Что такое электронный чип. Как работает микрочип

Микрочип состоит из транзисторов. Транзистор - это такой полупроводниковый электроприбор, у которого три электрода, от первого ко второму идет ток в зависимости от того, какое напряжение на третьем.

Вот откуда взялись все эти зеленые нолики и единички в фильмах о компьютерах. Из-за того, что транзисторы работают только с двумя состояниями 0 или 1, все данные в компьютере хранятся в двоичном виде. Мы привыкли к десятичным числам, состоящих из цифр от 0 до 9, а в двоичных числах цифр всего две - 0 и 1. И сосчитать до пяти в двоичных числах можно вот так: 1, 10, 11, 100, 101.

Это чем-то похоже на водопроводный кран: вода течет в зависимости от того, открыта или закрыта заслонка – только вместо воды у транзисторов напряжение, и состояния может быть два - есть напряжение или нет, 0 или 1.

Транзисторы бывают разных типов и используются они в электронике для того, чтобы реализовывать логические операции с ноликами и единичками .

Если мы подключим последовательно два крана к одной трубе, вода потечет только если оба крана включены, получится «логическое И»:

А если подключить два крана параллельно, то вода потечет, если хоть один кран включен, это называется «логическое ИЛИ»:

Транзисторы соединяют друг с другом в разной последовательности для того, чтобы реализовать разные логические операции: И, ИЛИ, НЕ, Исключающее ИЛИ и так далее. Для каждой такой функции придуманы специальные обозначения:

А вот, например, схема устройства, которое складывает два двузначных числа: AB + CD = XYZ

То есть, если на A и на D подать напряжение, то на выходе будет напряжение у Z и Y, а на X напряжения не будет:
AB + CD = XYZ
10 + 01 = 011

Те же самые вычисления можно производить не только на полупроводниковых транзисторах. В огромных шкафах старых аналоговых телефонных станций происходило то же самое, что и в микросхемах, только вместо транзисторов там были обычные электрические реле. А первые компьютеры были вообще механическими и сложные вычисления производились при помощи шестеренок еще в античные времена .

Если к контактам X, Y и Z мы подключим по светодиоду, а к контактам A, B, C и D подключим выключатели, то у нас получится простейший электронный калькулятор.

Микрочип состоит из сотен, тысяч и миллионов таких вот транзисторов, соединенных в одну сеть, потому что есть задачи посложнее, чем сложить два числа: калькулятор, флешка, управление кассовым аппаратом, ядерной электростанцией.

Центральный процессор в компьютере - тоже микрочип, только невероятно сложный. Я пишу этот текст на компьютере под упралением центрального процессора , состоящего из 1,17 миллиарда транзисторов. На этой картинке его увеличенное изображение. Для того, чтобы каждый транзистор в нем был размером хотя бы в один пиксель, надо увеличить ее примерно в 200 раз.

Микросхемы разного назначения применяются в составе электроники современной техники. Огромное многообразие такого рода компонентов дополняют микросхемы памяти. Этот вид радиодеталей (среди электронщиков и в народе) зачастую называют просто – чипы. Основное назначение чипов памяти – хранение определённой информации с возможностью внесения (записи), изменения (перезаписи) или полного удаления (стирания) программными средствами. Всеобщий интерес к чипам памяти понятен. Мастерам, знающим как программировать микросхемы памяти, открываются широкие просторы в области ремонта и настройки современных электронных устройств.

Микросхема памяти — это электронный компонент, внутренняя структура которого способна сохранять (запоминать) внесённые программы, какие-либо данные или одновременно то и другое.

По сути, загруженные в чип сведения представляют собой серию команд, состоящих из набора вычислительных единиц микропроцессора.

Следует отметить: чипы памяти всегда являются неотъемлемым дополнением микропроцессоров – управляющих микросхем. В свою очередь микропроцессор является основой электроники любой современной техники.

Набор электронных компонентов на плате современного электронного устройства. Где-то среди этой массы радиодеталей приютился компонент, способный запоминать информацию

Таким образом, микропроцессор управляет , а чип памяти хранит сведения, необходимые микропроцессору.

Программы или данные хранятся в чипе памяти как ряд чисел — нулей и единиц (биты). Один бит может быть представлен логическими нулем (0) либо единицей (1).

В единичном виде обработка битов видится сложной. Поэтому биты объединяются в группы. Шестнадцать бит составляют группу «слов», восемь бит составляют байт — «часть слова», четыре бита — «кусочек слова».

Программным термином для чипов, что используется чаще других, является байт. Это набор из восьми бит, который может принимать от 2 до 8 числовых вариаций, что в общей сложности даёт 256 различных значений.

Для представления байта используется шестнадцатеричная система счисления, где предусматривается использование 16 значений из двух групп:

  1. Цифровых (от 0 до 9).
  2. Символьных (от А до F).

Поэтому в комбинациях двух знаков шестнадцатеричной системы также укладываются 256 значений (от 00h до FFh). Конечный символ «h» указывает на принадлежность к шестнадцатеричным числам.

Организация микросхем (чипов) памяти

Для 8-битных чипов памяти (наиболее распространенный тип) биты объединяются в байты (8 бит) и сохраняются под определённым «адресом».

По назначенному адресу открывается доступ к байтам. Вывод восьми битов адреса доступа осуществляется через восемь портов данных.


Организация структуры запоминающего устройства. На первый взгляд сложный и непонятный алгоритм. Но при желании разобраться, понимание приходит быстро

Справедливые, не завышенные и не заниженные. На сайте Сервиса должны быть цены. Обязательно! без "звездочек", понятно и подробно, где это технически возможно - максимально точные, итоговые.

При наличии запчастей до 85% процентов сложных ремонтов можно завершить за 1-2 дня. На модульный ремонт нужно намного меньше времени. На сайте указана примерная продолжительность любого ремонта.

Гарантия и ответственность

Гарантию должны давать на любой ремонт. На сайте и в документах все описано. Гарантия это уверенность в своих силах и уважение к вам. Гарантия в 3-6 месяцев - это хорошо и достаточно. Она нужна для проверки качества и скрытых дефектов, которые нельзя обнаружить сразу. Видите честные и реальные сроки (не 3 года), вы можете быть уверены, что вам помогут.

Половина успеха в ремонте Apple - это качество и надежность запчастей, поэтому хороший сервис работает с поставщиками на прямую, всегда есть несколько надежных каналов и свой склад с проверенными запчастями актуальных моделей, чтобы вам не пришлось тратить лишнее время.

Бесплатная диагностика

Это очень важно и уже стало правилом хорошего тона для сервисного центра. Диагностика - самая сложная и важная часть ремонта, но вы не должны платить за нее ни копейки, даже если вы не ремонтируете устройство по ее итогам.

Ремонт в сервисе и доставка

Хороший сервис ценит ваше время, поэтому предлагает бесплатную доставку. И по этой же причине ремонт выполняется только в мастерской сервисного центра: правильно и по технологии можно сделать только на подготовленном месте.

Удобный график

Если Сервис работает для вас, а не для себя, то он открыт всегда! абсолютно. График должен быть удобным, чтобы успеть до и после работы. Хороший сервис работает и в выходные, и в праздники. Мы ждем вас и работаем над вашими устройствами каждый день: 9:00 - 21:00

Репутация профессионалов складывается из нескольких пунктов

Возраст и опыт компании

Надежный и опытный сервис знают давно.
Если компания на рынке уже много лет, и она успела зарекомендовать себя как эксперта, к ней обращаются, о ней пишут, ее рекомендуют. Мы знаем о чем говорим, так как 98% поступающих устройств в СЦ восстанавливется.
Нам доверяют и передают сложные случаи другие сервисные центры.

Сколько мастеров по направлениям

Если вас всегда ждет несколько инженеров по каждому виду техники, можете быть уверены:
1. очереди не будет (или она будет минимальной) - вашим устройством займутся сразу.
2. вы отдаете в ремонт Macbook эксперту именно в области ремонтов Mac. Он знает все секреты этих устройств

Техническая грамотность

Если вы задаете вопрос, специалист должен на него ответить максимально точно.
Чтобы вы представляли, что именно вам нужно.
Проблему постараются решить. В большинстве случаев по описанию можно понять, что случилось и как устранить неисправность.

Два изобретения середины ХХ века значительно увеличили скорость технологического(и, как следствие, общественного) прогресса. Сделанный в 1948 году транзистор открыл дорогу твердотельной электронике. А спустя десять лет появился микрочип, интегральная схема, ставшая предшественником микропроцессора, который оказал гигантское влияние на всю современную цивилизацию.

Планарный транзистор На смену германиевым диффузионным транзисторам пришли кремниевые, произведенные с помощью планарного процесса – последовательным нанесением слоев полупроводников нужного типа и металлических контактов.

Алексей Левин

Американские создатели транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн обрели мировую славу и в 1956 году были удостоены Нобелевской премии. Немецким физикам Герберту Матаре и Генриху Велкеру, которые, работая во Франции, всего полугодом позже самостоятельно изготовили точечный транзистор, пришлось удовольствоваться французским патентом и весьма кратковременной известностью, не вышедшей за пределы Европы. Интегральная схема тоже имела независимых авторов. Как нередко случается, их имена известны широкой публике куда лучше конкретных обстоятельств изобретения микрочипа.

Тирания чисел

Пришествие твердотельной электроники положило начало подлинно мультиэлементным системам. Так, созданный в конце 1950-х годов командой Сеймура Грея первый чисто полупроводниковый компьютер, 48-битный CDС 1604, состоял из 25 000 транзисторов, 100 000 диодов и сотни тысяч резисторов и конденсаторов.

И вот тут-то возникла неприятная проблема. Компоненты электронных схем соединяли проводами одним-единственным способом — с помощью пайки. Это была трудоемкая и недешевая ручная работа, чреватая многими ошибками (ведь ее делали не роботы, а люди). В начале транзисторной эры в принципе можно было спроектировать систему едва ли не любой степени сложности, но ее изготовление зачастую оказывалось непомерно трудной задачей. Более того, технологии сборки препятствовали продвижению сложных систем на рынок бытовой электроники, которому требовались крупные объемы производства, компактность и умеренные цены. Эти технологии всё хуже работали и для больших компьютеров, поскольку соединительные цепи длиной в километры снижали их быстродействие.

В общем, уже в середине 1950-х годов на пути к осуществлению надежд, возложенных на транзисторы, встало серьезное препятствие, которое называли проблемой межкомпонентных соединений или, неформально, тиранией больших чисел. Его пытались преодолеть путем уменьшения размеров элементов электронных схем и применения модульной сборки, однако без особого успеха. Требовалась принципиально новая идея. И она не заставила себя долго ждать.

Жаркое место

Джек Сент-Клер Килби родился 8 ноября 1923 года в городе Джефферсон-Сити в штате Миссури. Его отец был инженером-электриком, поднявшимся до поста президента Канзасской электрической компании. Сын пошел по стопам родителя: в 1947 году окончил университет штата Иллинойс с дипломом бакалавра-электротехника и нашел место в компании Centralab в городе Милуоки, а через три года получил степень магистра в Висконсинском университете.

Небольшая фирма, где работал Килби, в основном производила сравнительно несложные радиодетали. В 1952 году она приобрела у Bell Laboratories лицензию на изготовление транзисторов, и молодой инженер немало сделал для отладки новой технологии. Он получил около дюжины патентов, обрел отличную профессиональную репутацию, но вот работа ему наскучила. Килби не только понимал, что будущее твердотельной электроники зависит от победы над тиранией больших чисел, но и считал себя способным ее одержать. Для этого была нужна должность исследователя в компании с серьезными финансовыми ресурсами и интересом к новым разработкам. В начале 1958 года он разослал резюме по нескольким перспективным адресам и получил предложения от таких гигантов электронной индустрии, как IBM и Motorola. Однако Килби предпочел менее известную корпорацию Texas Instruments, где несколькими годами ранее физик Гордон Тил и физхимик Виллис Эдкок создали первую эффективную технологию изготовления кремниевых транзисторов (до этого их делали только на основе германия). В те времена фирмой руководил весьма дальномыслящий президент Патрик Хагерти, поручивший Эдкоку возглавить работы по радикальному устранению проблемы межкомпонентных соединений.

В мае Килби перевез семью в Даллас и приступил к работе в свежеотстроенном корпусе, где еще даже не действовали кондиционеры. Жуткая техасская жара не помешала ему быстро найти решение поставленной задачи. Килби догадался, что из полупроводников можно сделать все основные компоненты электронной схемы, если правильно подобрать легирующие присадки. А раз так, то в принципе ничто не мешает разместить эти компоненты на общей матрице. 24 июля 1958 года он записал эту великую идею в лабораторном журнале в одной-единственной фразе, которая вошла в историю электроники.

Но пока это была лишь теория. Когда Килби показал свои наброски Эдкоку, тот не выказал особого энтузиазма, но все же поручил Килби по‑новому изготовить несложную радиосхему и пообещал санкционировать дальнейшие эксперименты, если она окажется удачной. Килби вызов принял и вручную встроил в германиевую пластинку детали стандартной электронной цепи, преобразующей постоянный ток в переменный (это был генератор гармонических колебаний с фазосдвигающей обратной связью). Выглядел он неуклюже, что и немудрено: для соединения блоков использовались навесные металлические провода. 12 сентября Килби показал свое детище большим боссам корпорации. На прибор подали ток от батареи, и на экране осциллоскопа высветилась зеленоватая синусоида. Первая в мире интегральная схема продемонстрировала свою работоспособность.

«Восьмерка предателей»

Третий сын конгрегационалистского пастора, чей предок приплыл в Америку на легендарном «Мэйфлауэре», Роберт Нортон Нойс появился на свет 12 декабря 1927 года в маленьком даже сейчас, а тогда вовсе крошечном Берлингтоне в штате Айова. Детские увлечения авиамоделизмом и радиотехникой привели его в аспирантуру Массачусетского технологического института, где в 26 лет он защитил докторскую диссертацию по физике. Еще в колледже он увлекся транзисторами и поэтому, остепенившись, пришел в филадельфийскую компанию Philco, которая занималась ими весьма серьезно.

Подобно Килби, Нойс быстро сделал себе имя в твердотельной электронике. В начале 1956 года его пригласил к себе в фирму Уильям Шокли, покинувший Bell Laboratories, чтобы заняться полупроводниковыми приборами, и Нойс перебрался в Калифорнию, в городок Маунтин-Вью, расположенный южнее Сан-Франциско в долине Санта-Клара, которую лет через 15 стали называть Кремниевой долиной. Впрочем, он там не задержался. Шокли оказался плохим менеджером и буквально распугал лучших сотрудников. В результате в 1957 году Нойс и еще семеро молодых талантов ушли на вольные хлеба и при финансовой поддержке промышленника и изобретателя Шермана Фэйрчальда основали компанию Fairchild Semiconductor Corporation. В «восьмерку предателей», как обозвал их Шокли, входили физико-химик Гордон Мур (да-да, тот самый, который позднее придумал «закон Мура») и родившийся в Швейцарии физик Жан Эрни. С него-то и началась цепочка технологических нововведений, которая привела Нойса к изобретению интегральной микросхемы.

Поверх краски

Молодая компания производила транзисторы новейшим по тем временам методом диффузии легирующих примесей. При всех его достоинствах доля отбракованных из-за загрязнений изделий достигала 90%. Эрни предложил защищать кремниевые матрицы от повреждения с помощью тонкой пленки диоксида кремния. В процессе изготовления транзистора пленку зачищали в зонах диффузии, а затем для сохранения изоляции восстанавливали. Адвокат фирмы Джон Раллс усмотрел перспективность этой идеи и попросил составить патентную заявку с расчетом на возможность более широких приложений. Раллс не ошибся — метод Эрни лег в основу целого семейства полупроводниковых технологий, известных как планарные процессы.

Эти приложения и начал обдумывать Нойс, возглавивший исследовательский отдел фирмы. Тут-то он и догадался, что на оксидную пленку можно нанести тонкие полоски меди или иного металла, которые соединят транзисторы, конденсаторы и прочие элементы электронной схемы. А отсюда уже было недалеко до мысли, что и сами эти элементы можно встроить в кремниевую матрицу с помощью избирательного легирования. Сходная идея шестью месяцами ранее осенила и Килби, но Нойс пришел к ней другой дорогой. И оба пути пересеклись на рождении микрочипа.

Нойс регулярно обсуждал свои прозрения с Муром, который принимал их без особых возражений. 23 января 1959 года он описал свое изобретение на четырех страницах лабораторного журнала. Так родилась калифорнийская версия интегральной схемы — в отличие от техасской пока всего лишь на бумаге.

Тем временем в Далласе

Еще в сентябре 1958 года Килби и его помощники изготовили новым методом другой электронный прибор, полупроводниковый триггер. Тем не менее руководство Texas Instruments не пропагандировало новое изобретение и не планировало его использование. Более того, компания не спешила и с патентной заявкой.

Однако 28 января 1959 года в Далласе зашевелились: прошел слух, что конкурирующая фирма RCA разработала собственный микрочип и вот-вот его запатентует. Информация оказалась ложной, но вызвала беспокойство. Корпорация обратилась к вашингтонской юридической фирме Stevens Davis Miller & Mosher, специализирующей на патентных делах, и поручила ей как можно быстрее оформить права на изобретение Килби. Ввиду особой важности дела им занялся сам Эллсворт Мошер, авторитетнейший юрист-патентовед. Для подготовки документации он потребовал монтажную схему микрочипа. Килби к этому времени уже осознал, что от внешней электропроводки необходимо избавиться, и приступил к разработке аналога планарного процесса (уже изобретенного Жаном Эрни). Тем не менее в качестве иллюстрации к патентной заявке Килби представил схему одного из первых чипов с навесными проводами из золота. Правда, он отметил, что проводящие цепи можно непосредственно накладывать на изолирующее покрытие, но на этом и остановился. 6 февраля Бюро патентов зарегистрировало заявку Килби.

Патентные войны

Этой вроде бы маловажной детали была суждена главная роль в патентной битве между Далласом и Кремниевой долиной. Fairchild Semiconductor Corporation в начале 1959 года выпустила в продажу свой первый оригинальный продукт — транзистор, изготовленный методом двойной диффузии. Интегральную схему Нойс оставил про запас — тогда ему казалось, что причин для спешки нет. Однако в начале марта он и его коллеги узнали, что корпорация Texas Instruments вскоре объявит о разработке интегрированных твердотельных схем. Так и произошло — изобретение Килби было продемонстрировано 24 марта в Нью-Йорке во время съезда Института радиоинженеров. К этому времени инженеры фирмы Texas Instruments изготовили ряд интегральных схем без навесных проводов, которые и были представлены на ее стенде. Хотя более подготовленной публики нельзя было и желать, новинка, как ни странно, никого особенно не заинтересовала. Даже профессиональный журнал Electronics упомянул о ней лишь через две недели, причем в одном-единственном абзаце.

Однако в Калифорнии мгновенно почувствовали, что Fairchild Semiconductor реально угрожает потеря приоритета. Нойс прекрасно понимал, что его заявка должна существенно отличаться от заявки конкурентов. Поэтому они с Раллсом особо подчеркнули, что изобретение Нойса делает излишним применение внешней проводки. Содержания заявки Килби они не знали (Бюро патентов США не раскрывает сведений на стадии рассмотрения документов), однако Нойс имел основания предполагать, что по этой части его фирма опередила техасских конкурентов.

Далее последовала судебная битва, растянувшаяся на десять лет. Юристы обеих сторон проявляли изощренное хитроумие, и в конце концов победа осталась за Нойсом. 6 ноября 1969 года апелляционный суд по делам патентов и таможенных сборов признал его единственным изобретателем микрочипа. Мошер апеллировал к Верховному суду США, но его петиция была отклонена.

Самое интересное, что решение суда практически ничего не изменило. И профессионалы, и политики, и публика уже прекрасно знали, что это великое изобретение имеет двух полноправных авторов. Оба получили за него National Medal of Science (Килби в 1969 году, Нойс — в 1979-м) и National Medal of Technology (соответственно в 1990 и 1987 годах). Более того, ничуть не пострадали и финансовые интересы обеих фирм. Еще в 1966 году Texas Instruments и Fairchild Semiconductor признали друг за другом равные права на интегральную схему (остальные фирмы, пожелавшие производить микрочипы, должны были покупать у них лицензии). Так что, по сути, многолетняя тяжба оказалась никому не нужна.

От ракет до калькулятора

Интегральные схемы были запущены в серийное производство в начале 1961 года, когда для этого появилась технологическая база. Первой их выпустила в продажу (в шести вариантах) фирма Fairchild под именем микрологических элементов. Через несколько недель на рынке появились и микрочипы от Texas Instruments — по терминологии корпорации, твердотельные цепи. Стоили они очень дорого (поначалу более $100) и потому для бытовой электроники никак не годились. Первые три года их закупали только федеральные ведомства, преимущественно Пентагон и NASA. Микрочипы стали основой электроники межконтинентальных ракет MinutemanII, запускаемых с подводных лодок баллистических ракет Polaris А2 и А3, бортовой авионики новых боевых самолетов — впрочем, всего не перечесть. В ноябре 1963 года был запущен спутник Explorer-18 — первый космический аппарат, начиненный микрочипами. В том году в США было продано полмиллиона интегральных схем, спустя год — уже два миллиона. Благодаря возросшим объемам производства средняя цена микрочипа в 1964 году снизилась до 18 долларов 50 центов. Стоит вспомнить, что тогдашние наиболее совершенные интегральные схемы содержали не больше шести десятков компонентов.

Тогда же, в 1964 году, микрочипы начали использовать и в бытовой электронике — они дебютировали в слуховом аппарате Arcadia фирмы Zenith Radio Corporation. Но их подлинный триумф состоялся весной 1971 года, когда Texas Instruments выпустила в продажу первый в мире электронный калькулятор Pocketronic (интересно, что он появился в магазинах 14 апреля, как раз накануне официальной даты представления налоговых деклараций). Команда Килби разработала его четырьмя годами ранее — столь значительная задержка опять-таки была обусловлена трудностями массового производства. Стоила эта игрушка $150, весила больше килограмма, печатала результаты на термочувствительной бумаге (дисплея не было вовсе) и к тому же была обучена только четырем действиям арифметики. Тем не менее Pocketronic имел колоссальный успех — уже в 1972 году объем его продаж достиг пяти миллионов. А в ноябре того же 1971 года фирма Intel Corporation, созданная покинувшими корпорацию Fairchild Нойсом и Муром, представила первый в мире универсальный микропроцессор, знаменитый Intel 4004, начав новую — компьютерную — эру в истории человеческой цивилизации.

О самом мощном японском суперкомпьютере для исследований в области ядерной физики. Сейчас в Японии создают эксафлопсный суперкомпьютер Post-K - японцы станут одними из первых, кто запустит в работу машину с такой вычислительной мощностью.

Ввод в эксплуатацию намечен на 2021 год.

На прошлой неделе компания Fujitsu рассказала о технических характеристиках чипа A64FX, который ляжет в основу новой «машины». Расскажем подробнее о чипе и его возможностях.

Технические характеристики A64FX

Ожидается, что вычислительные возможности Post-K почти в десять раз превысят показатели самого мощного из существующих суперкомпьютеров IBM Summit (по данным за июнь 2018).

Подобной производительностью суперкомпьютер обязан чипу A64FX на архитектуре Arm. Этот чип состоит из 48 ядер для проведения вычислительных операций и четырех ядер для управления ими. Все они равномерно разделены на четыре группы - Core Memory Groups (CMG).

Каждая группа имеет 8 МБ L2-кеша. Он связан с контроллером памяти и интерфейсом NoC («сеть на кристалле »). NoC соединяет между собой различные CMG c контроллерами PCIe и Tofu. Последний отвечает за связь процессора с остальной системой. У контроллера Tofu имеется десять портов с пропускной способностью в 12,5 ГБ/с.

Схема чипа выглядит следующим образом:

Суммарный объём памяти HBM2 у процессора составляет 32 гигабайта, а её пропускная способность равняется 1024 ГБ/с. В компании Fujitsu говорят, что производительность процессора на операциях с плавающей точкой достигает 2,7 терафлопс для 64-битных операций, 5,4 терафлопс - для 32-битных и 10,8 терафлопс - для 16-битных.

За созданием Post-K следят редакторы ресурса Top500, которые составляют список самых мощных вычислительных систем. По их оценке, для достижения производительности в один эксафлопс в суперкомпьютере используют более 370 тыс. процессоров A64FX.

В устройстве впервые применят технологию векторного расширения под названием Scalable Vector Extension (SVE). Она отличается от других SIMD-архитектур тем, что не ограничивает длину векторных регистров, а задает для них допустимый диапазон. SVE поддерживает векторы длиной от 128 до 2048 бит. Так любую программу можно запустить на других процессорах, поддерживающих SVE, без необходимости перекомпиляции.

При помощи SVE (так как это SIMD-функция) процессор может одновременно проводить вычисления с несколькими массивами данных. Вот пример одной из таких инструкций для функции NEON, которая использовалась для векторных вычислений в других архитектурах процессоров Arm:

Vadd.i32 q1, q2, q3
Она складывает четыре 32-битных целых числа из 128-битного регистра q2 с соответствующими числами в 128-битном регистре q3 и пишет результирующий массив в q1. Эквивалент этой операции на языке C выглядит так:

For(i = 0; i < 4; i++) a[i] = b[i] + c[i];
Дополнительно SVE поддерживает функцию автовекторизации. Автоматический векторизатор анализирует циклы в коде и, если возможно, сам использует векторные регистры для их выполнения. Это повышает производительность кода.

Например, функция на C:

Void vectorize_this(unsigned int *a, unsigned int *b, unsigned int *c) { unsigned int i; for(i = 0; i < SIZE; i++) { a[i] = b[i] + c[i]; } }
Она будет скомпилирована следующим образом (для 32-битного процессора Arm):

104cc: ldr.w r3, ! 104d0: ldr.w r1, ! 104d4: cmp r4, r5 104d6: add r3, r1 104d8: str.w r3, ! 104dc: bne.n 104cc
Если же задействовать автовекторизацию, то выглядеть это будет так:

10780: vld1.64 {d18-d19}, 10784: adds r6, #1 10786: cmp r6, r7 10788: add.w r5, r5, #16 1078c: vld1.32 {d16-d17}, 10790: vadd.i32 q8, q8, q9 10794: add.w r4, r4, #16 10798: vst1.32 {d16-d17}, 1079c: add.w r3, r3, #16 107a0: bcc.n 10780
Здесь происходит загрузка SIMD-регистров q8 и q9 с данными из массивов, на которые указывают r5 и r4. После чего инструкция vadd складывает по четыре 32-битных целых значения за раз. Это увеличивает объем кода, но так обрабатывается гораздо больше данных за каждую итерацию цикла.

Кто еще создает эксафлопсные суперкомпьютеры

Созданием эксафлопсных суперкомпьютеров занимаются не только в Японии. Например, работы также ведутся в Китае и США.

В Китае создают Тяньхэ-3 (Tianhe-3). Его прототип уже тестируется в Национальном суперкомпьютерном центр в Тяньцзине. Финальную версию компьютера планируется закончить в 2020 году.


/ фото O01326 / Суперкомпьютер Тяньхэ-2 - предшественник Тяньхэ-3

В основе Тяньхэ-3 лежат китайские процессоры Phytium. Устройство содержит 64 ядра, имеет производительность в 512 гигафлопс и пропускную способность памяти в 204,8 ГБ/с.

Работающий прототип создан и для машины из серии Sunway . Он тестируется в Национальном суперкомпьютерном центре в Цзинане. По словам разработчиков, на компьютере сейчас функционирует около 35 приложений - это биомедицинские симуляторы, приложения для обработки больших данных, и программы для изучения климатических изменений. Ожидается, что работа над компьютером будет завершена в первой половине 2021.

Что касается Соединённых штатов, то американцы планируют создать свой эксафлопсный компьютер к 2021 году. Проект называется Aurora A21, и над ним работают Аргоннская национальная лаборатория Министерства энергетики США , а также компании Intel и Cray.

В этом году исследователи уже

Статьи по теме: