Основы информатики и компьютерной техники. Введение в дисциплину «Основы информатики и вычислительной техники

1.7. ВВЕДЕНИЕ В ШКОЛЕ ПРЕДМЕТА «ОСНОВЫ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ»

Освоение производства микропроцессоров, приведшее к радикальному изменению структуры парка ЭВМ и широкому распространению ЭВМ массового применения (микрокалькуляторы, персональные ЭВМ, многотерминальные комплексы на базе малых ЭВМ, диалоговые вычислительные комплексы ит. п.), создало необходимые предпосылки для ускорения процессов компьютеризации школы. Качественно новый этап в развитии отечественной вычислительной техники, обязанный появлению микропроцессоров, начался во второй половине 1970-х гг. Это породило новую волну исследований по проблеме введения ЭВМ и программирования в школе. Под руководством выдающегося советского математика и программиста А. П. Ершова при отделе информатики ВЦ Сибирского отделения Академии наук СССР сформировалась «сибирская группа школьной информатики». Основные программные положения апологетов этой группы (А. П. Ершов, Г. А. Звенигородский, Ю. А. Первин), в значительной части послужившие впоследствии развитию национальной программы компьютеризации школы, опубликованы в 1979 г. в концептуальной работе «Школьная информатика (концепции, состояние, перспективы)» .

К первой половине 1980-х гг. в методической науке и школьной практике страны был накоплен значительный теоретический и практический багаж, вместивший опыт трех предыдущих десятилетий. Тем самым были созданы все необходимые предпосылки для активных государственных решений проблемы компьютеризации школьного образования. Характеризуя особенность нового момента, А. П. Ершов отмечал: «Сейчас, после появления микропроцессоров, вопрос о том, быть или не быть ЭВМ в школе, уже становится схоластикой. ЭВМ уже есть в школах и будет приходить туда в нарастающих количествах, и от нас требуется очень активная интеллектуальная и организационная работа, чтобы придать этому процессу управляемый и педагогически мотивированный характер» .

А. П. Ершов (1931-1988)

Толчком к проработке конкретных организационно- методических мероприятий в области компьютеризации школы стало партийно-правительственное постановление «Основные направления реформы общеобразовательной и профессиональной школы»

(1984) . Одним из главных положений школьной реформы того времени стала впервые явно продекларированная задача введения информатики и вычислительной техники в учебно-воспитательный процесс школы и обеспечения всеобщей компьютерной грамотности молодежи. В конце 1984 г. под совместным кураторством ВЦ СО АН СССР и Научно- исследовательского института содержания и методов обучения (НИИ СиМО) АПН СССР с привлечением наиболее видных педагогов-информати- ков из различных регионов страны развернулась работа по созданию программы нового общеобразовательного предмета для общеобразовательной школы, получившего название «Основы информатики и вычислительной техники». К середине 1985 г. такая работа была выполнена и одобрена Министерством просвещения СССР . Последующими правительственными решениями был одобрен и главный стратегический путь, позволяющий быстро решить задачу формирования компьютерной грамотности молодежи, - введение в среднюю школу предмета «Основы информатики и вычислительной техники» как обязательного, а также конкретный срок введения нового предмета - 1 сентября 1985 г. В сжатые сроки вслед за программой были подготовлены пробные учебные пособия для учащихся , , книги для учителей , . Руководил и принимал активное личное участие в выполнении всего комплекса этих работ выдающийся советский математик и программист академик АН СССР А. П. Ершов. Со стороны НИИ СиМО координационная и редакторская работа выполнялась А. А. Кузнецовым, руководившим в ту пору лабораторией информатики. В создании этих первых отечественных учебных книг по школьному курсу информатики и методических руководств для учителей принимала участие большая группа авторов, сформированная из сотрудников НИИ СиМО, а также известных специалистов из различных регионов СССР: С. А. Бешенков, М. В. Витиньш, Я. Э. Гольц, Э. А. Икауни- екс, А. А. Кузнецов, Э. И. Кузнецов, М. И. Лапчик, А. С. Лес- невский, С. И. Павлов, Ю. А. Первин, Д. О. Смекалин, Р. В. Фрейвалд. Вместе с тем при подготовке и редактировании текстов по учебным пособиям для учащихся А. П. Ершов систематически пользовался поддержкой квалифицированной группы «теневых» соавторов из МГУ, в которую входили А. Г. Кушниренко, Г. В. Лебедев, А. Л. Семенов, А. X. Шень, влияние которых на содержание и окончательную редакцию книг было весьма ощутимым. Впоследствии эта группа была организована А. П. Ершовым в авторский коллектив, который через короткое время после выхода первых пособий выпустила свой вариант пробного учебника .

Свидетельством внимания государства к проблеме компьютеризации школы явилось учреждение нового научно- методического журнала «Информатика и образование» (ИНФО), первый номер которого вышел к началу учебного года (1986-1987). Этот научно-методический журнал и по сей день остается исключительно важным для современной системы образования специальным периодическим изданием, освещающим научно-методические, дидактические, технические, организационные, социально-экономические, психолох"о-педагогические вопросы внедрения информатики и информационных технологий в сферу образования.

Для преподавания нового предмета в течение летнего периода 1985 и 1986 гг. была проведена интенсивная курсовая подготовка учителей, главным образом из числа работающих преподавателей математики и физики, а также организаторов образования. Этот контингент был пополнен путем ускоренной углубленной подготовки в области информатики и вычислительной техники будущих молодых учителей - выпускников физико-математических факультетов 1985- 1986 гг. В то же время Министерством просвещения СССР были приняты оперативные организационно-методические меры по организации регулярной подготовки учителей информатики и вычислительной техники на базе физико- математических факультетов пединститутов , .

Чтобы точнее понимать характер и уровень сложности проблем, которые требовалось в сжатые сроки решить в сфере кадрового обеспечения введения предмета ОИВТ в школу или, если сказать шире, в сфере компьютеризации школы в целом, следует напомнить о том, каким был фактический уровень подготовки в области информатики и ЭВМ учителей, работавших в середине 1980-х гг. в школах СССР.

Впервые весьма краткий ознакомительный курс программирования для ЭВМ с экзотическим названием «Математические машины и программирование с вычислительным практикумом» появился в учебных планах физико-математических факультетов педагогических вузов в 1963-1964 учебном году. В 1970 г. в учебные планы этих учебных заведений вводится обновленный курс «Вычислительные машины и программирование» (около 50 ч), ориентированный на ознакомление с программированием для ЭВМ, хотя рекомендованная учебная программа этого курса явно не соответствовала уже наметившимся к тому времени перспективным направлениям развития дисциплины программирования.

Следующая официальная версия программы синтетического курса «Вычислительная математика и программирование» (1976) уже отводила на программирование около 70 ч и предполагала, в частности, ознакомление с универсальным языком высокого уровня Алгол-60. При этом следует учесть, что наивысшим для того времени уровнем технического обеспечения, причем для очень небольшого числа педвузов страны, являлось наличие одной-двух малых ЭВМ типа «Наири», «Проминь», «Мир» ит. п., ориентированных лишь на применение собственных языков, что не позволяло реализовывать учебную программу полностью. К концу 1970-х гг. в педвузах России было открыто лишь четыре кафедры программирования и вычислительной математики (Москва, Ленинград, Свердловск, Омск), а первые персональные ЭВМ (отечественные ПЭВМ ряда «Искра», «ДВК», «Электроника») стали появляться в очень ограниченном количестве и в очень ограниченном числе педвузов практически лишь к середине 1980-х гг.

Из сказанного выше со всей очевидностью следует, что к моменту введения информатики в среднюю школу (1985) уровень компьютерной подготовки работавших в то время в школе выпускников физико-математических факультетов педвузов в массе своей ни в коей мере не соответствовал требованиям преподавания нового курса ОИВТ.

Причины очевидны:

  • педвузовское образование не давало образования в области информатики, а было ориентировано лишь на ознакомление с началами программирования, причем на значительно более отсталом идейном уровне, чем тот, на котором курс информатики стал вводиться в школах;
  • педвузовская подготовка по программированию носила

исключительно образовательный характер, она не была

ориентирована на преподавание этого предмета школьникам (не было такой задачи).

Очевидно, что предпринимаемые во второй половине 1980-х гг. государственными и региональными органами управления образованием самые решительные и оперативные организационно-методические меры по обеспечению срочной доподготовки учителей для преподавания информатики и вычислительной техники из числа работающих учителей математики и физики годились лишь как неотложные меры первого этапа внедрения ОИВТ в школу. Что же касается налаживания регулярной подготовки учителей информатики и организаторов компьютеризации школы на базе физико-математических факультетов пединститутов, как и осуществления последующих мероприятий по приведению в соответствие компьютерного образования учителей других школьных дисциплин, то эти меры должны были опираться на основательные научно-методические обоснования и разработки .

  • См. также фундаментальное издание: Ершов, А. П. Избранные труды.Новосибирск: Наука, 1994. С. 354.

Предмет и состав дисциплины.

Продолжительность 2 часа.

Цель данной темы - развитие научного мировоззрения слушателей, их ознакомление с сущностью информатизации. Материал темы - теоретический, практические занятия не предусмотрены.

Теоретический материал:

1. Предмет и состав дисциплины.

2. Понятие информатизации, ее роль в развитии общества.

3. История развития вычислительной техники.

4. Классификация и развитие вычислительной техники.

5. Значение ПК в области экономики.

Предмет и состав дисциплины.

В качестве предмета нашей дисциплины выступает - системы средств автоматизации обработки и использования экономической информации. В состав дисциплины входит: рассмотрение основных принципов организации, переработки и хранения информации, ее представление в компьютерах, обзор современной вычислительной техники, операционных систем, компьютерных сетей и т.д.

Понятие информатизации, ее роль в развитии общества.

Информатизацией общества можно назвать организованный социально-экономический и научно-технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав граждан, организаций, объединений, органов гос. власти, и т. д. на основе формирования и использования соответствующих информационных ресурсов.

Причиной вызывающей этот процесс является информационный кризис (взрыв) в обществе, который имеет следующие проявления:

* Появляются противоречия между возможностями человека по восприятию и переработке информации и ее растущим объемом.

* Большое количество лишней информации, мешающей восприятию полезной.

* Возникновение социально-экономических, политических барьеров препятствующих свободному распространению информации.

История развития вычислительной техники.

Попытки автоматизировать вычислительные процессы предпринимались на всех этапах развития человеческой цивилизации.

VI в. до н. э. - Пифагор ввел понятие числа как основу всего сущего на земле.

V в. до н. э. - остров Саламин - первый прибор для счета "абак".

IV в. до н. э. - Аристотель разработал дидуктивную логику.

III в. до н. э. - Диофант Александрийский написал "Арифметику" в 13 книгах.

IX в. - Аль-Хорезми обобщил достижение арабской математики и ввел понятие алгебры.

XV в. - Леонардо да Винчи разработал проект счетной машины для выполнения действий над 12- разрядными числами.

XVI в. - изобретены русские счеты с 10-чной системой счисления.

XVII в. - Англия - логарифмические линнейки.

1642 г. - Паскаль разработал модель вычислительной машины для выполнения арифметических действий (построена в 1845 г. и имела название "Паскалево колесо").

1801-1804 гг. - Жаккар использовал перфокарты для управления ткацким станком.

1820 г. - Карл Томас изобрел арифмометр.

1823 г. - Чарлз Бэбидж разработал проект вычислительной машины из 3 частей (программно управляемая машина):

Склад (хранение чисел)

Фабрика (выполнение операций над числами)

Устройство управления с помощью перфокарт

1826 г. - введено понятие о полупроводниках.

1834 г. - впервые использован термин кибернетика для обозначения макета управления государством.

XIX в. 30-40 гг. - Морзе изобрел систему кодирования информации.

1864 г. - Максвелл - теория электромагнитного поля.

1885 г. - Берроуз разработал машину, печатающую исходные данные и результат.

1886 г. - Холлерн (США) изобрел табулятор на перфокартах (начало существования фирмы IBM).

1928 г. - теория фон Неймана.

1929 г. - Волков изобрел цветное телевидение.

1931 г. - использование в вычислительных машинах двоичной системы счисления.

1940 г. - Нейман создает первый компьютер "MANIAC".

1945 г.- Нейман изобрел машину где числа и программы хранились в памяти.

1946 г. - первая ЭВМ в США (сложение за 0,2 с.).

1948 г. - изобретение транзистора.

1951 г. - изобретена в СССР МЭСМ.

1952-1953 гг. - изобретена в СССР БЭСМ.

1952 г. - Англия - Даммер выдвинул идею интегральных схем.

1953 г. - операторный метод программирования. Разработаны и изготовлены ЭВМ "УРАЛ", "МИНСК", "КИЕВ".

1957 г. - разработаны языки "Фортран" и "Алгол".

1960 г. - язики "Кобол", "Лого".

1970 г. - язык "Паскаль".

1971 г. - выпущен первый микропроцессор (США).

1976 г. - изготовлен синтезатор речи для ЭВМ.

1981 г. - первый персональный компьютер фирмы IBM, проект ЭВМ пятого поколения в Японии.

1981-87 г. - IBM PC XT; PC AT.

1993 г. - первый процессор класса Pentium.

Классификация и развитие вычислительной техники.

ЭВМ - это электронное устройство, способное автоматически принимать перерабатывать, хранить, накапливать, обновлять и выдавать информацию.

Первой электронной вычислительной машиной принято считать машину ENIAC (США, 1946 г.) Первой вычислительной машиной в СССР была МЭСМ, построенная под руководством академика Лебедева в 1951 г.

Первой серийно выпускавшейся ЭВМ в США стала IBM - 701(1951 г.), в СССР ЭВМ БЭСМ - 1 (1952 г.)

Развитие вычислительной техники обычно принято привязывать к изменению элементной базы, на которой она строится, в связи с этим можно выделить несколько поколений ЭВМ:

1. Поколение начало 50-х годов. Элементная база - электронные лампы. Техника этого поколения характеризовалась низкой надежностью, большими габаритами, высоким энергопотреблением, программированием в кодах.

2. Поколение конец 50-х начало 60-х. Элементная база - полупроводники. Повысилась надежность работы, уменьшилось энергопотребление были разработаны первые алгоритмические языки.

3. Поколение 60-е первая половина 70-х годов. Элементная база первые интегральные микросхемы, многослойный печатный монтаж. Резкое уменьшение габаритов вычислительной техники, дальнейшее повышение надежности, быстродействия. ЭВМ применяются в промышленных масштабах, организован доступ с удаленных терминалов.

4. Поколение конец 70-х начало 80-х годов. Элементная база - микропроцессоры, большие и сверх большие интегральные микросхемы. Дальнейшее уменьшение размеров, повышение быстродействия ЭВМ их надежности. Начало выпуска персональных компьютеров.

5. Поколение наши дни. Ведутся исследования в области оптоэлектроники и построению на ее базе ЭВМ, разрабатываются новые поколения интеллектуальных систем, развивается концепция сетевых вычислений.

По своим параметрам вычислительную технику принято разделять на:

* СуперЭВМ: производительность - 1000-100000 MIPS, оперативная память - 2000-10000 Мб, разрядность 128 бит.

* Большие ЭВМ: производительность - 2000-10000 MIPS, оперативная память - 256-10000 Мб, разрядность 32-64 бит.

* Мини ЭВМ: производительность - 1-100 MIPS, оперативная память - 16-512 Мб, разрядность 16-64 бит.

* Микро ЭВМ: производительность - 1-100 MIPS, оперативная память - 4-256 Мб, разрядность 16-64 бит.

MIPS - миллион операций в секунду над числами с фиксированной запятой.

В начале 80-х годов начался период массового использования ПК. Главная их особенность - ориентация на постоянное обучение пользователя и надежную защиту ПК от ошибочных действий.

ПК - называется диалоговая система индивидуального пользования, реализуемая на базе микропроцессорных средств, малогабаритных внешних запоминающих устройств и устройств регистрации данных, обеспечивающая доступ ко всем ресурсам ЭВМ посредством развитой системы программирования на базе языков высокого уровня.

Согласно спецификации PC99 персональные компьютеры разделены на пять подвидов.

1. Потребительские - процессор 300 МГц, ОЗУ 32 Мб.

2. Деловые ПК, бизнес ПК - процессор 300 МГц один или несколько, ОЗУ 32-64 Мб.

3. Развлекательные - процессор 300 МГц один или несколько, ОЗУ 64 Мб.

4. Рабочие станции - процессор 400-450 МГц один или несколько, ОЗУ 128 Мб контроль ошибок.

5. Мобильные ПК - процессор 233 МГц, ОЗУ 32 Мб.

Основы информатики.

Продолжительность 2 часа.

Цель данной темы - дать основные определения информации, способов и методов ее классификации и кодирования. Материал темы теоретический практические занятия не предусмотрены.

Теоретический материал:

1. Составные части информатики.

2. Общее понятие информации, экономическая информация.

Итак, толчком к проработке конкретных организационно-методических мероприятий в области компьютеризации школы стали «Основные направления реформы общеобразовательной и профессиональной школы» (1984, ). Одним из главных положений школьной реформы того времени стала впервые явно продекларированная задача введения информатики и вычислительной техники в учебно-воспитательный процесс школы и обеспечения всеобщей компьютерной грамотности молодежи. В конце 1984 г. под совместным кураторством ВЦ СО АН СССР (А.П. Ершов) и Научно-исследовательского института содержания и методов обучения (НИИ СиМО) АПН СССР (В.М. Монахов) с привлечением группы педагогов-информатиков из различных регионов страны развернулась работа по созданию программы нового общеобразовательного предмета для общеобразовательной школы, получившего название «Основы информатики и вычислительной техники». К середине 1985 г. такая работа была выполнена и одобрена Министерством просвещения СССР . Последующими правительственными решениями был одобрен и главный стратегический путь, позволяющий быстро решить задачу формирования компьютерной грамотности молодежи – введение в среднюю школу предмета «Основы информатики и вычислительной техники» как обязательного, а также конкретный срок введения нового предмета в среднюю школу – 1 сентября 1985 г. В сжатые сроки вслед за программой были подготовлены пробные учебные пособия для учащихся , книги для учителей . Свидетельством большого внимания государства к проблеме компьютеризации школы явилось учреждение нового научно-методического журнала«Информатика и образование» (ИНФО), первый которого вышел к началу 1986/87 учебного года. Невзирая на экономические трудности нынешнего периода развития России, ИНФО и по сей день остается исключительно важным для современной системы образования специальным научно-методическим журналом, освещающим методические, дидактические, технические, организационные, социально-экономические, психолого-педагогические вопросы внедрения информатики и информационный технологий в сферу образования.

Для преподавания нового предмета в течение летнего периода 1985 и1986 гг. была проведена интенсивная курсовая подготовка учителей, главным образом из числа работающих преподавателей математики и физики , а также организаторов образования /. Этот контингент был пополнен путем ускоренной углубленной подготовки в области информатики и вычислительной техники будущих молодых учителей – выпускников физико-математических факультетов 1985 – 1986 гг. В то же время Министерством просвещения СССР были приняты оперативные организационно-методические меры по организации регулярной подготовки учителей информатики и вычислительной техники на базе физико-математических факультетов пединститутов .



Чтобы точнее понимать характер и уровень сложности проблем, которые требовалось в сжатые сроки решить в сфере кадрового обеспечения введения предмета ОИВТ в школу или, если сказать шире, в сфере компьютеризации школы в целом, следует напомнить о том, каким был фактический уровень подготовки в области информатики и ЭВМ учителей, работавших в середине 1980-х гг. в школах СССР.

Впервые весьма краткий ознакомительный курс программирования для ЭВМ с экзотическим названием «Математические машины и программирование с вычислительным практикумом» появился в учебных планах физико-математических факультетов педагогических вузов в 1964 г. В 1970 г. в учебные планы этих учебных заведений вводится обновленный курс «Вычислительные машины и программирование» (около 50 часов), причем содержание программы этого курса явно не соответствует перспективным направлениям развития программирования.

Следующая официальная версия программы синтетического курса «Вычислительная математика и программирование» (1976) уже отводила на программирование около 70 часов и предполагала, в частности, ознакомление с языком высокого уровня Алгол-60 . При этом следует учесть, что наивысшим для того времени уровнем технического обеспечения, причем для очень небольшого педвузов страны, являлось наличие одной – двух малых ЭВМ типа «Наири», «Проминь», «Мир» и т.п. К концу 1970-х гг. в педвузах России было открыто лишь четыре кафедры программирования и вычислительной математики (Москва, Ленинград, Свердловск, Омск), а первые персональные ЭВМ (отечественные ПЭВМ ряда «Искра», «ДВК», «Электроника») стали появляться в очень ограниченном количестве и в очень ограниченном числе педвузов практически лишь к середине 1980-х гг.



Из сказанного выше со всей очевидностью следует, что к моменту введения информатики в среднюю школу (1985) уровень компьютерной подготовки работавших в то время в школе выпускников физико-математических факультетов педвузов в массе своей ни в какой мере не соответствовал требованиям преподавания нового курса ОИВТ.

Причины очевидны:

· педвузовское образование не давало образования в области информатики, а было ориентировано лишь на ознакомление с началами программирования, причем на значительно более отсталом идейном уровне, чем тот, на котором курс информатики стал вводиться в школу;

· педвузовская подготовка по программированию носила исключительно образовательный характер, она не была ориентирована на преподавание этого предмета школьникам (не было такой задачи).

Очевидно, что предпринимаемые во второй половине 1980-х гг. государственными и региональными органами управления образованием самые решительные и оперативные организационно-методические меры по обеспечению срочной доподготовки учителей для преподавания информатики и вычислительной техники из числа работающих учителей математики и физики годились лишь как неотложные меры первого этапа внедрения ОИВТ в школу. Что же касается налаживания регулярной подготовки учителей информатики и организаторов компьютеризации школы на базе физико-математических факультетов пединститутов, как и осуществления последующих мероприятий по приведению в соответствие компьютерного образования учителей других школьных дисциплин, то эти меры должны были опираться на основательные научно-методические обоснования и разработки.

Литература к главе 1

  1. Абрамов С.А., Антипов И.И. Программирование на упрощенном Алголе - М.: Наука, 1978.
  2. Алгебра-8: Учеб. пособие для сред. шк. – М.: Просвещение, 1974, 1979, 1982.
  3. Антипов И.Н. Абстрактная модель ЭВМ для безмашинного обучения элементам программирования // Новые исследования в педагогических науках. – 1975. – №12 (ХХVI).
  4. Антипов И.Н. Алгоритмический язык АЛГОЛ-60. – М.: Просвещение, 1975.
  5. Антипов И.Н. Программирование: Учеб. пособие по факультативному курсу для учащихся VIII – IХ кл. – М.: Просвещение, 1976.
  6. Антипов И.Н. Учебная модель ЭВМ // Математика в школе. – 1977. - №6.
  7. АнтиповИ.Н., Шварцбурд Л. С. Осимволике школьного курса математики с точки зрения программирования // Математика в школе. – 1975. – №6.
  8. Велихов Е.П. Новая информационная технология в школе // ИНФО. – 1986. - №1.
  9. Виленкин Н.Я., Блох А.Я. Изучение дискретной математики в школе. // Математика в школе. – 1977. – № 6.
  10. Гейтс Билл. Дорога в будущее: Пер. с англ. – М.: Изд. стд. «Русская редакция» ТОО «Channel Trading Ltd.», 1996.
  11. Гиглавый А.В., Згут М.А., Кравчук Т.П. Учим работать с ЭВМ (из опыта работы первого межшкольного учебно-производ. комб. вычислительной техники Октябрьского р-на г. Москвы): Пособие для учителя. – М. Просвещение, 1984.
  12. Гутер Р. С., Овчинский Б.В., Резниковский П. Т. Программирование и вычислительная математика. – М.: Просвещение, 1965.
  13. Дашевский Л. Н., Шкабара Е.А. Как это начиналось. – М.: Знание, 1981.
  14. Ершов А.П. Программирование – вторая грамотность. – Новосибирск, 1981. (Препринт/ АН СССР, Сиб. стд. ВЦ; 293).
  15. Ершов А.П., Звенигородский ГА. Информатика// ИНФО. – 1987. – № 3.
  16. Ершов А.П., Звенигородский Г.А. Зачем надо уметь программировать // Квант. – 1979. – № 9.
  17. Ершов А.П., Звенигородский Г.А., Первин Ю.А. Школьная информатика (концепции, состояние, перспективы). – Новосибирск, 1979. (Препринт/АН СССР. Сиб. отдеоение ВЦ; 152 с.).
  18. Жалдак М.И., Рамский Ю. С. Программирование на микрокалькуляторе. Пособие для самообразования учителей. – Киев: Рад. шк., 1985.
  19. Звенигородский Г.А. Вычислительная техника и ее применение. – М.: Просвещение, 1987.
  20. Звенигородский Г.А. Первые уроки программирования. – М.: Наука, 1985.
  21. Звенигородский Г.А. Программное наполнение системы «Школьница». – Новосибирск, 1987.
  22. Звенигородский Г.А., Первин Ю.А., Юнерман Н.А. Заочная школа программирования // Квант. – 1979. – № 9 – 11; 1980. – № 1 – 3; 1981. – № 1 – 3.
  23. Изучение основ информатики и вычислительной техники: Пособие для учителей / Под ред. А.П. Ершова, В.М. Монахова. – М.: Просвещение, 1985. – Ч. 1.
  24. Изучение основ информатики и вычислительной техники: Пособие для учителей / Под ред. А.П. Ершова, В.М. Монахова. – М.: Просвещение, 1986. – Ч. 2.
  25. Ионов Г.Н. Электронный помощник учителя // Математика в школе. – 1983. – № 5.
  26. Канторович Л.В., Соболев С.П. Математика в современной школе // Математика в школе. – 1979. – № 4.
  27. КасаткинВ.Н. Введение в кибернетику: Пособие для факультативных занятий в 9 классе. – Киев, 1976.
  28. КасаткинВ.Н. Программирование как элемент общего образования // Кибернетика. – 1973. – № 2.
  29. КасаткинВ.Н. Элементы анализа и синтеза простейших автоматов в школьном курсе математической логики// Математика в школе. – 1964. – № 1.
  30. КасаткинВ.Н., Верлань А.Ф. Секреты кибернетики. – Киев: Рад. шк., 1971.
  31. К вопросу преподавания программирования в средней школе / В. Н. Антипов, Н. Б. Вальцюк, А.Д. Кудрявцев, В.В. Щенников // Математика в школе. – 1973. – № 5.
  32. Ковалев М.П., Шварцбурд С.И. Электроника помогает считать: Пособие для учителей. – М.: Просвещение, 1978.
  33. Колмогоров А.Н. Современная математика и математика в современной школе // Математика в школе. – 1971. – № 6.
  34. Кузнецов А.А. Изучение факультативного курса «Основы кибернетики». Факультативные занятия в средней школе.– М.: Педагогика, 1978.
  35. Кузнецов А.А. Основы кибернетики // Содержание углубленного изучения физики в средней школе. – М.: Педагогика, 1974.
  36. Кузнецов А.А. Цифровые вычислительные машины: Учеб. материалы для учащихся. – М., 1969.
  37. Лапчик М. П. Готовить учителей нового типа // ИНФО. – 1987. – №2.
  38. Лапчик М.Л. Информатика и информационные технологии в системе общего и педагогического образования: Монография. – Омск: Изд-во Ом. гос. пед. ун-та, 1999.
  39. Лапчик М.П. Метод блок-схем в программировании: Учеб. пособие. Омск, 1969.
  40. Лапчик М.Л. Обучение алгоритмизации. – Омск, 1977.
  41. Лапчик М.П. Основы программирования: Учеб. пособие для учащихся. – М.: НИИ СИМО АПН СССР, 1972.
  42. Лапчик М.П. Проблема формирования алгоритмической культуры школьников. Сообщение 1. Постановка проблемы, выдвижение целей и задач исследования // Новые исследования в педагогических науках. – М.: Педагогика, 1976. – №1(27). – С. 33 – 36.
  43. Лапчик М. П. Проблема формирования алгоритмической культуры школьников. Сообщение 2. Алгоритмическая культура учащихся: содержание понятия // Новые исследования в педагогических науках. – М.: Педагогика, 1976. – № 2(28). – с. 37 – 41.
  44. Лапчик М.П. Программирование для трехадресной машины: Учеб. пособие для студентов мат. фак. пед. ин-тов / Под ред. проф. А.Л. Брудно. – Омск, 1972.
  45. Лапчик М.П. Элементы программирования для ЭВМ: Учеб. пособие для студентов физ.-мат. фак. пед. ин-тов. – Омск, 1976.
  46. Леднев В. С. Годом рождения курса является 1961-й // ИНФО. – 1999. – № 10.
  47. Леднев В. С. Содержание образования. – М.: Высш. шк., 1989.
  48. Педнев В. С., Кузнецов А.А. Началакибернетики: Учеб. материалы для учащихся. – М., 1968.
  49. Леднев В. С., Кузнецов А.А. Перспективы изучения кибернетики в школе// Перспективы развития содержания общего среднего образования. – М., 1974.
  50. Леднев В. С., Кузнецов А.А. Перспективы изучения основ кибернетики в средней школе // Советская педагогика. – 1975. – № 6.
  51. Леднев В. С., Кузнецов А.А. Программа факультативного курса «Основы кибернетики» // Математика в школе. – 1975. – №1.
  52. Леднев В. С., Кузнецов А.А., Бешенков С.А. Состояние и перспективы развития курса информатики в общеобразовательной школе // ИНФО. – 1998. – №3.
  53. Ляпунов А.А. О реформе математических программ // Математика в школе. – 1973. – № 2.
  54. Монахов В. М. О специальном факультативном курсе «Программи-рование» // Математика в школе. – 1973. – № 2.
  55. Монахов В.М. Программирование. Факультативный курс: Пособие для учителя. – М.: Просвещение, 1974.
  56. Научно-методические основы информатики и электронно-вычислительной техники: Прогр. повышения квалификации организаторов нар.образования (60 ч) / Сост. В. И. Ефимов, М. П. Лапчик и др. – М.: Ротапринт Минпроса СССР.
  57. Научно-методические основы информатики и вычислительной техники: Прогр. подгот. учителей математики и физики сред. общеобразоват. шк., преподавателей ПТУ и ССУ3 (72 ч): АПН СССР, НИИ СИМО / Сост. В.М.Монахов, А.А.Кузнецов, М.П. Лапчик и др. – М.: Ротапринт Минвуза СССР, 1985.
  58. Об использовании микрокалькуляторов в учеб. процессе // Математика в школе. – 1982. – № 3.
  59. Обучение в математических школах: Сб. ст. / Сост. С.И.Шварцбурд, В.М.Монахов, В.Г.Ашкинузе. – М.: Просвещение, 1965.
  60. О включении элементов программирования в школьный курс математики (В.Н.Антипов, Н.Б. Бальцюк, С.И. Шварцбурд, В.В. Щенников Ц Математика в школе. – 1974. – № 4.
  61. Основные направления реформы общеобразовательной и профессиональной школы: Сб. док. и материалов. – М.: Политиздат, 1984.
  62. Основы информатики и вычислительной техники: Пробное учеб. пособие для сред. учеб. заведений / Под ред. А.П. Ершова, В.М. Монахова. – М.: Просвещение, 1985. – Ч. 1.
  63. Основы информатики и вычислительной техники: Пробное учеб. пособие для сред. учеб. заведений / Под ред. А.П. Ершова, В.М. Монахова. – М.: Просвещение, 1986. – Ч. 2.
  64. Основы информатики и вычислительной техники: Прогр. сред. общеобразовательной шк.: Рек. Гл. упр. школ М-ва просвещения СССР Сост. А.А. Кузнецов, С.И. Шварцбурд, Г.М. Нурмухамедов, Д.О. Смекалин, Я.Э.Гольц, С.А.Бешенков, В.К.Белошапка, Ю.А.Первин, Э.Ю.Красс, Э.И. Кузнецов, М.П.Лапчик, Н.В.Апатова / Под ред.А.П. Ершова, В.М. Монахова, Л.Н.Преснухина//Математика в школе. – 1985. – №3. – с. 4 – 7.
  65. Поспелов Д.А. Становление информатики в России // Информатика: Еженед. прил. к газ. «Первое сентября». – 1999. – № 19.
  66. Проблемы педагогики информационного общества и основы педагогической информатики / Г.А. Бордовский, В.В.Извозчиков, И.А.Румянцев, А.М.Слуцкий // Дидактические основы компьютерного обучения. – Л. – 1989. – С. 3 – 32.
  67. Работа со школьниками в области информатики: Опыт Сиб. отд-ния АН СССР / А. П. Ершов, Г.А. Звенигородский, С. И. Литерат, Ю.А. Первин // Математика в школе. – 1981. – №1.
  68. Резниковекий П. Т., Монахов В. М. Программирование для одноадресных машин. – М.: Просвещение, 1968.
  69. Саградян М.К., Кузнецов Э.И. Обучение элементам программирования на базе электронных клавишных машин ((Математика в школе. – 1980. – М 1.
  70. Симою М.П., Резник С.М. и др. Обучение программированию и практика на ЭЦВМ Ц Линейная алгебра и геометрия (Проблемы математической школы). – М.: Просвещение, 1967.
  71. Формирование алгоритмической культуры школьника при обучении математике: Пособие для учителей / В.М.Монахов, М.П.Лапчик, Н.Б.Демидович, Л.П.Червочкина – М.: Просвещение, 1978.
  72. Шварцбурд С.И. Из опыта работы с учащимися 9 класса, овладевающими специальностью лаборантов-программистов // Математика в школе. – 1960. – №5.
  73. Шварцбурд С. И. Математическая специализация учащихся средней школы: Из опыта работы шк. №444 г. Москвы. – М.: Просвещение, 1963.
  74. Шварцбурд С.И. О подготовке программистов в средней общеобразовательной политехнической школе // Математика в школе. – 1961. – №2.
  75. Шварцбурд С.И. Проблемы повышенной математической подготовки учащихся. – М., 1972.

Весьма схожее впечатление об уникальной практике общения детей с компьютером (хоть это и относится к более позднему периоду) осталось у будущего главы корпорации М1сгозой Билла Гейтса, которому такая возможность представилась в 13-летнем возрасте: «Дать школьникам поработать с компьютером в конце шестидесятых – для Сиэтла это было что-то! Такое не забывается!»

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Кодирование символьной и числовой информации. Основные системы счисления. Двоичная система счисления. Устройства вывода информации. Правила выполнения арифметических операций. Логические основы построения, функциональные узлы ЭВМ. Синтез логических схем.

    презентация , добавлен 08.11.2016

    Сферы применения персонального компьютера (ПК). Основные блоки ПК, способы компьютерной обработки информации. Устройства ввода и вывода, хранения информации: системный блок, клавиатура, монитор, мышь, сканер, дигитайзер, принтер, дисковый накопитель.

    презентация , добавлен 25.02.2011

    Технология обработки графической информации с помощью ПК, применение в научных и военных исследованиях: формы, кодирование информации, ее пространственная дискретизация. Создание и хранение графических объектов, средства обработки векторной графики.

    реферат , добавлен 28.11.2010

    История развития информатики и вычислительной техники. Общие принципы архитектуры ПЭВМ, ее внутренние интерфейсы. Базовая система ввода-вывода. Материнская плата. Технологии отображения и устройства хранения информации. Объем оперативной памяти.

    презентация , добавлен 26.10.2013

    Представление информации в двоичной системе. Необходимость кодирования в программировании. Кодирование графической информации, чисел, текста, звука. Разница между кодированием и шифрованием. Двоичное кодирование символьной (текстовой) информации.

    реферат , добавлен 27.03.2010

    Составные части информатики и направления ее применения. Классы компьютеров, примеры команд. Принтер, сканер и плоттер. Виды топологий сетей. Системы счисления. Способы соединения с Интернетом. Категории программного обеспечения. Значение базы данных.

    шпаргалка , добавлен 16.01.2012

    Информатика - техническая наука, определяющая сферу деятельности, связанную с процессами хранения, преобразования и передачи информации с помощью компьютера. Формы представления информации, ее свойства. Кодирование информации, единицы ее измерения.

    презентация , добавлен 28.03.2013

ОСНОВЫ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ (ОИВТ), уч предмет, введенный в ср у ч заведения Рос Федерации с 1985/86 у ч г. Предусматривает изучение законов и методов сбора, передачи и обработки информации с помощью электронной вычислит техники Цель обучения ОИВТ - формирование «компьютерной грамотности» (см ) и воспитание информац культуры учащихся Осн акцент делается на формирование у учащихся навыков пользования компьютерами.

Введению ОИВТ в ст классы ср общеобразоват школы предшествовала многолетняя эксперим работа по изучению элементов информатики и использованию ЭВМ в ср уч заведениях Нач этапом внедрения элементов информатики в ср звено образования в Рос Федерации было организованное в 50-х гг программированию в условиях матем специализации в школах и классах с углубленным изучением математики В этот период обучение программированию носило проф Содержание спец уч курсов предусматривало изучение конкретного языка программирования, освоение приемов программирования и особенностей работы и устройства электронной вычислит техники С развитием вычислит техники и средств программирования совершенствовалось и содержание уч предмета, получившего назв «Программирование и вычислит » Наблюдался переход от программирования в кодах машин и содержательных обозначениях к программированию на алгоритмич языках Наиб в практике обучения получили такие языки, как алгол-60, фортран, алмир и др Переход к изучению программирования на языках высокого уровня, рассмотрение доступных школьникам задач обработки информации позволили усилить общеобразоват значимость обучения Это послужило основой для разработки в сер 70-х гг содержания факультативных курсов по программированию в ср общеобразоват школе Изучение программирования в классах с углубленным изучением математики, в уч -производств центрах, на факультативных занятиях в школах выявило, какие элементы информатики целесоо. бразно вводить в ср общеобразоват школу

Разрабатывалась концепция информатизации образования , в частности определявшая содержание обучения основам информатики в системе ср образования Эволюция этого содержания в определенной степени соответствует поэтапному формированию самой концепции информатизации. Выделяются три этапа.

Первый этап связан с обобщением междунар. опыта обучения учащихся компьютерам в 60-х гг. («Обучение компьютерам. Краткое руководство для учителей ср. школ». Междунар. федерация по обработке информации ИФИП - «Computer education for teachers in secon-dary schools: an outline guide», 1971). Были сформулированы осн. концептуальные положения, даны рекомендации и предложения по разработке содержания шк. обучения.

Предусматривалось изучение собственно компьютеров и нек-рых данных об их роли в разл. областях науки, техники и культуры. Рассматривались вопросы организации, представления и обработки информации, алгоритмы и средства их описания. В качестве средства программирования использовались как языки-ассемблеры, так и языки высокого уровня. Одним из осн. показателей достижения междунар. стандарта обучения программированию было применение алгоритмич. языков высокого уровня (фортран, алгол, бейсик, ПЛ-1, кобол и др.).

Второй этап связан с анализом состояния и перспектив обучения основам информатики в отеч. школе. В кн. «Школьная информатика (концепция, состояние, перспективы)» А. П. Ершова, Г. А. Звенигородского, Ю. А. Первина (1979) впервые использовался термин «школьная информатика» как «ветвь информатики, занимающаяся исследованием и разработкой программного, технического, уч.-метод, и организац. обеспечения применения ЭВМ в шк. уч. процессе». Обсуждались подходы к преподаванию программирования, требования к языку нач. обучения, этапы внедрения шк. курса информатики. Обосновав общеобразоват. значение курса информатики и место его в ср. школе, эта книга в значит, степени предопределила введение в ср. общеобразоват. школу нового уч. предмета ОИВХ. По существу, было предложено и содержание нового курса. Единственно приемлемым для общеобразоват. школы предполагалось «обучение на базе специально созданного языка, отражающего все основные концепции совр. программирования». Приведена система осн. понятий и представлений, к-рые должны быть отражены в конструкции уч. языка программирования и стать основой для построения метод, схемы курса. В рамках общеобразоват. курса информатики рекомендовалось рассмотреть след, элементы: программа, предписание, система предписаний, процедура, переменное поле, имя, условное предписание, цикл, внутр. имя (параметр), функция, данные, структуры данных. Вместе с языком нач. обучения предполагалось использование соответствующей системы программирования.

Концепция информатизации образования (3-й этап) опубликована в журн. «Информатика и » (1988, № 6;

1990, № 1). В ней отмечено, что содержанием образования в области информатики должны стать «не конкретные , умения и навыки, а развитые человеческие к расширению и совершенствованию этих знаний, умений и навыков». Курс информатики рассматривается в перспективе высокой результативности новых информац. технологий (НИХ) в обучении. Предмет ОИВТ. целесообразно перенести из ст. классов в неполную ср. школу. Выделены такие элементы компьютерной грамотности, как: о роли и месте НИХ в обществе; умение работать с компьютером в операционной среде (редактор текстов, база данных, графич. редактор, электронные таблицы); знание структуры и возможностей вычислит, систем и средств передачи информации; знание осн. понятий алгоритмизации и программирования; о матем. моделировании. Одной из составляющих компьютерной грамотности названо элементарное программирование.

Введение в школе ОИВХ в 1-й пол. 90-х гг. обеспечено программой и пробными уч. и метод, пособиями. Значит, часть 2-годичного курса посвящена изучению алгоритмич. языка (т. н. уч. алгоритмич. язык) и элементарных приёмов программирования с его использованием. Алгоритмич. язык выполняет две функции: позволяет стандартизировать, придать единую форму всем рассматриваемым в курсе алгоритмам, что важно для формирования алгоритмич. культуры школьников; обеспечивает пропедевтическое изучение языков программирования. Кроме того, в условиях, когда мн. школы ещё не располагают ЭВМ, алгоритмич. язык является оптим. языком, ориентированным на использование команд человеком. В вводной части курса даётся представление об информации и её обработке, а также рассматриваются нач. сведения об ЭВМ. Перед изучением алгоритмич. языка вводится понятие алгоритма, рассматриваются свойства алгоритмов, способы их описания, примеры алгоритмов и их исполнителей (человек, ЭВМ и др.). Система команд языка, его понятия и конструкции рассматриваются в след. последовательности: простые и составные команды, условия и команды повторения и ветвления, вспомогат. алгоритмы, составные условия, таблицы величин. Программа представлена двумя блоками (1-9-е кл. и 2-10-11-е кл.). В первом блоке изучение алгоритмич. языка завершается и закрепляется разделом, посвящённым построению алгоритмов для решения задач из курсов математики, физики и химии; во втором - рассматриваются принципы устройства и работы ЭВМ; предполагается знакомство учащихся с программированием. Предусмотрено сопоставление алгоритмич. языка и языка программирования. Приводятся такие сведения о языке, как алфавит языка, представление данных, переменные, осн. команды (ввод, вывод, присваивание, управление исполнением программы), подпрограммы и стандартные функции языка; даётся представление о программном обеспечении ЭВМ, о роли ЭВМ в совр. обществе и перспективах развития вычислит, техники. В первом пробном уч. пособии для ср. уч. заведений «Основы информатики и вычислительной техники», под ред. А. П. Ершова и В. М. Монахова (ч. 1-2, 1985-86), программный материал неск. конкретизирован, незначительно изменены порядок изложения и степень детализации отд. вопросов. Осн. средством программирования выступает некий уч. алгоритмич. язык. Дополнительно к командам, отмеченным в программе, рассмотрены команды для работы с графич. информацией. Для их реализации даётся представление об исполнителе, к-рый может двигаться и рисовать на плоскости. В первой части пособия приводятся сведения о микрокалькуляторе и примеры работы с ним, во второй - учащиеся знакомятся с языками программирования рапира и бейсик. Сведения об этих языках весьма лаконичны.

С учётом опыта работы с пробными уч. пособиями был разработан пробный «Основы информатики и вычислительной техники» (1988) А. П. Ершова, А. Г. Кушниренко, Г. В. Лебедева и др. Авторы неск. видоизменили шк. алгоритмич. язык, в основном сохраняя с предыдущим пособием, но пытались сделать материал более доступным для школьников. Этот учебник, переработанный и переизданный в 1990, по существу, стал альтернативным пособием по ОИВХ для ср. школы. В нём шк. алгоритмич. язык дополнен средствами ввода и вывода информации; в систему языка включены команды исполнителей Робот и Чертёжник; значит, уделено применению ЭВМ: информац. моделям, уч. информац. системам и пр.

Алгоритмич. язык, используемый в пособиях, ориентирован на т. н. безмашинный вариант курса ОИВХ. Для его машинной поддержки был разработан Е-практикум и создана система программирования КуМир (Комплект учебных миров), в к-рую могут быть подключены разл. исполнители (Робот, Чертёжник, Вездеход, Строитель и др.).

В 1986 объявлен конкурс на создание учебника по курсу ОИВХ. Была предложена и конкурсная программа, в к-рой содержание обучения ориентировано на активную практич. работу старшеклассников с компьютерами. Предполагалось применение программных пед. средств в уч. процессе. В конкурсной программе (объём 102 уч. ч) фиксировалась номенклатура обязательных тем и, указывалась их последовательность. Вместе с тем авторам учебников предоставлялась возможность изменения содержания каждой темы в зависимости от особенностей принятой ими методики изложения материала. Осн. темы курса: введение; первонач. знакомство с ЭВМ; основы алгоритмизации; основы вычислит, техники; основы программирования, решение задач на ЭВМ, ЭВМ в обществе В каждой теме указывались требования к знаниям и умениям учащихся, ориентирующие авторов в степени детализации изучаемых вопросов В программе приводился примерный состав программного обеспечения курса Для записи алгоритмов был рекомендован уч алгоритмич язык Дальнейший выбор конкретного языка программирования осуществлялся по усмотрению авторов учебников По итогам конкурса школам было рекомендовано еще одно альтернативное уч пособие по ОИВТ - «Основы информатики и вычислит техники Пробный учебник для 10-11-х кл ср школы» (1989) В А Каймина и др Пытаясь соблюдать преемственность с ранее действующими пособиями, авторы использовали для описания алгоритмов язык, близкий к учебному алгоритмическому, значит внимание уделили проверке правильности алгоритмов и программ Во вводной части курса актуализируется овладение техникой доказат рассуждений, рассматриваются элементы матем логики На первом этапе знакомства с ЭВМ наряду с устройствами и правилами работы учащимся сообщаются сведения о базах данных, базах знаний и элементах языка пролог После работы с алгоритмами с использованием алгоритмич языка учащимся предлагается изучить язык программирования бейсик Осуществляется систематич сопоставление алгоритма (описанного на алгоритмич языке) с программой (на языке бейсик) В пособии специально выделен раздел (глава) «Основания информатики», в к-ром обсуждаются вопросы анализа выполнения и доказательства правильности алгоритма, моделирования на ЭВМ, постановки вычислит эксперимента, применения языка пролог для решения информац -логич задач и др

В 1991 по рекомендации Мин-ва образования Рос Федерации издан учебник по ОИВТ для 10-11-х кл А Г Гейна и др В качестве средства для описания алгоритмов в нем используется алгоритмич язык, несколько отличающийся от применявшегося в предшествовавших пособиях он менее формализован, вводится постепенно путем рассмотрения определенной системы команд ряда исполнителей (напр, Вычислитель, Чертежник) Простейшие команды постепенно дополняются командами ветвления, цикла и вызова вспомогат алгоритма По ходу изложения материала вместе с описаниями алгоритмов с использованием команд исполнителей приводятся и программы на бейсике При рассмотрении табличного способа организации данных (массивов) появляется еще один исполнитель - Робот-манипулятор (или Робот) После изучения команд исполнителей и применения их к описанию алгоритмов решения разнообразных задач начинается систематич рассмотрение команд языка программирования бейсик и составление на нем программ

Для активизации самостоят работы учащихся и усиления практич направленности курса в учебнике даются описания 20 лабораторных работ, где рассматриваются решение задач планирования, «криминалистич » задача, уч редактор текстов, уч электронная таблица, задачи шифровки и дешифровки, программирование на уч - ЭВМ «Кроха» Авторами учебника разработано необходимое программное обеспечение для машинной поддержки курса

В практике преподавания ОИВТ определилась тенденция изучения курса не только на старшей, но и на средней ступени школы Так, для этой группы учащихся разработано пособие «Элект-ронно-вычислит техника» (1988) Я А Ваграменко и др Традиционно в нем даются общие сведения об ЭВМ Более детально излагаются вопросы представления и обработки информации Отд глава посвящена описанию внеш устройств ЭВМ Учащиеся получают представление об алгоритмах и средствах их описания Используются схемы, словесно-пошаговое описание алгоритмов, приводятся примеры несложных программ на языках бейсик и паскаль В пособии предусмотрено знакомство учащихся с вычислит системой, организацией файлов, языком заданий операц системы, текстовыми редакторами, подготовкой документации и графиков на ЭВМ В заключит части пособия излагаются вопросы применения вычислит техники на произ-ве (автоматизи-ров системы управления произ-вом, программное управление оборудованием, системы автоматизиров проектирования), организации работы вычислит центра

По осн темам курса предусмотрено выполнение ряда практич работ ознакомление с процессом заряда и разряда конденсатора, действия транзисторного ключа, работа с пультовой пишущей машинкой, реализация игры Баше, освоение текстового редактора и др

Широкое распространение получило обучение элементам информатики мл школьников, напр система «Роботлан-дия», ориентированная на учащихся 3- 5-х кл и рассчитанная на 2 года (А А Дуванов, Ю А Первин, Я H Зайдель-ман, Э H Ермаков, 1988) Осн направления курса- науч -теоретич, практич, программистское, исследовательское В качестве средства программирования используются языки таракан, корректор и др Школьники работают с гибкой системой исполнителей Предусматривается возможность дальнейшего перехода к одной из уч языковых систем программирования - лого или рапира

К нач 90-х гг разработано большое число эксперим программ курса ОИВТ, ориентированных на учащихся разного возраста и охватывающих практически все классы с 1-го по 11-й Активизируется разработка курсов информатики с учетом профильной дифференциации классов и школ Информация о них систематически приводится в журн «Информатика и образование» Несмотря на наличие альтернативных пособий по ОИВТ для ст классов, в практике преподавания информатики широко используются материалы, разработанные учителями, преподавателями вузов, программистами, в к-рых применяются подходы к преподаванию курса ОИВТ, отличные от рекомендованных в действующих пособиях В разной степени используются новые информац технологии и компьютерная поддержка курса Вместо уч алгоритмич языка, как правило, применяются широко распространенные языки программирования (естественно, на нач этапе рассматриваются некие упрощенные варианты языков, затем выбранное подмножество может быть расширено в зависимости от конкретных условий обучения) Введение нек-рыми вузами вступит экзамена по ОИВТ поставило новую пед задачу - реализацию преемственности школы и вуза в обучении основам информатики Среди специалистов в области обучения информатике нет устоявшейся точки зрения на содержание курса ОИВТ, проблема его совершенствования и повышения эффективности обучения учащихся информатике продолжает оставаться актуальной

Лит Кривошеее В Ф, Анти-пов И Н, Боковнев О А, Основы информатики - школьникам, «СП», 1985, № 3, Талызина H Ф, Внедрению компьютеров в уч процесс - науч основу, «СП» 1985, №12, Вильяме Р, Маклин К, Компьютеры в школе, пер с англ, M, 1988, Информатика в понятиях и терминах Кн для учащихся ст классов ср школы, под ред В А Извозчикова, M, 1991, Пронина С Е, Учебники информатики Ретроспективный обзор, «Пед информатика», 1994, № 1

И H Антипов


Российская педагогическая энциклопедия. - М: «Большая Российская Энциклопедия» . Под ред. В. Г. Панова . 1993 .

Смотреть что такое "ОСНОВЫ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ" в других словарях:

    Основы информатики и вычислительной техники (ОИВТ) - учебный предмет, введённый в средние учебные заведения Рос. Федерации в 1985/86 учебном году. Предусматривает изучение законов и методов сбора, передачи и обработки информации с помощью электронной вычислительной техники. Цель обучения ОИВТ… … Педагогический терминологический словарь

    Комплекс учебной вычислительной техники - Содержание 1 История 2 Описание 3 Список КУВТ … Википедия

    Комплекс Учебной Вычислительной Техники - КУВТ комплекс учебной вычислительной техники, также КВУ (комплекс вычислительный учебный) форма применения вычислительной техники в образовательных учреждениях, например в школах. Представляет собой совокупность технических и программных средств … Википедия

    Институт автоматики и вычислительной техники Московского энергетического института (технического университета) … Википедия

    Институт автоматики и вычислительной техники Московского энергетического института (технического университета) Основан в 1936 Место расположения Россия, Москва, ул. Красноказарменная, 17 Официальный сайт … Википедия

    - (технического университета) Основан в 1936 Место расположения Россия, Москва, ул. Красноказарменная, 17 Официальный сайт … Википедия

Статьи по теме: