Принцип работы логического тестера. Логический пробник с цифровой индикацией

Логический пробник — это по сути измерительный прибор, неотъемлемая часть лаборатории специалиста по цифровой технике, определяющий наличие логических уровней на выводах ТТЛ микросхем и помогающий радиолюбителям при ремонте и конструкторам при отладке их радиоэлектронных устройств.

Логический пробник

Предлагаемый логический пробник прост и надежен, индицирует не только логические «0» и «1», но и промежуточные состояния.

На поверку схему можно упростить, исключив «лишние» элементы, тем самым увеличив привлекательность устройства для радиолюбителей.

Логический ТТЛ-пробник с расширенными возможностями

Приводится описание схемы и конструкции несложного пробника на четыре логических уровня, позволяющий также фиксировать одиночные импульсы и импульсные последовательности, и имеющий в своем составе встроенный генератор, который помогает проводить проверку работы счетчиков.

Счетчик в качестве пробника-частотомера

Предлагаемый вариант пробника для определения логических уровней ТТЛ-логики наглядно показывает динамику происходящих процессов в исследуемых устройствах и позволяет оценивать частоту контролируемого сигнала (до 2 МГц), скважность, число импульсов; с помощью логического пульсатора (генератора импульсов) возможно проверять регистры, счетчики.

Логический пробник на АЛС342Б

Статья является своеобразным справочным листком и повествует о знакосинтезирующих индикаторах, их характеристиках и классификации. Так же приводится схема логического пробника на десятичном индикаторе АЛС342Б, его описание и конструкция.

Для наладки и ремонта ZX-Spectrum совместимых компьютеров полезным приспособлением является логический пробник. По сути это прибор, отображающий логический уровень сигнала на входе (лог.0 или лог.1). Так как в зависимости от типа используемых микросхем (ТТЛ, КМОП) логические уровни могут быть разными, пробник в идеале должен быть настраиваемым для использования совместно с разными типами сигналов.

В ZX-Spectrum"ах почти всегда используются микросхемы с ТТЛ входами/выходами, поэтому будет уместно рассмотреть схему логического пробника с учётом уровней сигнала ТТЛ.

Тут я немного повторю прописные истины, которые и без того известны всем заинтересованным... Величины напряжений лог.1 и лог.0 для ТТЛ видны из следующего схематичного рисунка:

Как видно крайние уровни лог.0 и лог.1 для входов и выходов несколько отличаются друг от друга. Для входа лог.0 будет при напряжении от 0,8В и менее. А выходной уровень лог.0 - это 0,4В и менее. Для лог.1 это будет 2,0В и 2,4В соотвественно.

Это сделано для того, чтобы крайние уровни лог.0 и лог.1 для выходов гарантированно попадали в диапазон напряжений для входов. Поэтому и сделана такая небольгшая "разбежка" в уровнях входов и выходов.


Всё, что попадает в диапазон напряжений между лог.0 и лог.1 (от 0,8В до 2,0В) логическим элементом не распознаётся как один из логических уровней. Если бы не было такой разбежки в уровнях (2-0,8=1,2В) любая помеха расценивалась бы как смена уровня сигнала. А так логический элемент устойчив к действиям помех с амплитудой до 1,2В, что согласитесь, очень неплохо.

У ТТЛ-входов есть интересная особенность: если вход никуда не подключен, то микросхема "считает", что на него подана лог.1. Конечно же такое "неподключение" - это очень нехорошо, хотя бы потому, что при этом висящий "в воздухе" вход микросхемы "ловит" все помехи, в результате чего возможны ложные срабатывания. Однако нас интересует другое - на "висящем в воздухе" входе всегда присутствует некоторое напряжение, величина которого попадает в неопределённый промежуток между логическими уровнями:

Определение величины напряжения на неподключенных входах микросхемы

Такой уровень называют "висящая единица", т.е. как бы единица есть (расценивается микросхемой как лог.1), но на самом деле её нет:)

Применительно к процессу ремонта и наладки компьютеров понятие "висящей единицы" полезно тем, что в случае обрыва проводника на плате или отгорания выхода какой-либо микросхемы на входы связаных с ними микросхем не подаётся сигнал, а следовательно, там будет "висящая единица", и этот момент можно зафиксировать, т.к. примерные уровни напряжения в таком состоянии микросхемы нам уже известны (порядка от 0,9В и вплоть до 2,4В).

То есть если, допустим, по схеме вход микросхемы куда-то должен быть подключен, а на нём в реальности не 0 и не 1, а "висящая единица", то что-то тут не так. В плане процесса ремонта это очень полезно!

Исходя из всего вышесказанного можно сформулировать техническое задание на создание логического пробника:
- Напряжение от 0 до 0,8В включительно считаются как лог.0;
- Напряжение от 2,0В до 5,0В считаем как лог.1;
- Напряжения от 0,9В до 2,4В считаем как "висящую единицу".

Различные конструкции логических пробников

Схем логических пробников очень много. Достаточно поискать в любом поисковике забить фразу "логический пробник". Однако по разным критериям данные схемы мне не подходят:
- Вывод ведётся на семисегментный индикатор, яркость которого никак не позволяет определить примерную скважность импульсов;
- Нет определения "висящей единицы";
- Другие критерии типа "просто не понравилась схема" :)


Таким пробником я пользовался около 18 лет. Несмотря на простоту этот пробник показывает всё: лог.0, лог.1. Даже "висящую единицу" показывает - при этом светодиод (лог.1) еле светится. Можно определять скважность импульсов по яркости свечения светодиодов. Этот пробник даже не выгорает при подаче на его входы напряжений -5В, +12В и даже выше! При подаче на пробник -5В светодиод (лог.0) горит с очень большой яркостью. При +12В на входе горит с большой яркостью светодиод (лог.1). Короче, неубиваемая схема:)

Для регистрации коротких импульсов, которые не видны глазом (например, импульс выбора порта) я приделал к пробнику "защёлку" на половинке триггера ТМ2:

Внешний вид пробника:


Логический пробник

Свой вариант логического пробника

Мной предпринимались попытки сделать логический пробник с индикацией "висящей единицы" на компараторах. В статике всё работало и определялось, но в динамике пробник оказался неработоспособен. Проблема кроется в быстродействии компараторов. Доступные мне компараторы (LM339, К1401СА1, КР554СА3 и т.п.) довольно "тормозные" и не позволяют работать на частоте выше 1,5-2МГц. Для работы со схемой ZX-Spectrum это совершенно не годится. Какой толк от пробника, если он не может даже показать тактовую частоту процессора?

Но совсем недавно на Youtube на глаза попалась видео-лекция по работе логического пробника:

Лекция по принципам работы логического пробника

Лекция очень интересная и познавательная. Посмотрите её полностью!

Данная конструкция пробника меня очень заинтересовала, и я решил её повторить и проверить. По схеме из лекции всё заработало за исключением каскада для определения уровня "висящей" единицы. Однако это не является проблемой, и я сделал каскад на компараторе. Вопрос быстродействия тут не стоит, т.к. термин "висящая единица" применим к статическому состоянию микросхемы.

В итоге получился пробник со следующей схемой:

Схема логического пробника (увеличивается по клику мышкой)

P.S. Схема пробника не самая идеальная, и при желании наверняка можно сделать проще и лучше.

Описание схемы и процесс наладки логического пробника

Входные каскады пробника выполнены на эмиттерных повторителях на транзисторах VT1 и VT2. В исходном состоянии (когда на вход пробника ничего не подано) транзисторы закрыты, поэтому на входы DD1.1 подан лог.0 через резистор R4, светодиод VD1 не горит. Точно так же закрыт транзистор VT2, и через резистор R5 на входы DD1.2 подаётся лог.1, светодиод VD3 не горит.


При подаче сигнала с уровнем лог.0 (0...0,8В) открывается транзистор VT2, на входы DD1.2 подаётся лог.0, светодиод VD3 загорается.

При подаче сигнала с уровнем лог.1 (2...5В) открывается транзистор VT1, на входы DD1.1 подаётся лог.1, светодиод VD1 загорается.

Резисторами R2-R3 на входе пробника устанавливается напряжение порядка 0,87-0,9В. Т.е. необходимо, чтобы это напряжение было в промежутке 0,8..0,9В, чтобы при никуда не подключенном входе пробника не горел светодиод VD3.

На компараторе DA3 сделана схема определения "висящей единицы". Резисторами R6-R7 устанавливается напряжение порядка 0,92..0,95В, при котором компаратор определит, что на входе находится уровень "висящей единицы", и загорится светодиод VD2. Напряжение на входе 2DA2 подбирается такой величины, чтобы при никуда не подключенном входе пробника не горел светодиод VD2.

Цвет свечения светодиодов можно выбрать таким, чтобы лог.0 показывался зелёным светом, лог.1 - красным, "висящая единица" - желтым. Не знаю как вам, а мне так удобнее. Светодиоды VD1 и VD3 лучше всего брать прозрачные (не матовые), чтобы хорошо был виден кристалл, и по возможности яркие, чтобы легче было заменить, если светодиод хоть чуть-чуть светится.

На микросхеме DD3 выполнен счётчик импульсов, поступающих на вход пробника. При коротких имульсах, не видных глазу, светодиоды VD4-VD7 будут исправно показывать количество импульсов в двоичной форме:) Кнопкой SB1 счётчик сбрасывается с погасанием всех светодиодов.

Инверторы микросхемы DD2 используются для того, чтобы активным уровнем (когда зажигается светодиод) был лог.0, т.к. ТТЛ-выход при лог.0 способен отдать в нагрузку ток до 16 мА. При выходной лог.1 выход способен отдать ток 1 мА, и если мы к нему подключим светодиод (чтобы он зажигался при лог.1 на выходе) мы перегрузим выход. Токоограничивающие резисторы подобраны так, чтобы максимальный ток, протекающий через светодиоды, не превышал 15 мА.

Пробник питается от отдельного блока питания (я использовал источник питания от магнитофона "Беларусь"). На плате пробника расположен стабилизатор напряжения DA2. Учивая не слишком большой ток потребления пробника микросхема стабилизатора используется без дополнительного теплоотвода, и при этом не перегревается.

Входные цепи пробника VT1, VT2, DA3 питаются от отдельного источника опорного напряжения DA1. Сделано это потому, что при изменении тока потребления пробника (например, когда горит большинство светодиодов) выходное напряжение стабилизатора DA2 несколько меняется, при этом соответственно будут меняться все опорные напряжения, что недопустимо.

К проверяемой конструкции от пробника отдельно подключается "общий" провод (GND).

Быстродействия микросхем пробника хватает для индикации импульсов вплоть до частоты 10 МГц. При частоте 12МГц уже пропадает индикация лог.0, но лог.1 показывается. По этой же причине вход счётчика подключен именно к DD1.1 - при проверке частоты выше 10 МГц счётчик будет считать импульсы с индикацией на светодиодах VD4..VD7.

Пробник собран на макетной плате:

Плата логического пробника в корпусе от маркера


Логический пробник с источником питания

Процесс работы с пробником на плате компьютера "Байт" можно посмотреть на видео:

Работа с логическим пробником

История создания

В практике каждого радиолюбителя, периодически возникают ситуации, когда под рукой нет необходимых измерительных приборов. Вот и я, однажды, в конце 90-х годов, находясь далеко от дома (да еще и в полевых условиях), столкнулся с такой ситуацией. Для поиска неисправности в промышленном оборудовании мне срочно понадобился логический пробник. Но где его возьмешь в 50 км. от ближайшего населенного пункта.

Так как ситуация возникла спонтанно и никаких ремонтов не планировалось, то кроме мультиметра, паяльника и небольшого набора деталей у меня с собой ничего не было. Оценив имеющийся у меня с собой перечень деталей в голове родилась простая до безобразия схема.

Потратив вечер на изготовление и наладку пробника, к утру я обладал достаточно неплохим прибором, который в последствии доказал свою эффективность и практичность.

Работа схемы

Логический элемент (параллельно 4 элемента 2И-НЕ), включенный в режиме инвертора, находится в пограничном состоянии благодаря обратной связи через высокоомный резистор. На его входе и выходе — приблизительно Uпит/2 . Светодиоды погашены — им не хватает напряжения для зажигания. Дальше все просто — при подаче лог «1» или «0», элемент входит в обычный режим и зажигает соответствующие светодиоды.

Диод D1 — любой (лучше Шоттки), защитит устройство от случайной переполюсовки питания. В качестве микросхемы D1, без корректировки схемы, можно использовать распространенные КМОП микросхемы CD4011 (К561ЛА7), CD4001 (К561ЛЕ5), а также другие логические элементы.

С тех пор, этот пробник является моим надежным помощником. Я сделал несколько экземпляров этого прибора. Из-за своей миниатюрности (если использовать микросхему в корпусе SOIC), вся начинка пробника легко помещается в корпус маркера. Вот как выглядит пробник в сборе.

Как это работает

Небольшое видео с демонстрацией работы логического пробника. Питание схемы осуществляется от источника 9 вольт.

Небольшое дополнение

Так как пробник имеет высокоомный вход, в некоторых случаях возможно слабое свечение светодиода Лог «0», особенное при напряжении 12 вольт и при непосредственном контакте рук с платой. Эти эффекты проходят при помещении устройства в корпус, экранировании и т.п. В любом случае, работе это не мешает.

Информация для заказа

Радиолюбители, желающие самостоятельно собрать миниатюрный логический пробник Микрош, могут приобрести печатные платы или набор для самостоятельной сборки миниатюрного логического пробника.

НАИМЕНОВАНИЕ ОПИСАНИЕ И СОСТАВ НАБОРА/МОДУЛЯ СТОИМОСТЬ
PL-01 board
Печатная плата (легко отправляется в обычном конверте)
Состав набора: печатная плата, инструкция по сборке и эксплуатации;
Размер платы: 40х9мм;

50 руб.
PL-01 kit МИНИАТЮРНЫЙ ЛОГИЧЕСКИЙ ПРОБНИК
Набор для самостоятельной сборки
Состав набора: печатная плата, комплект радиоэлементов, инструкция по сборке и эксплуатации;
Размер платы: 40х9мм;
Напряжение питания: 5-12 вольт;
Ориент. время получения удовольствия (сборки): 30 мин.
100 руб.

Заказать платы или наборы для самостоятельной сборки Вы можете отправив заявку на электронную почту [email protected]
В ближайшее время, все электронные модули, наборы для самостоятельной сборки на smd-компонентах и конструкторы будут доступны на сайте

Многие радиолюбители сталкиваются с цифровыми схемами и устройствами работающими по законам Булевой алгебры-логики. Имеющие только два состояния «ноль» или «единица» цифровые схемы относительно просты в настройке и надёжны в работе. При настройке цифровых устройств очень удобно пользоваться различного рода логическими пробниками, именно об одном из простейших логических пробников и пойдёт речь в этой статье.

Простой логический пробник схема:

Одним из вариантов самых простых пробников представлен на рисунке №1.


Рисунок №1 – схема простого логического пробника

R1, R2 – 4,7 КОм

VT1, VT2 – 2N2222

VD1 – зелёный светодиод (любого номинала)

VD2 – красный светодиод (любого номинала)

Работа и настройка схемы цифрового пробника:

Питается схема от батарейки типа «крона» 9 вольт. Принцип работы схемы довольно простой, транзисторы VT1, VT2 имеют n-p-n проводимость, таким образом, когда вы касаетесь логического нуля горит светодиод VD1 (зелёный, или того цвета который вы впаяете).

Когда вы касаетесь щупом, уровня логической единицы, то транзистор VT1 отпирается и загорается светодиод VD2. Если вы попадёте на ножку микросхемы, генерирующей динамические сигналы то оба светодиода будут тускло гореть. Вместо VD1, и VD2 можно впаять сдвоенный светодиод типа MV5491, который имеет два цвета свечения (при динамических сигналах на входе такой светодиод загорится янтарным светом). Подстройка работы пробника осуществляется путём подбора резисторов R1, R2 (вместо них удобнее использовать подстроечные резисторы).

Данный простой логический пробник предназначен для ремонта и наладки цифровых схем. Для простоты использования, питание данного логического пробника производится от источника питания, от которого запитано само исследуемое устройство. При ремонте схем с использованием микросхем серии К561 и К176 это будет 9 вольт, и 5 вольт для схем с применением 155 и 555 серии.

Описание работы пробника

Индикатором логических уровней в логическом пробнике служат два светодиода, подключенных встречно параллельно. За их свечение отвечают два транзистора VT1 и VT2. При поступлении на щуп логического пробника уровня лог. 0, транзистор VT1 заперт, а VT2 открыт по причине протекающего тока сквозь резисторы R2, R3 в его базовой электроцепи.

Транзистор VT2 отпирается, и тем самым зажигается зеленый светодиод. При поступлении на щуп логического пробника уровня лог. 1, отпирается транзистор VT1, а VT2 закрывается, поскольку отсутствует ток его базы. Отпирание VT1 позволяет включить красный светодиод, а зеленый светодиод в этот же момент гаснет.

В случае, если на щупе логического пробника окажется сигнал с некоторой частота, то включится как красный, так и зеленый светодиод. В схеме могут быть применены любые светодиоды схожие по параметрам с АЛ307. Транзисторы можно заменить на КТ315, КТ3102.

Статьи по теме: