голубой, фиолетовой и желтой красок теоретически должен получиться черный цвет, все лучи поглощаются. Однако на практике все не так просто. Краски не идеальны, поэтому вместо черного цвета получается грязно-коричневый. Кроме того, при печати черных областей приходится «выливать» тройную порцию краски в одно место. Нужно также учитывать, что обычно на принтерах часто распечатывают черный текст, а цветные чернила значительно дороже черных.

Чтобы решить эту проблему, в набор красок добавляют черную, это так называемый ключевой цвет (англ. Keycolor), поэтому получившуюся модель обозначают CMYK. Изображение, которое печатает большинство принтеров, состоит из точек этих четырех цветов, которые расположены в виде узора очень близко друг к другу. Это создает иллюзию того, что в рисунке есть разные цвета. Кроме цветовых моделей RGB и CMY (CMYK), существуют и другие. Наиболее интересная из них - модель HSB (англ. Hue - тон, оттенок; Saturation - насыщенность,Brightness - яркость), которая ближе всего к естественному восприятию человека. Тон - это, например, синий, зеленый, желтый. Насыщенность - это чистота тона, при уменьшении насыщенности до нуля получается серый цвет. Яркость определяет, насколько цвет светлый или темный. Любой цвет при снижении яркости до нуля превращается в черный.

Строго говоря, цвет, кодируемый в моделях RGB, CMYK и HSV, зависит от устройства, на котором этот цвет будет изображаться. Для кодирования «абсолютного» цвета применяют модель Lab (англ. Lighntess - светлота, a и b - параметры, определяющие тон и насыщенность цвета), которая является международным стандартом. Эта модель используется, например, для перевода цвета из RGB в CMYK и обратно.

Обычно изображения, предназначенные для печати, готовятся на компьютере (в режиме RGB), а потом переводятся в цветовую модель CMYK. При этом стоит задача получить при печати такой же цвет, что и на мониторе. И вот тут возникают проблемы. Дело в том, что при выводе пикселей на экран монитор получает некоторые числа (RGB-коды), на основании которых нужно «выкрасить» пиксели тем или иным цветом. Отсюда следует важный вывод.

Цвет, который мы видим на мониторе, зависит от характеристик и настроек монитора.

Это значит, что, например, красный цвет (R=255, G=B=0) на разных мониторах будет разным. Наверняка вы видели этот эффект в магазине где продают телевизоры и мониторы - одна и та же картинка на каждом из них выглядит по-разному. Что же делать?

Во-первых, выполняется калибровка монитора - настройка яркости, контрастности, белого, черного и серого цветов. Во-вторых, профессионалы, работающие с цветными изображениями, используют цветовые профили мониторов, сканеров, принтеров и других устройств. В профилях хранится информация о том, каким реальным цветам соответствуют различные RGB-коды или CMYK-коды. Для создания профиля используют специальные приборы - калибраторы (колориметры), которые «измеряют» цвет с помощью трех датчиков, принимающих лучи в красном, зеленом и синем диапазонах. Современные форматы графических файлов (например, формат.PSDпрограммы AdobePhotoshop) вместе с кодами пикселей содержат и профиль монитора, на котором создавался рисунок. Для того, чтобы результат печати на принтере был максимально похож на изображение на мониторе, нужно (используя профиль монитора) определить «абсолютный» цвет (например, в модели Lab), который видел пользователь, а потом (используя профиль принтера) найти CMYK-код, который даст при печати наиболее близкий цвет.

Проблема состоит в том, что не все цвета RGB-модели могут быть напечатаны. В первую очередь это относится к ярким и насыщенным цветам. Например, ярко-красный цвет (R=255, G=B=0) нельзя напечатать, ближайший к нему цвет в модели CMYK (C=0, M=Y=255, K=0) при обратном переводе в RGB может дать значения в районе R=237, G=28, B=26. Поэтому при преобразовании ярких цветов в модель CMYK (и при печати ярких рисунков) они становятся тусклее. Это обязательно должны учитывать профессиональные дизайнеры.

Итак, при растровом кодировании рисунок разбивается на пиксели (дискретизируется). Для каждого пикселя определяется единый цвет, который чаще всего кодируется с помощью RGB-кода. На практике эти операции выполняет сканер(устройство для ввода изображений) и цифровой фотоаппарат.

Растровое кодирование имеет достоинства:

  • · универсальный метод (можно закодировать любое изображение);
  • · единственный метод для кодирования и обработки размытых изображений, не имеющих;
  • · четких границ, например, фотографий.

Растровое кодирование имеет недостатки:

  • · при дискретизации всегда есть потеря информации;
  • · при изменении размеров изображения искажается цвет и форма объектов на рисунке, поскольку при увеличении размеров надо как-то восстановить недостающие пиксели, а при уменьшении - заменить несколько пикселей одним;
  • · размер файла не зависит от сложности изображения, а определяется только разрешением и глубиной цвета;
  • · как правило, растровые рисунки имеют большой объем.

Существует много разных форматов растровых рисунков. Чаще всего встречаются следующие:

BMP (англ. bitmap - битовая карта, файлы с расширением.bmp) - стандартный формат в операционной системе Windows; поддерживает кодирование с палитрой и в режиме истинного цвета;

JPEG (англ. JointPhotographicExpertsGroup - объединенная группа фотографов-экспертов, файлы с расширением.jpg или.jpeg) - формат, разработанный специально для кодирования фотографий; поддерживает только режим истинного цвета; для уменьшения объема файла используется сильное сжатие, при котором изображение немного искажается, поэтому не рекомендуется использовать его для рисунков с четкими границами;

GIF (англ. GraphicsInterchangeFormat - формат для обмена изображениями, файлы с расширением.gif) - формат, поддерживающий только кодирование с палитрой (от 2 до 256 цветов); в отличие от предыдущих форматов, части рисунка могут быть прозрачными, то есть на веб-странице через них будет «просвечивать» фон; в современном варианте формата GIF можно хранить анимированные изображения; используется сжатие без потерь, то есть при сжатии изображение не искажается;

PNG (англ. PortableNetworkGraphics - переносимые сетевые изображения, файлы с расширением.png) - формат, поддерживающий как режим истинного цвета, так и кодирование с палитрой; части изображения могут быть прозрачными и даже полупрозрачными (32-битное кодирование RGBA, где четвертый байт задает прозрачность); изображение сжимается без искажения; анимация не поддерживается.

Свойства рассмотренных форматов сведены в таблицу:

Таблица 3

Вы уже знаете, что все виды информации хранятся в памяти компьютера в виде двоичных кодов, то есть цепочек из нулей и единиц. Получив такую цепочку, абсолютно невозможно сказать, что это - текст, рисунок, звук или видео. Например, код 11001000 2 может обозначать число 200, букву "И", одну из составляющих цвета пикселя в режиме истинного цвета, номер цвета в палитре для рисунка с палитрой 256 цветов, цвета 8 пикселей черно-белого рисунка и т.п. Как же компьютер разбирается в двоичных данных? В первую очередь нужно ориентироваться на расширение имени файла. Например, чаще всего файлы с расширением.txt содержат текст, а файлы с расширениями.bmp, .gif, .jpg, .png - рисунки.

Однако расширение файла можно менять как угодно. Например, можно сделать так, что текстовый файл будет иметь расширение.bmp, а рисунок в формате JPEG - расширение.txt. Поэтому в начало всех файлов специальных форматов (кроме простого текста, .txt) записывается заголовок, по которому можно «узнать» тип файла и его характеристики. Например, файлы в формате BMP начинаются с символов «BM», а файлы в формате GIF - с символов «GIF». Кроме того, в заголовке указывается размер рисунка и его характеристики, например, количество цветов в палитре, способ сжатия и т.п.

Используя эту информацию, программа «расшифровывает» основную часть файла и выводит его на экран.

Растры, пиксели, дискретизация, разрешение

Как и все виды информации, изображения в компьютере закодированы в виде двоичных последовательностей. Используют два принципиально разных метода кодирования, каждый из которых имеет свои достоинства и недостатки.

И линия, и область состоят из бесконечного числа точек. Цвет каждой из этих точек нам нужно закодировать. Если их бесконечно много, мы сразу приходим к выводу, что для этого нужно бесконечно много памяти. Поэтому «поточечным» способом изображение закодировать не удастся. Однако, эту все-таки идею можно использовать.

Начнем с черно-белого рисунка. Представим себе, что на изображение ромба наложена сетка, которая разбивает его на квадратики. Такая сетка называется растром. Теперь для каждого квадратика определим цвет (черный или белый). Для тех квадратиков, в которых часть оказалась закрашена черным цветом, а часть белым, выберем цвет в зависимости от того, какая часть (черная или белая) больше.

Рисунок 1.

У нас получился так называемый растровый рисунок, состоящий из квадратиков-пикселей.

Определение 1

Пиксель (англ. pixel = picture element, элемент рисунка) – это наименьший элемент рисунка, для которого можно задать свой цвет. Разбив «обычный» рисунок на квадратики, мы выполнили его дискретизацию – разбили единый объект на отдельные элементы. Действительно, у нас был единый и неделимый рисунок – изображение ромба. В результаты мы получили дискретный объект – набор пикселей.

Двоичный код для черно-белого рисунка, полученного в результате дискретизации можно построить следующим образом:

  • заменяем белые пиксели нулями, а черные – единицами;
  • выписываем строки полученной таблицы одну за другой.

Пример 1

Покажем это на простом примере:

Рисунок 2.

Ширина этого рисунка – $8$ пикселей, поэтому каждая строчка таблицы состоит из $8$ двоичных разрядов – битов. Чтобы не писать очень длинную цепочку нулей и единиц, удобно использовать шестнадцатеричную систему счисления, закодировав $4$ соседних бита (тетраду) одной шестнадцатеричной цифрой.

Рисунок 3.

Например, для первой строки получаем код $1A_{16}$:

а для всего рисунка: $1A2642FF425A5A7E_{16}$.

Замечание 1

Очень важно понять, что мы приобрели и что потеряли в результате дискретизации. Самое важное – мы смогли закодировать рисунок в двоичном коде. Однако при этом рисунок исказился - вместо ромба мы получили набор квадратиков. Причина искажения в том, что в некоторых квадратиках части исходного рисунка были закрашены разными цветами, а в закодированном изображении каждый пиксель обязательно имеет один цвет. Таким образом, часть исходной информации при кодировании была потеряна. Это проявится, например, при увеличении рисунка - квадратики увеличиваются, и рисунок еще больше искажается. Чтобы уменьшить потери информации, нужно уменьшать размер пикселя, то есть увеличивать разрешение.

Определение 2

Разрешение – это количество пикселей, приходящихся на дюйм размера изображения.

Разрешение обычно измеряется в пикселях на дюйм (используется английское обозначение $ppi$ = pixels per inch). Например, разрешение $254$ $ppi$ означает, что на дюйм ($25,4$ мм) приходится $254$ пикселя, так что каждый пиксель «содержит» квадрат исходного изображения размером $0,1×0,1$ мм. Чем больше разрешение, тем точнее кодируется рисунок (меньше информации теряется), однако одновременно растет и объем файла .

Кодирование цвета

Что делать, если рисунок цветной? В этом случае для кодирования цвета пикселя уже не обойтись одним битом. Например, в показанном на рисунке изображении российского флага $4$ цвета: черный, синий, красный и белый. Для кодирования одного из четырех вариантов нужно $2$ бита, поэтому код каждого цвета (и код каждого пикселя) будет состоять из двух бит. Пусть $00$ обозначает черный цвет, $01$ – красный, $10$ – синий и $11$ – белый. Тогда получаем такую таблицу:

Рисунок 4.

Проблема только в том, что при выводе на экран нужно как-то определить, какой цвет соответствует тому или другому коду. То есть информацию о цвете нужно выразить в виде числа (или набора чисел).

Человек воспринимает свет как множество электромагнитных волн. Определенная длина волны соответствуют некоторому цвету. Например, волны длиной $500-565$ нм – это зеленый цвет. Так называемый «белый» свет на самом деле представляет собой смесь волн, длины которых охватывают весь видимый диапазон.

Согласно современному представлению о цветном зрении (теории Юнга-Гельмгольца), глаз человека содержит чувствительные элементы трех типов. Каждый из них воспринимает весь поток света, но первые наиболее чувствительны в области красного цвета, вторые – области зеленого, а третьи – в области синего цвета. Цвет – это результат возбуждения всех трех типов рецепторов. Поэтому считается, что любой цвет (то есть ощущения человека, воспринимающего волны определенной длины) можно имитировать, используя только три световых луча (красный, зеленый и синий) разной яркости. Следовательно, любой цвет приближенно раскладывается на три составляющих – красную, зеленую и синюю. Меняя силу этих составляющих, можно составить любые цвета. Эта модель цвета получила название RGB по начальным буквам английских слов red (красный), green (зеленый) и blue (синий).

В модели RBG яркость каждой составляющей (или, как говорят, каждого канала) чаще всего кодируется целым числом от $0$ до $255$. При этом код цвета – это тройка чисел (R,G,B), яркости отдельных каналов. Цвет ($0,0,0$) – это черный цвет, а ($255,255,255$) – белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета, от черного до белого.

Рисунок 5.

Чтобы сделать светло-красный (розовый) цвет, нужно в красном цвете ($255,0,0$) одинаково увеличить яркость зеленого и синего каналов, например, цвет ($255, 150, 150$) – это розовый. Равномерное уменьшение яркости всех каналов делает темный цвет, например, цвет с кодом ($100,0,0$) – тёмно-красный.

Всего есть по $256$ вариантов яркости каждого из трех цветов. Это позволяет закодировать $256^3= 16 777 216$ оттенков, что более чем достаточно для человека. Так как $256 = 2^8$, каждая из трех составляющих занимает в памяти $8$ бит или $1$ байт, а вся информация о каком-то цвете – $24$ бита (или $3$ байта). Эта величина называется глубиной цвета.

Определение 3

Глубина цвета – это количество бит, используемое для кодирования цвета пикселя.

$24$-битное кодирование цвета часто называют режимом истинного цвета (англ. True Color – истинный цвет). Для вычисления объема рисунка в байтах при таком кодировании нужно определить общее количество пикселей (перемножить ширину и высоту) и умножить результат на $3$, так как цвет каждого пикселя кодируется тремя байтами. Например, рисунок размером $20×30$ пикселей, закодированный в режиме истинного цвета, будет занимать $20×30×3 = 1800$ байт.

Кроме режима истинного цвета используется также $16$-битное кодирование (англ. High Color – «высокий» цвет), когда на красную и синюю составляющую отводится по $5$ бит, а на зеленую, к которой человеческий глаз более чувствителен – $6$ бит. В режиме High Color можно закодировать $2^{16} = 65 536$ различных цветов. В мобильных телефонах $12$-битное кодирование цвета ($4$ бита на канал, $4096$ цветов).

Кодирование с палитрой

Как правило, чем меньше цветов используется, тем больше будет искажаться цветное изображение. Таким образом, при кодировании цвета тоже есть неизбежная потеря информации, которая «добавляется» к потерям, вызванным дискретизацией. Очень часто (например, в схемах, диаграммах и чертежах) количество цветов в изображении невелико (не более $256$). В этом случае применяют кодирование с палитрой.

Определение 4

Цветовая палитра – это таблица, в которой каждому цвету, заданному в виде составляющих в модели RGB, сопоставляется числовой код.

Кодирование с палитрой выполняется следующим образом:

  • выбираем количество цветов $N$ (как правило, не более $256$);
  • из палитры истинного цвета ($16 777 216$ цветов) выбираем любые $N$ цветов и для каждого из них находим составляющие в модели RGB;
  • каждому из цветов присваиваем номер (код) от $0$ до $N–1$;
  • составляем палитру, записывая сначала RGB-составляющие цвета, имеющего код $0$, затем составляющие цвета с кодом $1$ и т.д.

Цвет каждого пикселя кодируется не в виде значений RGB-составляющих, а как номер цвета в палитре. Например, при кодировании изображения российского флага (см. выше) были выбраны $4$ цвета:

  • черный: RGB-код ($0,0,0$); двоичный код $002$;
  • красный: RGB-код ($255,0,0$); двоичный код $012$;
  • синий: RGB-код ($0,0,255$); двоичный код $102$;
  • белый: RGB-код ($255,255,255$); двоичный код $112$.

Поэтому палитра, которая обычно записывается в специальную служебную область в начале файла (ее называют заголовком файла), представляет собой четыре трехбайтных блока:

Рисунок 6.

Код каждого пикселя занимает всего два бита.

Палитры с количеством цветом более $256$ на практике не используются.

Достоинства и недостатки растрового кодирования

Растровое кодирование имеет достоинства :

  • универсальный метод (можно закодировать любое изображение);
  • единственный метод для кодирования и обработки размытых изображений, не имеющих четких границ, например, фотографий.

И недостатки :

  • при дискретизации всегда есть потеря информации;
  • при изменении размеров изображения искажается цвет и форма объектов на рисунке, поскольку при увеличении размеров надо как-то восстановить недостающие пиксели, а при уменьшении – заменить несколько пикселей одним;
  • размер файла не зависит от сложности изображения, а определяется только разрешением и глубиной цвета.

Как правило, растровые рисунки имеют большой объем.

3 Растровое кодирование пиксель дискретизация! Рисунок искажается! Пиксель – это наименьший элемент рисунка, для которого можно задать свой цвет. Растровое изображение – это изображение, которое кодируется как множество пикселей.

4 Растровое кодирование 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 A 26 42 FF 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 42 5 A 5 A 7 E 1 A 2642 FF 425 A 5 A 7 E 16

6 Разрешение – это количество пикселей, приходящихся на дюйм размера изображения. ppi = pixels per inch, пикселей на дюйм 1 дюйм = 2, 54 см 300 ppi 96 ppi печать экран 48 ppi 24 ppi

7 Разрешение Задача 1. Какой размер в пикселях должен иметь закодированный рисунок с разрешением 300 ppi, чтобы с него можно было сделать отпечаток размером 10× 15 см? высота 10 см × 300 пикселей 1181 пиксель 2, 54 см 15 см × 300 пикселей 1771 пиксель ширина 2, 54 см

8 Разрешение Задача 2. Закодированный рисунок имеет размеры 5760 × 3840 пикселей и разрешение 600 ppi. Какой размер будет у изображения, отпечатанного на принтере? ширина 5760 пикселей × 2, 54 см 24, 4 см 600 пикселей высота 3840 пикселей × 2, 54 см 16, 3 см 600 пикселей

9 Теория цвета Юнга-Гельмгольца чувствительность три типа «колбочек» 0 400 500 600 700 , нм! Свет любой длины волны можно заменить на красный, зелёный и синий лучи!

10 Цветовая модель RGB Д. Максвелл, 1860 цвет = (R, G, B) green red blue красный зеленый синий 0. . 255 (0, 0, 0) (255, 255) (255, 0, 0) (255, 150) (0, 255, 0) (0, 255) (0, 0, 255) (100, 0, 0) ? Сколько разных цветов можно кодировать? 256· 256 = 16 777 216 (True Color, «истинный цвет») ! RGB – цветовая модель для устройств, излучающих свет (мониторов)!

11 Цветовая модель RGB (255, 0) #FFFF 00 RGB Веб-страница (0, 0, 0) #000000 (255, 255) #FFFFFF (255, 0, 0) #FF 0000 (0, 255, 0) #00 FF 00 (0, 0, 255) #0000 FF (255, 0) #FFFF 00 (204, 204) #CCCCCC

12 Задачи Постройте шестнадцатеричные коды: RGB (100, 200) RGB (30, 50, 200) RGB (60, 180, 20) RGB (220, 150, 30)

13 Глубина цвета - это количество битов, используемое для кодирования цвета пикселя. ? Сколько памяти нужно для хранения цвета 1 пикселя в режиме True Color? R (0. . 255) 256 = 28 вариантов 8 битов = 1 байт R G B: 24 бита = 3 байта True Color (истинный цвет) Задача. Определите размер файла, в котором закодирован растровый рисунок размером 20× 30 пикселей в режиме истинного цвета (True Color)? 20 3 байта = 1800 байт

14 Кодирование с палитрой? Как уменьшить размер файла? уменьшить разрешение уменьшить глубину цвета снижается качество Цветовая палитра – это таблица, в которой каждому цвету, заданному в виде составляющих в модели RGB, сопоставляется числовой код.

15 Кодирование с палитрой 00 11 11 11 11 00 01 01 01 01 00 10 10 10 10 Палитра: 0 0 0 цвет 002 0 0 255 0 0 цвет 012 цвет 102 ? Какая глубина цвета? ? Сколько занимает палитра? 255 255 цвет 112 2 бита на пиксель 3 4 = 12 байтов

16 Кодирование с палитрой Шаг 1. Выбрать количество цветов: 2, 4, … 256. Шаг 2. Выбрать 256 цветов из палитры: 248 0 88 0 221 21 181 192 0 21 0 97 Шаг 3. Составить палитру (каждому цвету – номер 0. . 255) палитра хранится в начале файла 0 248 0 88 1 0 221 21 254 181 192 0 … 255 21 0 97 Шаг 4. Код пикселя = номеру его цвета в палитре 2 45 65 14 … 12 23

17 Кодирование с палитрой Файл с палитрой: палитра коды пикселей Количество цветов Размер палитры (байтов) Глубина цвета (битов на пиксель) 2 4 16 256 6 12 48 768 1 2 4 8

18 Задачи Задача 1. В процессе преобразования растрового графического файла количество цветов уменьшилось с 512 до 8. Во сколько раз уменьшился информационный объем файла? Задача 2. Разрешение экрана монитора – 1024 х 768 точек, глубина цвета – 16 бит. Каков необходимый объем видеопамяти для данного графического режима? Задача 3. Сколько байт будет занимать код рисунка размером 40× 50 пикселей в режиме истинного цвета? при кодировании с палитрой 256 цветов? Задача 4. Для хранения растрового изображения размером 128 x 128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения?

19 Растровые рисунки: форматы файлов Формат BMP JPG True Color Палитра GIF PNG Прозрачность Анимация

20 Кодирование цвета при печати (CMYK) R R G B G B Белый – красный = голубой C = Cyan Белый – зелёный = пурпурный M = Magenta Белый – синий = желтый Y = Yellow C M Y 0 0 0 255 255 255 Модель CMYK: + Key color § меньший расход краски и лучшее качество для чёрного и серого цветов

21 RGB и CMYK видит человек RGB CMYK не все цвета, которые показывает монитор (RGB), можно напечатать (CMYK) при переводе кода цвета из RGB в CMYK цвет искажается RGB(0, 255, 0) CMYK(65, 0, 100, 0) RGB(104, 175, 35)

22 Цветовая модель HSB (HSV) HSB = Hue (тон, оттенок) Saturation (насыщенность) Brightness (яркость) или Value (величина) 0 /360 270 0 Тон (H) Насы 100 Яркость (B) 90 100 щенн ость (S) 0 180 насыщенность – добавить белого яркость – добавить чёрного

23 Цветовая модель Lab Международный стандарт кодирования цвета, независимого от устройства (1976 г.) Основана на модели восприятия цвета человеком. Lab = Lightness (светлота) a, b (задают цветовой тон) для перевода между цветовыми моделями: RGB Lab CMYK Светлота 25% Светлота 75% для цветокоррекции фотографий

24 Профили устройств? Какой цвет увидим? RGB(255, 0, 0) как 680 нм RGB(255, 0, 0) 680 нм профиль монитора RGB(225, 10, 20) профиль сканера CMYK(0, 100, 0) профиль принтера

25 Растровое кодирование: итоги универсальный метод (можно закодировать любое изображение) единственный метод для кодирования и обработки размытых изображений, не имеющих чётких границ (фотографий) есть потеря информации (почему?) при изменении размеров цвет и форма объектов на рисунке искажается размер файла не зависит от сложности рисунка (а от чего зависит?)

26 Векторное кодирование Рисунки из геометрических фигур: отрезки, ломаные, прямоугольники окружности, эллипсы, дуги сглаженные линии (кривые Безье) Для каждой фигуры в памяти хранятся: размеры и координаты на рисунке цвет и стиль границы цвет и стиль заливки (для замкнутых фигур)

27 Векторное кодирование Кривые Безье: А В Б угловой узел гладкий узел Д Г Хранятся координаты узлов и концов «рычагов» (3 точки для каждого узла, кривые 3 -го порядка).

28 Векторное кодирование (итоги) лучший способ для хранения чертежей, схем, карт при кодировании нет потери информации при изменении размера нет искажений растровый рисунок векторный рисунок меньше размер файла, зависит от сложности рисунка неэффективно использовать для фотографий и размытых изображений

29 Векторное кодирование: форматы файлов WMF (Windows Metafile) EMF (Windows Metafile) CDR (программа Corel. Draw) AI (программа Adobe Illustrator) для веб-страниц SVG (Scalable Vector Graphics, масштабируемые векторные изображения)

Width:="" auto="">

31 Практическое задание Слайд 12 выполнить в тетради В программе Paint по образцу выполнит след. работу:

33 Оцифровка звука аналоговый сигнал Оцифровка – это преобразование аналогового сигнала в цифровой код (дискретизация). – интервал дискретизации (с) – частота дискретизации (Гц, к. Гц) T Человек слышит 16 Гц … 20 к. Гц t 8 к. Гц – минимальная частота для распознавания речи 11 к. Гц, 22 к. Гц, 44, 1 к. Гц – качество CD-дисков 48 к. Гц – фильмы на DVD 96 к. Гц, 192 к. Гц

34 Оцифровка звука: квантование? Сколько битов нужно, чтобы записать число 0, 6? Квантование (дискретизация по уровню) – это представление числа в виде цифрового кода конечной длины. АЦП = Аналого-Цифровой Преобразователь 3 -битное кодирование: 8 битов = 256 уровней 16 битов = 65536 уровней 24 бита = 224 уровней 7 6 5 4 3 2 1 0 Разрядность кодирования - это число битов, используемое для хранения одного отсчёта. T t

35 Оцифровка звука Задача. Определите информационный объем данных, полученных при оцифровке звука длительностью 1 минута с частотой 44 к. Гц с помощью 16 -битной звуковой карты. Запись выполнена в режиме «стерео» . За 1 сек каждый канал записывает 44000 значений, каждое занимает 16 битов = 2 байта всего 44000 2 байта = 88000 байтов С учётом «стерео» всего 88000 2 = 176000 байтов За 1 минуту 176000 60 = 1056000 байтов 10313 Кбайт 10 Мбайт

36 Оцифровка звука Как восстановить сигнал? ЦАП = Цифро-Аналоговый Преобразователь после без было до сглаживания оцифровкисглаживания T аналоговые устройства! t ? Какой улучшить качество? ? Что при этом ухудшится? уменьшать T размер файла

37 Оцифровка – итог можно закодировать любой звук (в т. ч. голос, свист, шорох, …) есть потеря информации большой объем файлов? Какие свойства оцифрованного звука определяют качество звучания? Форматы файлов: WAV (Waveform audio format), часто без сжатия (размер!) MP 3 (MPEG-1 Audio Layer 3, сжатие с учётом восприятия человеком) AAC (Advanced Audio Coding, 48 каналов, сжатие) WMA (Windows Media Audio, потоковый звук, сжатие) OGG (Ogg Vorbis, открытый формат, сжатие)

38 Инструментальное кодирование MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов). в файле. mid: 128 мелодических нота (высота, длительность) и 47 ударных музыкальный инструмент параметры звука (громкость, тембр) программа для до 1024 каналов звуковой карты! в памяти звуковой карты: образцы звуков (волновые таблицы) MIDI-клавиатура: § нет потери информации при кодировании инструментальной музыки § небольшой размер файлов невозможно закодировать нестандартный звук, голос

39 Трекерная музыка В файле (модуле): образцы звуков (сэмплы) нотная запись, трек (track) – дорожка музыкальный инструмент до 32 каналов Форматы файлов: MOD разработан для компьютеров Amiga S 3 M оцифрованные каналы + синтезированный звук, 99 инструментов XM, STM, … Использование: демосцены (важен размер файла)

40 Кодирование видео! Видео = изображения + звук Синхронность! изображения: ≥ 25 кадров в секунду PAL: 768× 576, 24 бита за 1 с: 768× 576× 3 байта ≈ 32 Мб за 1 мин: 60× 32 Мбайта ≈ 1, 85 Гб HDTV: 1280× 720, 1920× 1080. исходный кадр + изменения (10 -15 с) сжатие (кодеки – алгоритмы сжатия) Div. X, Xvid, H. 264, WMV, Ogg Theora… звук: 48 к. Гц, 16 бит сжатие (кодеки – алгоритмы сжатия) MP 3, AAC, WMA, …

41 Форматы видеофайлов AVI – Audio Video Interleave – чередующиеся звук и видео; контейнер – могут использоваться разные кодеки MPEG – Motion Picture Expert Group WMV – Windows Media Video, формат фирмы Microsoft MP 4 – MPEG-4, сжатое видео и звук MOV – Quick Time Movie, формат фирмы Apple Web. M – открытый формат, поддерживается браузерами

42 Источники иллюстраций 1. 2. 3. 4. 5. 6. 7. 8. http: //ru. wikipedia. org/ http: // www. cyberphysics. co. uk http: //epson. su http: //www 8. hp. com http: //head-fi. org http: //ru. wikipedia. org/ http: //ru. wikipedia. org авторские материалы

Какие сложности у вас возникли? Как их можно преодолеть?

2. Постройте черно-белый рисунок шириной 8 пикселей, закодированный шестнадцатеричной последовательностью 2466FF6624 16 .

3. Постройте черно-белый рисунок шириной 5 пикселей, закодированный шестнадцатеричной последовательностью 3A53F88 16 .

4. Рисунок размером 10×15 см кодируется с разрешением 300 ppi. Оцените количество пикселей в этом рисунке. (Ответ: около 2 мегапикселей)

5. Постройте шестнадцатеричный код для цветов, имеющих RGB-коды (100,200,200), (30,50,200), (60,180, 20), (220, 150, 30). (Ответ: #64C8C8, #1E32C8, #3CB414, #DC961E)

6. Как бы вы назвали цвет, заданный на веб-странице в виде кода: #CCCCCC, #FFCCCC, #CCCCFF, #000066, #FF66FF, #CCFFFF, #992299, #999900, #99FF99? Найдите десятичные значения составляющих RGB- кода. (Ответ: (204,204,204), (255,204,204), (204,204,255), (0,0,102), (255.255,102), (104,255,255), (153,34,153), (153,153,0), (153,255,153))

7. Что такое глубина цвета? Как связаны глубина цвета и объем файла?

8. Какова глубина цвета, если в рисунке используется 65536 цветов? 256 цветов? 16 цветов? (Ответ: 16 бит; 8 бит; 4 бита)

9. Для желтого цвета найдите красную, зеленую и синюю составляющие при 12-битном кодировании. (Ответ: R=G=15, B=0)

10. Сколько места занимает палитра в файле, где используются 64 цвета? 128 цветов?

11. Сколько байт будет занимать код рисунка размером 40×50 пикселей в режиме истинного цвета? при кодировании с палитрой 256 цветов? при кодировании с палитрой 16 цветов? в черно-белом варианте (два цвета)? (Ответ: 6000, 2000, 1000, 250)

12. Сколько байт будет занимать код рисунка размером 80×100 пикселей в кодировании с глубиной цвета 12 бит на пиксель? (Ответ: 12000)

13. Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти. Каково максимально возможное число цветов в палитре изображения? (Ответ: 16)

14. Для хранения растрового изображения размером 128 x 128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения? (Ответ: 4)

15. В процессе преобразования растрового графического файла количество цветов уменьшилось с 1024 до 32. Во сколько раз уменьшился информационный объем файла? (Ответ: в 2 раза)

16. В процессе преобразования растрового графического файла количество цветов уменьшилось с 512 до 8. Во сколько раз уменьшился информационный объем файла?(Ответ: в 3 раза)

17. Разрешение экрана монитора – 1024 х 768 точек, глубина цвета – 16 бит. Каков необходимый объем видеопамяти для данного графического режима? (Ответ: 1,5 Мбайт)

18. После преобразования растрового 256-цветного графического файла в черно- белый формат (2 цвета) его размер уменьшился на 70 байт. Каков был размер исходного файла? (Ответ: 80 байт)

19. Сколько памяти нужно для хранения 64-цветного растрового графического изображения размером 32 на 128 точек? (Ответ: 3 Кбайта)

20. Какова ширина (в пикселях) прямоугольного 64-цветного неупакованного растрового изображения, занимающего на диске 1,5 Мбайт, если его высота вдвое меньше ширины? (Ответ: 2048)

21. Какова ширина (в пикселях) прямоугольного 16-цветного неупакованного растрового изображения, занимающего на диске 1 Мбайт, если его высота вдвое больше ширины? (Ответ: 1024)

Статьи по теме: