Цифровой термометр на термопаре схема. Контроллер больших температур на термопаре K-типа

PIC16F676 Применение, это и паяльная станция, и управление высокотемпературными процессами и т.д. с функцией ПИД регулировки нагревательного элемента

Решил в свой ламинатор вставить термометр, термометр на термопаре K-типа. Чтобы он у меня стал более информативен, считаю, что хоббийный радиолюбитель не может довольствоваться, когда на таком приборе горит только два светодиода "POWER” и "READY” . Развожу платку под свои детальки. На всякий случай с возможностью её резать пополам(это некоторая универсальность). Сразу с местом под силовую часть на тиристоре, но пока эту часть не использую, это будет у меня схемка под паяльник (когда придумаю, как в жало термопару пристроить)


В ламинаторе мало места (механизмы расположены очень плотно, китай понимаеш ли), использую маленький семисегментный индикатор, но это еще не все, плата целиком тоже не влазит, вот тут пригодилась универсальность платы, разрезаю ее надвое (если использовать разъем верхняя часть подходит ко многим разработкам на пикушечках от ur5kby.)


Настраиваю, сначала делаю, как сказано в форуме , не впаиваю термопару, задаю 400 (хотя если этот параметр будет в памяти, этот пункт отпадет) настраиваю переменниками примерно комнатную и точно по кипению,

Такой контроллер теоретически работает до 999°C но в домашних условиях такую температуру вряд ли найти, самое большее это открытый огонь, но у этого источника тепла сильная нелинейность и чувствительность к внешним условиям.

вот примерная таблица.
и еще для наглядности

Так что выбор невелик в выборе источника для настройки показаний контроллера.

больше тут никакой игры кнопочками, Все можно собирать,
Термопару использовал от китайского тестера. И пост в форуме надоумил меня, что эту термопару можно размножать, её длина почти полметра, отрезаю 2 см.

делаю трансформатором по скрутке угольком, шарик получается, а к двум концам точно так, по медной проволочке, для хорошей пайки к моим проводам.

Термопары широко применяются там где необходимо точно померить высокие температуры, т емпературы вплоть до 2500°C. То есть там, где цифровые датчики бы сразу сдохли от перегрева, применяются термопары. Разновидностей термопар существует достаточно много, но самое большое распространение получили хромель-алюмелевые (тип К) термопары, из-за своей дешевизны и практически линейному изменению термоэдс. Этот вид термопар ставятся в водонагреватели и другие бытовые приборы с контролем температуры, их повсеместно используют для контроля температуры при плавке металла, с помощью этих термопар контролируется нагрев жала в паяльной станции. Поэтому будет весьма полезно познакомиться с ними поближе.

Термопара это два проводника из разных металлов и имеющих общую точку контакта (спай). В точке этого контакта возникает разность потенциалов. Эта разность потенциалов зовется термоэдс и напрямую зависит от температуры, в которой находится спай. Металлы подбираются таким образом, чтобы зависимость термоэдс от температуры нагрева была наиболее линейна. Это упрощает расчет температуры и сокращает погрешность измерений.


Так широко применяемые хромель-алюмелевые термопары имеют достаточно высокую линейность и стабильность показаний на всем диапазоне измеряемых температур.
Ниже приведен график для хромель-алюмелевых термопар (тип К) показывающий, зависимость возникающей термоэдс от температуры спая (в конце статьи будет ссылка на график с большим разряшением):

Таким образом значение термоэдс достаточно умножить на нужный коэффициент и получить температуру, не заморачиваясь с табличными значениями и аппроксимацией - один коэффициент на весь диапазон измерений. Очень просто и понятно.
Но встает вопрос о подключении термопары к микроконтроллеру. Понятно что если на выходе термопары напряжение, тогда задействуем АЦП, но разность потенциалов на выходе термопары слишком мала, чтобы уловить хоть что-то. Поэтому прежде его нужно увеличить, например, применив операционный усилитель.

Берём стандартную схему неинвертирующего включения операционного усилителя:


Отношение входного и выходного напряжений описывается простой формулой:

Vout /Vin = 1 + (R2/R1)

От значений резисторов обратной связи R1 и R2 зависит коэффициент усиления сигнала. Величину усиления сигнала нужно подбирать с учетом того, что будет использоваться в качестве опорного напряжения.

Допустим опорным будет напряжение питания микроконтроллера 5V. Теперь необходимо определится с диапазоном температур, которые собираемся измерять. Я взял пределом измерения 1000 °C. При этом значении температуры на выходе термопары будет потенциал примерно 41,3мВ. Это значение должно соответствовать напряжению в 5 вольт на входе АЦП. Поэтому операционник должен иметь коэффициент усиления не менее 120. В итоге родилась такая схема:


В загашнике у меня нашлась давно собранная плата с этим операционником, собирал как предусилитель для микрофона, ее я и применил:


Собрал на бредборде такую схему подключения двухстрочного дисплея к микроконтроллеру:


Термопара тоже валялась без дела долгое время - она шла в комплекте с моим мультиметром. Спай закрыт в металлическую гильзу.


Код Bascom-AVR для работы с термопарой:

$regfile = "m8def.dat"
$crystal = 8000000

Dim W As Integer

"подключение двухстрочного дисплея

Config Lcdpin = Pin , Rs = Portb . 0 , E = Portd . 7 , Db4 = Portd . 6 , Db5 = Portd . 5 , Db6 = Portb . 7 , Db7 = Portb . 6
Config Lcd = 16 * 2
Cursor Off
Cls

"считывание значения с АЦП по прерыванию от таймера

Config Timer1 = Timer , Prescale = 64
On Timer1 Acp

"конфигурация АЦП

Config Adc = Single , Prescaler = Auto , Reference = Avcc

Enable Interrupts
Enable Timer1

Do

Cls
Rem Температура:
Lcd "Teјѕepaїypa:"
Lowerline
Lcd W


Waitms 200

Loop


"работа с АЦП

Acp :

Start Adc "запуск АЦП
W = Getadc (1 )
W = W / 1 . 28 "подгоняем замеры под действ. температуру
Return

End

На МК. Сердцем его является микроконтроллер PIC16F628A. В схеме термометра используется 4-х значный или 2+2 светодиодный индикатор с общим анодом. Датчик температуры используется типа DS18B20, и в моем случае показания датчика отображаются с точностью 0,5*С. Термометр имеет пределы измерения теемпературы от -55 до +125*С, что достаточно на все случаи жизни. Для питания термометра была использована обычная зарядка от мобилы на ИП с транзистором 13001.

Принципиальная схема термометра на микроконтроллере PIC16F628A:

Для прошивки PIC16F628A я использовал программу ProgCode, установив её на компьютер и собрав программатор ProgCode по известной схеме:

Обозначение выводов используемого микроконтроллера и цоколёвка некоторых других аналогичных МК:

Программа ProgCode и инструкции с фотографиями пошаговой прошивки находятся в архиве на форуме. Там же и все необходимые для этой схемы файлы. В программе открываем и нажимаем на кнопку "записать всё”. В моем изготовленном устройстве, как видно из фотографий, собрано 2 термометра сразу в одном корпусе, верхний индикатор показывает температуру дома, нижний - на улице. Размещается он в любом месте помещения и соединяется с датчиком гибким проводом в экране. Материал предоставил ansel73. Прошивку редактировал: [)еНиС

Термопара - это один из видов температурных датчиков, который может применяться в измерительных устройствах и системах автоматизации. Ей присущи определенные преимущества: дешевизна, высокая точность, широкий по сравнению с термисторами и микросхемами цифровых датчиков температуры диапазон измерения, простота и надежность. Однако выходное напряжение термопары мало и относительно, а схема измерителя на термопаре сложна, так как предъявляются жесткие требования к прецизионному усилению сигнала с термопары и к схеме компенсации. Для разработки таких устройств существуют специализированные микросхемы, интегрирующие схему преобразования и обработки аналогового сигнала. С помощью этих микросхем можно построить достаточно компактный измеритель температуры с термопарой в качестве датчика (Рисунок 1).

Принципы

Википедия определяет принцип действия термопары следующим образом:

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединенными проводниками имеется контактная разность потенциалов. Если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различной. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2 (Рисунок 2).

Рисунок 2.

Существует несколько типов термопар, в зависимости от используемой пары материалов (чистый металл или сплав). В нашем проекте мы используем термопару K-типа (хромель-алюмель), которая часто применяется в промышленных инструментах и приборах. Выходное напряжение термопары K-типа составляет приблизительно 40 мкВ/°С, следовательно, потребуется схема усиления сигнала с небольшим смещением напряжения по входу.

Как упоминалось выше, термо-ЭДС пропорциональна разности температур между холодным и горячим спаем. Это означает, что температура холодного спая должна быть известна для вычисления фактического значения температуры горячего спая. Для этого потребуется схема компенсации холодного спая, которая будет автоматически вводить поправку к измеренной термо-ЭДС (Рисунок 3).

Чтобы получить значение температуры с помощью термопары потребуется аналоговая схема, например прецизионный операционный усилитель и схема компенсации холодного спая. Однако, существует несколько видов специализированных микросхем со встроенным интерфейсом термопары. Эти микросхемы интегрируют указанные выше аналоговые схемы и значительно упрощают проект. В нашем случае мы выбрали микросхему MAX31855 компании . Она содержит аналоговую схему и аналого-цифровой преобразователь, следовательно, на выходе микросхемы мы получим цифровые данные. Перед покупкой микросхемы необходимо заранее определить тип термопары, которая будет использоваться в устройстве.

Основные характеристики микросхемы MAX31855:

  • Диапазон измерения температуры: от -270 °С до +1800 °С;
  • Разрешение: 14 бит, шаг 0.25 °С;
  • Простой SPI-совместимый интерфейс (режим чтения данных);
  • Схема компенсации опорного спая термопары;
  • Схема детектирования замыкания проводов термопары на шину питания и общую шину;
  • Схема детектирования разрыва в измерительной цепи;
  • Исполнения для термопар типов K, J, N, T и E;
  • 8-ми выводной корпус.

Компенсация холодного спая реализуется с помощью интегрированного в микросхему датчика температуры, поэтому одним из важных условий при сборке измерителя является размещение микросхемы непосредственно возле коннектора подключения термопары. Немаловажным условием является также изоляция данного узла от внешнего нагрева. Для подключения мы использовали коннектор, изображенный на Рисунке 4. Можно использовать коннекторы других типов.

Принципиальная схема измерителя температуры изображена на Рисунке 5.

Сердцем прибора является микроконтроллер AVR . Микросхема MAX31855 подключается к микроконтроллеру по интерфейсу SPI.

В качестве источника питания используется батарея типоразмера LR1 с напряжением 1.5 В. Для питания микроконтроллера и микросхемы интерфейса термопары используется схема повышающего DC/DC преобразователя, выполненного на микросхеме серии XC9111 , обеспечивающего выходное напряжение 3.0 В. Микроконтроллер осуществляет управление питанием и отслеживает напряжение батареи.

Так как для питания используется элемент питания 1.5 В, для отображения данных оптимально использовать сегментный статический ЖК индикатор TWV1302W, который применяется в цифровых устройствах измерения температуры (Рисунок 6). Рабочее напряжение этого индикатора 3 В. При использовании индикатора с рабочим напряжением 5 В потребуется дополнительная схема преобразователя напряжения (Рисунок 7). Функции управления индикатором выполняет микроконтроллер. При таком решении потребляемый устройством ток составит 4 мА, а батарея прослужит, как минимум, 100 часов.

Но можно собрать самому в два раза дешевле.
Кому интересно - добро пожаловать под кат.

Начнем по порядку.
Термопара… как термопара. Метр ровно, К типа, 0-800C

Можно врезать в корпус, имеется резьбовая часть, которая вращается свободно. Диаметр 5,8мм, шаг - 0,9~1.0мм, похоже М6 x 1,0 мм. Под ключ на 10


Это все хорошо, дальше что делать? Нужно преобразовать сигнал (термоэдс) в цифровой или аналоговый сигнал, чтоб читать ардуиной. В этом нам поможет . Это преобразователь сигнала термопары K-типа в цифру, имеет интерфейс, что нас устраивает.
А вот и наш герой - ($4.20)


Стоил $4.10, но того лота больше нет (продавец тот же).

Подключать будем к ардуине, можно взять простенькую ($5.25, можно найти дешевле, здесь Вы видите именно эту)


Данные будем писать на карту памяти (и заодно слать в порт) с помощью $1.25.


Интерфейс, тоже, кстати, SPI. Только не все карточки его поддерживают. Не завелось - попробуйте сначала другую.
В теории все линии SPI устройств (MOSI или SI, MISO или SO, SCLK или SCK), кроме CS (CS или SS - выбор микросхемы), можно подключить к одним контактам ардуины, но тогда MAX6675 работает неадекватно. Поэтому я все разнес по разным пинам.
В основу скетча лег пример по работе с картами памяти с .
Библиотека и скетч для MAX6675 . Схема подключения MAX6675:

#include
#include

Int units = 1; // Units to readout temp (0 = F, 1 = C)
float error = 0.0; // Temperature compensation error
float temp_out = 0.0; // Temperature output varible

MAX6675 temp0(9,8,7,units,error);

Void setup()
{
Serial.begin(9600);
Serial.print(«Initializing SD card...»);

PinMode(10, OUTPUT);
if (!SD.begin(10)) {
Serial.println(«initialization failed!»);
return;
}
Serial.println(«initialization done.»);

// Проверяем, существует ли на карте файл data.csv, если существует, то удаляем его.
if(SD.exists(«temp.csv»)) {
SD.remove(«temp.csv»);
}
// открываем файл. заметьте, что только один файл может быть открыт за раз,
// поэтому вы должны закрыть этот, чтобы открыть другой.
myFile = SD.open(«temp.csv», FILE_WRITE); // открыть на запись


if (myFile) {
Serial.print(«Writing to temp.csv...»);
// закрываем файл:
myFile.close();
Serial.println(«done.»);
}
else {


}

}
void loop()
{

Temp_out = temp0.read_temp(5); // Read the temp 5 times and return the average value to the var

Time = time + 1; // Увеличиваем время на 1

MyFile = SD.open(«temp.csv», FILE_WRITE);

// если файл нормально открылся, запишем в него:
if (myFile) {
// записываем время
myFile.print(time);
Serial.print(time);
// добавляем точку с запятой
myFile.print(";");
Serial.print(";");
// пишем температуру и перевод строки
myFile.println(temp_out);
Serial.println(temp_out);
// закрываем файл:
myFile.close();
}
else {
// а если он не открылся, то печатаем сообщение об ошибке:
Serial.println(«error opening temp.csv»);
}
delay(1000); // Ждем секунду
}


Скачать:
Статьи по теме: