Что такое процессор компьютера? Дополнительная информация о процессорах. Что такое GPU

Процессор является основной частью любого компьютерного устройства. Но многие пользователи имеют очень слабое представление о том, что такое процессор в компьютере и какую функцию он выполняет. Хотя в современном мире это важная информация, зная которую можно избежать многих серьезных заблуждений. Если вы хотите узнать больше о чипе, который обеспечивает работоспособность вашего компьютера, вы обратились по адресу. Из этой статьи вы узнаете, для чего нужен процессор и как он влияет на производительность всего устройства.

Что такое центральный процессор

В данном случае, речь идет о центральном процессоре. Ведь в компьютере есть и другие, например, видеопроцессор.

Центральный процессор – это основная часть компьютера, которая представляет собой электронный блок или интегральную схему. Он выполняет машинные инструкции, или же код программы, и является основой аппаратного обеспечения устройства.

Говоря проще, это сердце и мозг компьютера. Именно благодаря ему работает все остальное, он обрабатывает потоки данных и управляет работой всех частей общей системы.

Если смотреть на процессор физически, он представляет собой небольшую тонкую квадратную плату. Он имеет небольшие размеры и сверху покрывается металлической крышкой.

Нижнюю часть чипа занимают контакты, через которые чипсет и осуществляет взаимодействие с остальной системой. Открыв крышку системного блока своего компьютера, вы легко сможете найти процессор, если только он не закрыт системой охлаждения.

Пока ЦП не отдаст соответствующую команду, компьютер не сможет осуществить даже самую простую операцию, например, сложить два числа. Что бы вы ни хотели осуществить на своем ПК, любое действие предполагает обращение к процессору. Именно поэтому он и является такой важной составляющей компьютера.

Современные центральные процессоры способны не только справляться со своими основными задачами, но и могут частично заменять видеокарту. Новые чипы выпускаются с отдельно отведенным местом для выполнения функций видеоконтроллера.

Этот видеоконтроллер осуществляет все базовые необходимые действия, которые нужны от видеокарты. В качестве видеопамяти, при этом, используется оперативка. Но не стоит заблуждаться, что мощный современный процессор может полностью заменить видеокарту.

Даже средний класс видеокарт оставляет видеоконтроллер процессоров далеко позади. Так что, вариант компьютера без видеокарты подходит разве что для офисных устройств, которые не предполагают выполнения каких-либо сложных задач, связанных с графикой.

В таких случаях действительно есть возможность сэкономить. Ведь можно просто чипсет процессор с хорошим видеоконтроллером и не тратиться на видеокарту.

Как работает процессор

Что такое процессор вроде разобрались. Но как же он работает? Это долгий и сложный процесс, но если в нем разобраться, все достаточно легко. Принцип работы центрального процессора можно рассмотреть поэтапно.

Сначала программа загружается в оперативную память, откуда черпает все необходимые сведения и набор команд обязательных к выполнению управляющий блок процессора. Затем все эти данные поступают в буферную память, так называемый КЭШ процессора.

Из буфера выходит информация, которую делят на два типа: инструкции и значения. И те и те попадают в регистры. Регистры представляют собой ячейки памяти, встроенные в чипсет. Они также бывают двух видов, в зависимости от типа информации, которую они получают: регистры команд и регистры данных.

Одна из составных частей ЦП– это арифметико-логическое устройство. Оно занимается выполнением преобразований информации, используя арифметические и логические вычисления.

Именно сюда и попадают данные из регистров. После этого арифметико-логическое устройство считывает поступившие данные и исполняет команды, которые необходимы для обработки получившихся в итоге чисел.

Тут нас снова ждет раздвоение. Итоговые результаты делятся на законченные и незаконченные. Они идут обратно в регистры, а законченные поступают в буферную память.

КЭШ процессора состоит из двух основных уровней: верхнего и нижнего. Самые последние команды и данные отправляются в верхний кэш, а те, которые не используются, идут в нижний.

То есть, вся информация, находящаяся на третьем уровне, перебирается на второй, с которого, в свою очередь, данные идут на первый. А ненужные данные наоборот отправляются на нижний уровень.

После того как вычислительный цикл закончится, его результаты снова записываются в оперативную память компьютера. Это происходит для того, чтобы кэш центрального процессора был освобожден и доступен для новых операций.

Но иногда случаются ситуации, когда буферная память оказывается полностью заполненной, и для новых операций нет места. В таком случае, данные, которые на данный момент не используются, идут в оперативную память или же на нижний уровень памяти процессора.

Виды процессоров

Разобравшись с принципом работы ЦП, пришло время сравнить разные его виды. Видов процессора много. Бывают как слабые одноядерные модели, так и мощные устройства с множеством ядер. Есть те, которые предназначены исключительно для офисной работы, а есть такие, что необходимы для самых современных игр.

На данный момент есть два основных создателя процессоров – это AMD и Intel. Именно они и производят самые актуальные и востребованные чипы. Нужно понимать, что разница между чипами этих двух компаний заключается не в количестве ядер или общей производительности, а в архитектуре.

То есть, продукты этих двух компаний строятся по разным принципам. И у каждого создателя свой уникальный вид процессора, имеющий отличную от конкурента структуру.

Нужно отметить, что у обоих вариантов существуют свои сильные и слабые стороны. К примеру, Intel отличаются такими плюсами :

  • Меньшая энергозатратность;
  • Большинство создателей железа ориентируются именно на взаимодействие с процессорами Intel;
  • В играх производительность выше;
  • Intel проще взаимодействовать с оперативной памятью компьютера;
  • Операции, реализуемые только с одной программой, быстрее выполняются на Intel.

В то же время, присутствуют и свои минусы :

  • Как правило, стоимость чипсетов Intel дороже, чем аналог AMD;
  • При работе с несколькими тяжелыми программами падает производительность;
  • Графические ядра слабее, чем у конкурента.

AMD отличаются следующими преимуществами :

  • Гораздо более выгодное соотношение цены и качества;
  • Способны обеспечить надежную работу всей системы;
  • Присутствует возможность разогнать процессор, увеличив на 10-20% его мощность;
  • Более мощные интегрированные графические ядра.

Однако AMD уступает по следующим параметрам:

  • Взаимодействие с оперативной памятью происходит хуже;
  • На работу процессора тратится больше электроэнергии;
  • Частота работы на втором и третьем уровнях буферной памяти ниже;
  • В играх производительность ниже.

Хоть и выделяются свои плюсы и минусы, компании продолжают выпускать лучшие процессоры. Вам остается выбрать, какой предпочтительнее именно для вас. Ведь нельзя однозначно сказать, что одна фирма лучше другой.

Основные характеристики

Итак, мы уже разобрались, что одна из основных характеристик процессора – это его разработчик. Но существует ряд параметров, на которые нужно обратить еще больше внимания при покупке.

Не будем далеко отходить от бренда, и упомянем о том, что существуют разные серии чипов. Каждый производитель выпускает свои линейки в разных ценовых категориях, созданных для различных задач. Еще один смежный параметр – это архитектура ЦП. По сути, это его внутренние органы, от которых зависит вся работа чипа.

Не самый очевидный, но очень важный параметр – это сокет. Дело в том, что на самом процессоре сокет должен совпадать с соответствующим гнездом на материнской плате.

В противном случае, вам не удастся объединить эти два важнейших компонента любого компьютера. Так что, при сборке системного блока, нужно либо купить материнку и искать под нее чипсет, либо наоборот.

Теперь пришло время разобраться, какие характеристики процессора влияют на его производительность. Без сомнения, главная из них – это тактовая частота. Это объем операций, которые могут выполняться в определенную единицу времени.

Измеряется данный показатель в мегагерцах. Так на что влияет тактовая частота чипа? Поскольку она указывает на количество операций за определенное время, не сложно догадаться, что от нее зависит скорость работы устройства.

Еще один немаловажный показатель – это объем буферной памяти. Как уже говорилось ранее, она бывает верхней и нижней. Она также влияет на производительность процессора.

В ЦП может быть одно или несколько ядер. Многоядерные модели стоят дороже. Но на что влияет количество ядер? Эта характеристика определяет мощность устройства. Чем больше ядер, тем мощнее аппарат.

Вывод

Центральный процессор играет не просто одну из важнейших, но даже можно сказать основную роль в работе компьютера. Именно от него будет зависеть производительность всего устройства, а так же задачи, для которых вообще его возможно использовать.

Но это не значит, что обязательно покупать самый мощный процессор для средненького компьютера. Подберите оптимальную модель, которая будет соответствовать вашим требованиям.

Пожалуй, ключевым достоинством персонального компьютера как платформы является его впечатляющая гибкость и возможности кастомизации, которые сегодня, благодаря появлению новых стандартов и типов комплектующих, кажутся практически безграничными. Если лет десять назад, произнося аббревиатуру "ПК", можно было с уверенностью представить себе белый железный ящик, опутанный проводами и жужжащий где-то под столом, то сегодня столь однозначных ассоциаций нет и быть не может.

Сегодняшний ПК может быть мощной рабочей станцией, ориентированной на производительность в вычислениях или рабочей машиной дизайнера, "заточенной" под качество двухмерной графики и быструю работу с данными. Может быть топовой игровой машиной или скромной мультимедийной системой, живущей под телевизором...

Иначе говоря, у каждого ПК сегодня свои задачи, которым соответствует тот или иной набор железа. Но как выбрать подходящее?

Начинать следует с центрального процессора. Видеокарта определит производительность системы в играх (и ряде рабочих приложений, использующих вычисления на GPU). Материнская плата - формат системы, её функционал "из коробки" и возможности подключения комплектующих и периферийных устройств. Однако именно процессор определит возможности системы в повседневных домашних задачах и работе.

Давайте рассмотрим, что важно при выборе процессора, а что - нет.

На что НИКОГДА не нужно обращать внимание

Производитель процессора

Как и в случае с видеокартами (да, впрочем, и со многими другими девайсами), наши соотечественники всегда рады превратить обыкновенный потребительский товар в нечто, что можно поднять на штандарты и пойти войной на сторонников противоположного лагеря. Можете представить себе ситуацию, в которой любители маринованных огурцов и консервированных помидоров разделили магазин баррикадой, покрывают друг друга последними словами и частенько прибегают к рукоприкладству? Согласитесь, звучит как полный бред... однако в сфере компьютерных комплектующих такое происходит сплошь и рядом!

Причем, как и любые сектанты, фанаты брендов видят мир исключительно разделенным на чёрное и белое. Все, абсолютно все товары с их любимым логотипом - это абсолютный идеал и само совершенство, а противоборствующие им решения - само воплощение зла, вместилище всех возможных недостатков.

О том, что у каждого из двух производителей центральных процессоров - соответственно, Intel и AMD , - есть полностью сформированные линейки продуктов, состоящие из совершенно разных по характеристикам девайсов с совершенно разной стоимостью, сектанты предпочитают умалчивать. Как, собственно, и о том, что в разных ценовых сегментах реальный лидер может меняться.

Рекомендация №1: Планируя сборку нового ПК или апгрейд старого, определитесь в первую очередь с бюджетом. Посчитайте сумму, которая у вас есть на руках, добавьте к ней некий резерв, который вы, в случае необходимости готовы добавить, а затем посмотрите, какие модели центральных процессоров в этот бюджет вписываются.

Чётко осознайте, что вы выбираете именно эти модели, и вам важны именно их характеристики. Что происходит, и кто лидирует в сегментах выше или ниже вашего бюджета - вас не касается. Вам важно только то, сколько производительности вы получите сейчас, за имеющиеся деньги.

"Игровой" или "не игровой" процессор

У процессора нет такой характеристики или функции, которая позволяла или не позволяла бы ему запускать игры (хотя родители некоторых покупателей с радостью бы за неё заплатили). У него есть производительность, которой может оказаться достаточно или недостаточно для комфортной игры. Разделение же на игровые и не игровые модели - не более чем искусственный маркетинг. Причём разделение весьма странно и зачастую не соответствует реальным возможностям ЦПУ.

Рекомендация №2: Какие бы цели вы ни ставили перед будущим ПК - будет ли он игровой системой, рабочей станцией или основным элементом домашней мультимедийной системы - руководствуйтесь самым простым параметром: тем, насколько производительности процессора достаточно для этих задач.

Раскрывашки

Кризисный 2016 год, в который упали доходы населения, а следовательно, и продажи всего и вся, включая центральные процессоры, "подарил" нам очередной миф, который теперь надолго засядет в интернетах. А уж в сознании рядовых покупателей - и того дольше.

Суть явления проста: "старые процессоры с новыми видеокартами работать не могут, бегите все покупать новые!". Особенно доставляют здесь рекомендации заменить вполне годные и актуальные процессоры Core i5 старых поколений на процессоры Core i3 новых поколений, которые по всем параметрам хуже. Ну, и, разумеется, советы потратить 40 тысяч на апгрейд платформы ради игр с видеокартой за 20 тысяч.

Рекомендация №3: Собственно, и . Задача любой раскрывашки - не помочь вам выбрать подходящий процессор, а "втюхать" девайс поновее и подороже, желательно в комплекте с материнской платой и памятью. Увидите раскрывашку - отойдите в сторонку и не слушайте. Иначе себе дороже выйдет.

Что ИНОГДА может оказаться важным

OEM и BOX-комплектация, она же "система охлаждения в комплекте"

Центральные процессоры могут поставляться в двух вариантах: "боксовой" и OEM-комплектации . Разница предельно проста: "бокс" - это, собственно, коробка, в которой, помимо самого процессора, находятся гарантийный талон и штатная система охлаждения (хотя в редких случаях вроде процессоров FX 9000-ой серии она может отсутствовать). OEM - это просто процессор, абсолютно без всего. Ни коробки, ни кулера, ни гарантийного талона.

Вызвано это тем, что OEM-комплектация по замыслу производителя процессора предназначается для фирм, собирающих и продающих готовые ПК. Процессоры в данном случае приобретаются большими партиями и поставляются в паллетах, вмещающих по 20 с лишним штук. Опять же, по логике производителя, из этих паллетов они должны попадать сразу в компьютеры.

Но в нашей стране процессор в OEM-комплектации можно свободно купить в рознице (см. гневные отзывы на тему "Вынесли процессор в пакетике" ). Такая комплектация дешевле боксовой, и порой - очень существенно.

Рекомендация №4: Боксовая комплектация - это всегда компромисс. Штатный кулер - не самый эффективный, не самый тихий и уж совершенно точно - не самый выгодный по цене. Кого-то может подкупить более длительный срок гарантии у "бокса" против OEM, однако процессор - устройство крайне живучее, и сломать его ой как непросто (разве что целенаправленно и механически). Если он прожил у вас первый день - с 95% вероятностью проживёт и следующие 10 лет. Альтернативные кулеры, опять же, могут оказаться и дешевле, и эффективнее штатного.

С другой стороны, всё упирается в цену. Если стоимость "бокса" лишь немногим выше OEM - берите бокс, хуже от этого не будет.

Свободный множитель и частота процессора

Далеко не каждому пользователю даже самого обычного игрового ПК интересен разгон, не говоря уже о платформах, на которых оный разгон вообще не нужен или противопоказан. Тем не менее, в отдельных случаях этот параметр может оказаться полезным.

Частота современных процессоров складывается из двух параметров: базовой частоты, задаваемой системной шиной, и множителя, который варьируется от модели к модели. Соответственно, изменяя один из двух параметров или оба сразу, мы можем изменять итоговую тактовую частоту процессора и его производительность. Тем не менее, далеко не все современные платформы позволяют разгонять процессор по шине (а еще меньше платформ позволяют делать это официально). Так что, если вы заранее планируете разгон - выбирайте модели ЦПУ с разблокированным множителем , этим вы сильно облегчите себе задачу.

Что же касается тактовой частоты процессора (как базовой , так и в турбо-режиме ) - это весьма специфический параметр. При прочих равных условиях - да, производительность процессоров определяется частотой. Например, если мы сравниваем два процессора из линейки Core i5 , относящихся к одному и тому же поколению и основанных на одном и том же ядре, быстрее будет тот, у которого выше частота.

Но если сравнивать Core i5 с Core i3 того же поколения или с Core i5 предшествующего поколения - частота вовсе не будет определяющим фактором! В первом случае важно будет количество исполнительных блоков, во втором - архитектурные различия и поддержка отдельных технологий и инструкций.

Рекомендация №5: Свободный множитель - параметр полезный, но далеко не для всех. Нужен он вам или нет - зависит от ситуации, и однозначных рекомендаций тут дать нельзя. Что же касается частоты - пользуйтесь этим параметром с осторожностью. Он важен только в том случае, если все остальные параметры одинаковы.

Интегрированное графическое ядро

Большинство современных процессоров за редкими исключениями оснащается встроенной графикой . У некоторых покупателей это вызывает недовольство - мол, зачем это я переплачиваю за то, чем не буду пользоваться? Однако в реальности встроенное графическое ядро не отнимает, а ЭКОНОМИТ ваши деньги.

Как так? Всё просто. Купили вы компьютер с мощным процессором, оверклокерской материнской платой и большим объемом памяти, а покупку игровой видеокарты отложили на потом. Всего лет 8-10 назад в такой ситуации вам пришлось бы искать на барахолках "затычку" для слота - устаревшую или слабую видеокарту, на которой можно было пересидеть, пока не будет приобретен более мощный современный девайс. Просто потому, что иначе компьютер бы не работал - не умели тогда процессоры выводить видео, а топовые материнские платы и встроенное видео были вещами несовместимыми.

Сегодня же - вы просто подключаете монитор к выходам на материнской плате и используете ПК, не тратя лишнее время и деньги. Более того - производительность современной встроенной графики такова, что нетребовательным пользователям и тем, кому компьютер нужен не для игр видеокарта и вовсе не нужна!

Особняком здесь стоят APU компании AMD . Их ключевое преимущество - именно мощная встроенная графика, что делает эти процессоры отличным вариантом для HTPC и мультимедийных систем, но в то же время их использование с дискретным видео теряет всякий смысл. Справедливости ради - топовые модели современных процессоров Intel оснащаются видеоядром не хуже, но стоят куда дороже APU, а производительность их процессорной части для HTPC крайне избыточна.

Кто же сегодня живёт без встроенной графики? Это топовые процессоры Intel для платформы LGA 2011-3 - им по статусу положено работать либо с мощнейшими игровыми видеокартами, либо с профессиональными ускорителями вычислений. Также лишены графики процессоры AMD под уходящую уже платформу AM3+ . И процессоры семейства Athlon II - те же самые APU, только с отключенной графической частью: экстремально дешёвые и столь же производительные за свой ценник.

Кроме того, без встроенной графики обходятся некоторые (но далеко не все) процессоры Intel Xeon , выполненные под мейнстримовые платформы LGA 115x. Об этих процессорах стоит сказать особо. Несмотря на "серверное" имя, они фактически являются аналогами десктопных Core i5/i7. Существенные различия - возможность установки в материнские платы, поддерживающие мультипроцессорные конфигурации и поддержка оперативной памяти с коррекцией ошибок (ECC).

Рекомендация №6: Бояться встроенной графики не стоит - это отличный бонус, который к тому же скоро станет стандартом для всех платформ за исключением LGA 2011-3 и возможно, её потомков. Встроенное ядро может оказаться очень полезным в отдельных случаях или вовсе избавить вас от необходимости покупать дискретную видеокарту. Но и гоняться за ним не стоит: у процессоров без встроенной графики тоже может оказаться немало достоинств.

Что вам ДЕЙСТВИТЕЛЬНО важно знать

Сокет

Сокет - это разъём, в который процессор устанавливается на материнской плате. Как и любой другой разъём, он имеет определённые физические размеры, конструкцию, количество контактов и так далее. Соответственно, за редкими исключениями, установить в один сокет можно только одно семейство процессоров. Например, процессор под сокет AM4 в материнскую плату с сокетом FM2+ или LGA 1151 установить невозможно чисто физически (вернее, один раз возможно, но после этого вам потребуются и новый процессор, и новая материнская плата).

Соответственно, выбор сокета определяет то, какие процессоры вам будут доступны на момент покупки, и какие вы сможете установить в будущем (и сможете ли вообще). От него зависит производительность системы, возможности и цена будущего апгрейда, а нередко - и количество периферийных устройств, которые можно установить в ПК.

Рекомендация №7 : Определитесь с тем, что вы хотите получить от ПК. Да, некоторые современные платформы абсолютно универсальны (а некоторые будущие платформы - обещают быть такими) и гибко настраиваются под любые задачи при наличии должного количества денег, но это вовсе не значит, что у них нет аналогов. Некоторые ваши задачи могут быть решены гораздо меньшими тратами, а некоторые - гораздо эффективнее при тех же тратах.

Если вы выбираете процессор под уже имеющуюся материнскую плату - не поленитесь потратить несколько минут на то, чтобы зайти на официальный сайт производителя и посмотреть список совместимых с ней моделей ЦПУ. Это бесплатно, совершенно не сложно, и не требует никаких специальных знаний, но в ряде случаев поможет вам сэкономить время и деньги.

Бывает так, что процессор совпадает по сокету, но при этом вовсе не поддерживается материнской платой, или для запуска требует обновления микрокода биос. Второе можно сделать заранее перед покупкой нового ЦПУ, а первое лучше узнать сразу, чем потом возвращать в магазин исправный товар, в несовместимости которого с вашим железом не виноваты ни вы, ни сотрудники магазина.

Также бывают случаи, когда процессор номинально поддерживается, но на деле не может работать в конкретной материнской плате - например, когда подсистема питания материнской платы слишком слабая, а процессор наоборот, слишком прожорлив и требователен к питанию. Об этом тоже лучше узнать заранее, чем потом бороться с последствиями.

Если же вы выбираете процессор под абсолютно новую систему, обращать внимание следует на актуальные сокеты:

AM1 - платформа AMD, предназначенная для неттопов, встраиваемых систем и мультимедийных ПК начального уровня. Как и все APU, отличается наличием сравнительно мощной встроенной графики, что и является основным преимуществом.

AM4 - универсальная платформа AMD для мейнстрим-сегмента. Объединяет десктопные APU и мощные ЦПУ семейства Ryzen, благодаря чему позволяет собирать ПК буквально под любой бюджет и потребности пользователя.

TR4 - флагманская платформа AMD, предназначенная под процессоры Threadripper. Это продукт для профессионалов и энтузиастов: 16 физических ядер, 32 потока вычислений, четырёхканальный контроллер памяти и прочие впечатляющие цифры, дающие серьёзный прирост производительности в рабочих задачах, но практически не востребованные в домашнем сегменте.

LGA 1151_v2 - сокет, который ни в коем случае нельзя путать с обычным LGA 1151 (!!!). Являет собой актуальную генерацию мейнстримовой платформы Intel, и наконец-то привносит в потребительский сегмент процессоры с шестью физическими ядрами - этим и ценен. Однако обязательно следует помнить, что процессоры Coffee Lake нельзя установить в платы с чипсетами серий 200 и 100, а старые процессоры Skylake и Kaby Lake - в платы с чипсетами серии 300.

LGA 2066 - актуальная генерация платформы Intel, предназначенной для профессионалов. Также может быть интересна в качестве платформы для постепенного апгрейда. Младшие процессоры Core i3 и Core i5 практически ничем не отличаются от аналогов под LGA 1151 первой версии и стоят относительно доступно, но впоследствии их можно заменить на Core i7 и Core i9.

Количество ядер

Этот параметр требует множества оговорок, и его следует применять с осторожностью, однако именно он позволяет более-менее логично выстроить и дифференцировать центральные процессоры.

Модели с двумя вычислительными ядрами , а также с двумя физическими ядрами и четырьмя виртуальными потоками вне зависимости от тактовой частоты, степени динамического разгона, архитектурных преимуществ и фанатских мантр сегодня прочно обосновались в сегменте офисных ПК, причём даже там - не на самых ответственных местах. Всерьёз говорить об использовании таких ЦПУ в игровых машинах, а уж тем более - в рабочих станциях сегодня не приходится.

Процессоры с четырьмя вычислительными ядрами выглядят немного актуальнее, и могут удовлетворить запросы как офисных работников, так и не самых требовательных домашних пользователей. На них вполне можно собрать бюджетный игровой ПК, хотя в современных тайтлах производительность будет ограничена, а одновременное выполнение нескольких операций - к примеру, запись игрового видео, - будет невозможно или приведёт к заметному падению фпс.

Оптимальный вариант для дома - процессоры с шестью ядрами . Они способны обеспечивать высокую производительность в играх, не падают в обморок при выполнении нескольких ресурсоёмких задач одновременно, позволяют использовать ПК в качестве домашней рабочей станции, и при всём этом - сохраняют вполне доступную стоимость.

Процессоры с восемью ядрами - выбор тех, кто занят более серьёзными задачами, нежели игры. Хотя и с развлечениями они справятся без проблем, заметнее всего их преимущества - в рабочих приложениях. Если вы занимаетесь обработкой и монтажом видео, рисуете сложные макеты для полиграфии, проектируете дома или другие сложные конструкции, то выбирать стоит именно эти ЦПУ. Излишка производительности вы не заметите, а вот быстрая обработка и отсутствие зависаний в самый ответственный момент - определённо вас порадуют.

Процессоры с 10 и 16 ядрами - это уже серверный сегмент и весьма специфические рабочие станции, от предыдущего варианта отличающиеся примерно как работа дизайнера спецэффектов для большого кино от работы монтажера роликов на youtube (собственно, примерно там и используются). Однозначно рекомендовать или наоборот, отговаривать от их покупки сложно. Если вам реально требуется такая производительность - вы уже знаете, как и где будете её применять.

Рекомендация №8: Количество ядер - не самый чёткий параметр, и не всегда он позволяет отнести к одной группе процессоры с близкими характеристиками. Тем не менее, при выборе процессора стоит ориентироваться на этот параметр.

Производительность

Итоговый и самый важный параметр, которого, увы, нельзя найти ни в одном каталоге магазина. Тем не менее, в итоге именно он определяет, подойдет ли вам тот или иной процессор, и насколько эксплуатация ПК на его основе будет соответствовать вашим первоначальным ожиданиям.

Прежде, чем отправляться в магазин за процессором, который вам вроде бы подходит, не поленитесь изучить его детальные тесты. Причем "детальные" - это не видосики на ютубе, показывающие вам то, что вы должны увидеть по замыслу их автора. Детальные тесты - это масштабное сравнение процессора в синтетических бенчмарках, профессиональном софте и играх, проводимое по чёткой методике с участием всех или большинства конкурирующих решений.

Как и в случае с видеокартами, чтение и анализ подобных материалов поможет вам определить, стоит ли тот или иной процессор своих денег, и на что, при возможности, его можно заменить.

Рекомендация №9: Потратив пару вечеров на чтение и сравнение информации из разных источников (важно, чтобы они были авторитетными, и весьма желательно - зарубежными), вы сделаете аргументированный выбор и избавите себя от множества проблем в будущем. Поверьте, оно того более чем стоит.

Критерии и варианты выбора:

Согласно изложенным выше критериям, ЦПУ из каталога DNS можно распределить следующим образом:

Процессоры AMD Sempron и Athlon под сокет AM1 подойдут для сборки бюджетных мультимедийных ПК, встраиваемых систем и тому подобных задач. К примеру, если вы хотите установить в машину полноценный ПК с десктопной операционной системой или собрать небольшой неттоп, который будет скрытно жить в недрах дачного дома или гаража - стоит обратить внимание на эту платформу.

Для офисных ПК подойдут двухъядерные процессоры Intel Celeron , Pentium и Core i3 . Их преимуществом в данном случае выступит наличие встроенного графического ядра. Производительность последнего достаточна для вывода необходимой информации и ускорения работы браузеров, но совершенно недостаточна для игр, которых на рабочем месте всё равно быть не должно.

Для домашнего мультимедийного ПК лучшим выбором окажутся APU от AMD, предназначенные под актуальный сокет AM4. Представители линеек A8, A10 и А12 объединяют под одной крышкой четырёхъядерный процессор и весьма неплохую графику, которая может уверенно соперничать с бюджетными видеокартами. ПК на этой платформе можно сделать весьма компактным, но его производительности хватит для воспроизведения любого контента, а также целого ряда рабочих задач и немалого перечня игр.

Для бюджетного игрового ПК подойдут четырёхъядерные процессоры AMD Ryzen 3 и четырёхъядерные Core i3 под сокет LGA 1151_v2 (не путать с двухъядерными Core i3 под сокет LGA 1151 !!!). Производительности этих процессоров достаточно для любых домашних задач и большинства игр, однако грузить их серьёзной работой или пытаться выполнять несколько ресурсоёмких задач одновременно всё же не стоит.

Для бюджетной рабочей станции компромиссным вариантом могут стать четырёхъядерные процессоры AMD Ryzen 5 . Помимо физических ядер, они предлагают и виртуальные потоки вычислений, что в итоге позволяет выполнять операции в восемь потоков. Разумеется, это не так эффективно, как физические ядра, но вероятность увидеть 100% загрузку процессора и падение фпс ниже играбельного при записи или прямой трансляции геймплея здесь гораздо ниже, чем у предыдущих двух вариантов. Да и последующий монтаж оного видео пройдёт быстрее.

Оптимальный выбор для домашнего игрового ПК - шестиядерные процессоры AMD Ryzen 5 и Intel Core i5 под сокет LGA 1151_v2 (не путать с их четырёхъядерными предшественниками!!!). Стоимость этих ЦПУ вполне гуманна, их даже можно назвать относительно доступными, в отличие от топовых линеек Ryzen 7 и Core i7. А вот производительности - вполне хватает, чтобы играть в любые интересные пользователю игры и работать на дому. Причем даже одновременно, если будет такое желание.

Для топовых игровых ПК или рабочих станций без претензий на избранность и элитарность подойдут процессоры AMD Ryzen 7 и Intel Core i7 , имеющие, соответственно, 8 ядер/16 потоков и 6 ядер/12 потоков. Относясь к мейнстримовым платформам, эти процессоры всё ещё относительно доступны и не требуют дорогостоящих материнских плат, блоков питания и кулеров. Однако их производительности достаточно практически для всех задач, которые может поставить перед ПК рядовой пользователь.

Если же её всё-таки будет недостаточно - для высокопроизводительных рабочих станций предназначены процессоры AMD Ryzen Threadripper , предназначенные для установки в сокет TR4, и топовые модели процессоров Intel под сокет LGA 2066 - Core i7 и Core i9 , имеющие по 8, 10, 12 и более физических ядер. Помимо этого, процессоры предлагают четырёхканальный контроллер памяти, что важно для ряда профессиональных задач, и до 44 линий PCI-express, позволяющих подключать много периферии, не теряя в скорости обмена данными. Рекомендовать эти ЦПУ для домашнего использования не получается и в силу их цены, и благодаря "заточенности" под многопоток и профессиональные задачи. А вот в работе процессоры под топовые платформы могут буквально в разы опережать своих десктопных собратьев.

Приветствую всех, кто заинтересовался такой важной составляющей системного блока, как процессор. Позвольте для начала задать вам несколько вопросов. Занимаетесь ли вы профессиональным монтажом видео? А вы любите ультрасовременные игры, реалистичность в которых просто зашкаливает? Или хотите, чтобы ваш компьютер работал без тормозов, зависаний и выполнял все возложенные на него функции?

Тогда вам просто необходимо знать, что именно процессор ответственен за решение любых, даже самых сложных задач. В этой статье вы узнаете, зачем нужен процессор в компьютере, на что он способен и как правильно его подобрать исходя из своих потребностей.


Что такое процессор?

Процессор - это небольшая микросхема, которая располагается в специальном слоте на . Через него ежесекундно проходят миллионы операций, совершаемых вами или установленными программами. Именно в процессоре сосредоточены все основные функции управления компьютером, он является своеобразным "мостом" между каждой составляющей . Без него невозможно запустить компьютер, как, например, завести автомобиль, у которого нет двигателя.
Соответственно, чем мощнее чип, тем быстрее будут обрабатываться все команды и операции. Любые, даже самые ресурсоёмкие утилиты перестанут "тормозить", станут быстрее открываться. Как пример можно привести 3D-рендеринг видео. Эта операция очень сильно нагружает производительность процессора, поэтому, если тот слабенький по своим параметрам, процедура может затянуться на несколько часов (зависит от длительности видео и его качества).

Аналогично будут выглядеть попытки геймеров запустить свои любимые игры. А если это даже и получится, то они, скорее всего, дальше начального меню не продвинутся, поскольку всё будет страшнейшим образом зависать. Или, на игровом сленге, лагать.

Оптимальный выбор - насколько это сложно?

Сразу скажу - это не трудно, но достаточно кропотливо. Дело в том, что подбирая процессор для определённых задач нужно учесть несколько критериев, таких как:

  • тактовая частота - от этого параметра зависит количество обрабатываемых в секунду операций;
  • производительность - это скорость обработки операций;
  • разрядность - количество обрабатываемых бит (единицы информации). Сей критерий конкретизирует тактовую частоту;
  • кеш - подобие оперативной памяти, позволяющее уменьшить время доступа к настоящей оперативной памяти;
  • количество ядер - чем их больше, тем увереннее микросхема будет справляться даже с колоссальными нагрузками (и критическими тоже).

Простому обывателю, чей компьютер не занят сложнейшими вычислительными задачами и не регулирует работу мощнейших программ, достаточно выбрать процессор только по двум критериям - это количество ядер и их тактовая частота. Вот о них сейчас и поговорим по порядку.

Многоядерность - это многозадачность

Самые первые процессоры имели в своей архитектуре всего одно ядро. Ранее этого было достаточно, но стремительное развитие информационных технологий не оставило одноядерным микросхемам никаких шансов, и они постепенно растворяются в истории. Сейчас стоит покупать современный процессор как минимум с двумя ядрами, а то и больше. Благо производители трудятся в поте лица и постоянно совершенствуются в разработке новых типов процессоров.


Производителей, кстати, в мире всего два - это компании Intel и AMD. Каждая из них выпускает вполне достойные чипы, но продукция Intel славится больше. Чем это вызвано - непонятно, ведь AMD тоже создаёт неплохие и мощные микросхемы.

Частота не менее важна

Тактовая частота - постоянно растущий параметр. Каждое новое поколение чипов имеет улучшенные характеристики. Например, процессор AMD A10-5800K последнего поколения (выпуска 2016 года) имеет частоту аж в целых 4.2 ГГц. При этом у него 12 ядер. Впечатляет, правда? Если ещё и разгон включить, то можно сделать супермашину из своего компьютера, но такие нагрузки вам вряд ли необходимы.

Если вам такие мощности ни к чему, то можно присмотреться к любому двухъядерному чипу, чья тактовая частота начинается от 1.7 ГГц. Этих показателей вполне хватит для уверенной работы даже мощных утилит (графика, видео и пр.). А также такой чип подойдёт и для игр.

В ноутбуках, кстати, очень часто встраиваются процессоры, которые сразу имеют в своей архитектуре графическое ядро. Это удобно, так как экономит место в корпусе и позволяет сразу же обрабатывать всю графическую информацию напрямую.

Решение возможных проблем

Как и любая другая техническая примочка, процессор может иногда удивлять пользователей. Например, пользователь недоумевает, хотя нагрузки вроде нет серьёзной. Или компьютер попросту зависнет в самый неподходящий момент (а 99% зависаний происходят из-за того, что чип не успевает обработать большой поток информации).

Практически всегда выход из положения элементарный - термопаста. Она необходима для стабилизации температуры и охлаждения. В сочетании с кулером, разумеется. У неё есть свойство со временем подсыхать, поэтому с определённой периодичностью ее нужно заменять. Ничего сложного в снятии кулера и нанесения термопасты нет, но если у вас нет опыта в этом, то лучше довериться профессионалу.


А если вы не в курсе, как узнать, какой процессор на вашем компьютере, то я подскажу, это очень просто. Достаточно кликнуть правой кнопкой мышки по ярлыку "Мой компьютер", вызвав контекстное меню, а там перейти во вкладку "Свойства". Все, информация о вашем процессоре будет прямо в открывшемся окошке.

Искренне надеюсь, что вы нашли для себя что-то новое в этом материале. Не забывайте делиться им со своими друзьями в социальных сетях, может кто-то из них как раз не знает чего-то о процессорах.

А вы знаете, что в России тоже разрабатывают свои процессоры. Нет? Тогда посмотрите это видео.

Дорогой читатель! Вы посмотрели статью до конца.
Получили вы ответ на свой вопрос? Напишите в комментариях пару слов.
Если ответа не нашли, укажите что искали .

CPU (Central Processing Unit) - центральный процессор компьютера (его мозги), физически представляет собой большую интегральную схему (микросхему), в которой функционально представлены различные узлы (не только собственно процессор). В многопроцессорной системе функции центрального процессора распределены между несколькими процессорами, один из которых считается главным.

Сложилось так, что процессорный рынок уверенно завоевали две компании: Intel и AMD . Именно эти две компании ведут постоянную борьбу за клиента и остро соперничают между собой, перехватывая время от времени инициативу друг у друга. Ниже представлены обозначения популярных моделей процессоров этих фирм на момент написания данной статьи (июнь 2010 года):

  • Процессоры AMD
    • Socket AM3 AMD Sempron™ LE-140 BOX 2700 Model Number 140, Frequency 2.7GHz, L2 Cache 1024KB, Thermal Design Power 45W, Process Technology 45 nanometer SOI technology
    • Socket AM3 AMD Athlon II X2 240 2800 OEM без вентилятора Model Number 215, Frequency 2.8, CMOS Technology 45nm SOI, Total Dedicated L2 Cache 1024MB, Packaging socket AM3, Thermal Design Power 65W
    • Socket AM3 AMD Athlon II X3 435 2900 BOX Frequency 2.9, CMOS Technology 45nm SOI, Total Dedicated L2 Cache 1.5MB, Packaging socket AM3, Thermal Design Power 95W
    • Socket AM3 AMD Phenom II X4 945 3000 BOX Frequency 3.0 GHz, Total L2 Cache 2MB, L3 Cache 4MB, Packaging socket AM3, Thermal Design Power 95W, CMOS Technology 45nm SOI
    • Socket AM3 AMD Phenom II X6 1055T 2800 Black Edition BOX 2.8GHz, 125W, 3MB total dedicated L2 cache, 6MB L3 cache, socket AM3
  • Процессоры Intel
    • Intel Celeron® Dual - Core E3200 2400 1024kb cache ОЕМ без вентилятора S775 Bus Speed 800 MHz EM64T
    • Intel® Pentium Dual - Core™ E5300 (Socket 775) 2600 2048kb cache BOX с вентилятором 800 MHz bus Hyper-Threading Technology ! EM64T
    • Intel® Core™Intel Pentium G6950(Socket 1156) 2800 BOX 512 Kb / 3072Kb , ClarkDale, 73W, S1156, Cooling Fan
    • Intel® Core™Core i3 540(Socket 1156) 3067 BOX 1024 Kb / 4096Kb , ClarkDale, 73W, S1156, Cooling Fan
    • Intel® Core™Core i5 750(Socket 1156) 2660 BOX 1024 Kb / 8192Kb , Lynnfield, 95W, S1156, Cooling Fan

Теперь рассмотрим основные параметры процессора:

Марка процессора и номер модели

Все довольно просто. Марка процессора, как правило, указывается в самом начале, при этом пишется фирма-изготовитель и собственно сама марка процессора:

  • AMD Sempron
  • AMD Athlon II
  • AMD Phenom II
  • Intel Celeron® Dual
  • Intel® Core™Intel Pentium
  • Intel® Core™Core

В рамках одного модельного ряда может быть несколько моделей, отличающихся номером, например: Intel® Core™Core i3 и Intel® Core™Core i5 .


Наиболее важным параметром процессора является его частота. При этом следует учитывать довольно любопытный нюанс: если фирма Intel указывает действительные значения частот для своих процессоров, то фирма AMD - некое теоретическое значение частоты, которую бы имел процессор Intel с такой же производительностью. Это связано с тем, что процессоры AMD обладают несколько меньшей действительной частотой, но большей производительностью.

Форм-фактор

Различные модели процессоров могут иметь некоторые контсруктивные отличия, к тому же, питающие напряжения могут у разных процессоров быть разными. Все это называется форм-фактором . Конечно же, под разные процессоры изготавливаются "свои" материнские платы, подходящие только для процессоров с аналогичным форм-фактором.

Частота шины

Для обмена данными между различными составляющими компьютера и процессором используется шина FSB (Front Side Bus). У процессоров AMD Athlon 64 - используется шина HT (Hyper Transport). За один такт шины передается несколько пакетов данных, и в параметрах процессора его частота указыватеся с учетом такого умножения скорости. Так процессор Pentium 4 с частотой шины 800 МГц на самом деле работает на частоте FSB 200 МГц, т.к. за один такт передается 4 пакета данных.

Множитель

Частота на которой работает процессор компьютера определяется произведением частоты шины FSB на некоторый множитель, который, как правило, нельзя изменять. Этот множитель задается автоматически, в зависимости от материнской платы. Однако, системные платы, которые позволяют делать "разгон" компьютера, разрешают делать изменение множителя, тем самым увеличивая скорость работы процессора в ущерб его надежности и долговечности работы.

Напряжение ядра

Разные модели процессоров для своей нормальной работы требуют разные напряжения питания, которые можно увеличивать при разгоне компьютера.

Степпинг

Степпингами называют модификации одного и того же ядра процессора, которые производятся с целью улучшения рабочих характеристик процессора.

Кэш-память

Цифровые технологии таковы, что скорость работы процессора в несколько раз превышает скорость работы памяти. Поскольку этот тандем всегда работает в паре, то, фактически скорость работы компьютера определяется скоростью работы памяти. Получается, что процессор бОльшую часть времени просто простаивает без дела в ожидании пока память обработает очередную порцию данных. Чтобы "разрулить" ситуацию придумали, так называемую, кэш-память , которая встраивается непосредственно в микросхему процессора и работает на скоростях соизмеримыми со скоростью работы процессора.


Кэш-память очень дорогое "удовольствие" - ее стоимость составляет половину стоимости процессора, но она позволяет значительно поднять производительность системы процессор-память, в результате чего, значительно возрастает общая скорость работы компьютера.


Из-за своей дороговизны размер кэш-памяти относительно небольшой и измеряется килобайтами, но этого оказывается вполне достаточно, т.к. в кэш-память помещаются только наиболее часто используемые в данный момент данные.


Практичечески все процессоры имеют двухуровневую кэш-память - L1 (кэш-память первого уровня), L2 (кэш-память второго уровня).


Кэш-память первого уровня наиболее быстрая память, ее размер составляет 16..128 Кб.


Кэш-память первого уровня бывает единой (принстонская архитектура) и разделенной на две части (гарвардская архитектура):

  1. L1 data cashe - первичный кэш данных, в котором хранятся данные, к которым недавно обращался процессор;
  2. L1 instruction cashe - первичный кэш инструкций, в котором хранятся инструкции, которые процессор недавно выполнял или будет выполянть в ближайшее время.

Кэш-память второго уровня работает значительно медленне, чем кэш-память первого уровня, но имеет гораздо больший объем - 128 Кб.. 6 Мб.


Кэш-память второго уровня может быть эксклюзивной (не могут храниться данные, содержащиеся в L1), либо инклюзивной (хранится копия L1).


Довольно редко, но встречается еще и кэш-память третьего уровня - L3 .

Немаловажный вопрос от пользователей, который я откладывал на потом, что такое процессор в компьютере? Центральный процессор (CPU) – важнейшая часть аппаратного обеспечения любого компьютера, отвечающая за выполнение необходимых арифметических операций, заданных программами, координирующая работу всех, без исключения, .

Безусловно, процессор – сердце каждого компьютера. Именно процессор выполняет инструкции программного обеспечения, использующегося на персональном компьютере, обрабатывает набор данных и производит сложные вычислительные операции. Главными характеристиками процессора являются: производительность, тактовая частота, энергопотребление, архитектура и кэш.

Итак, мы с вами поняли, что такое процессор, но какие бывают виды и для чего нужен процессор в компьютере? Давайте, обо всем по порядку. Известно, что процессоры бывают одноядерные и многоядерные . Многоядерным процессором называется центральный процессор, содержащий два (и больше) вычислительных ядра, размещенных на одном небольшом процессорном кристалле или в одном общем корпусе. Обычный процессор имеет только одно ядро. Эпоха одноядерных процессоров понемногу уходит в прошлое. По своим характеристикам они, в целом, проигрывают многоядерным процессорам.

Например, тактовая частота средненького двухъядерного процессора нередко может быть намного ниже частоты неплохого одноядерного процессора, но из-за разделения задач на «обе головы», разница в результатах становится несущественной. Двухъядерный процессор Core 2 Duo с тактовой частотой 1,7ГГц легко сможет обскакать одноядерный Celeron с тактовой частотой 2,8ГГц, ведь производительность зависит не от одной лишь частоты, но и от количества ядер, кэша и других факторов.

На сегодняшний момент на мировом компьютерном рынке лидируют два крупнейших производителя процессоров — корпорация Intel (ее доля на сегодня порядка 84%) и компания AMD (около 10%). Если взглянуть на историю развития центральных процессоров, то можно увидеть довольно много интересного. Начиная с появления первых настольных компьютеров, основным способом повысить производительность было планомерное повышение тактовой частоты.

Это весьма очевидно и логично. Однако всему есть предел и частоту невозможно наращивать до бесконечности. К сожалению, с увеличением частоты начинает нелинейно возрастать тепловыделение, достигающее, в конечном итоге, критически высоких значений. Пока решить эту проблему не помогает даже применение более тонких технических процессов в создании транзисторов.

Существует ли выход из этой очень непростой ситуации? Вскоре выход был найден в применении нескольких ядер в одном кристалле. Решено было применить вариант процессора «2 в 1». Появление на рынке компьютеров с такими процессорами вызвало целый ряд споров. Нужны ли многоядерные процессоры? Чем они лучше обычных процессоров, имеющих одно ядро? Может компании-производители просто хотят получить дополнительную прибыль? Сейчас уже можно уверенно ответить: многоядерные процессоры нужны, за ними будущее. В ближайшие десятилетия невозможно представить прогресса в этой отрасли без применения многоядерных процессоров.

Многоядерные процессоры, чем же хороши? Использование таких процессоров сравнимо с применением нескольких отдельных процессоров для одного компьютера. Ядра находятся в одном кристалле, они не являются полностью независимыми (к примеру, используют общую кэш-память). При применении имеющегося программного обеспечения, созданного изначально для работы с одним ядром, такой вариант даёт ощутимый плюс. Вы сможете запустить одновременно две (и более) ресурсоёмкие задачи без малейшего дискомфорта. Однако, ускорение единственного процесса – задание для этих систем фактически непосильное. В итоге, мы получаем почти тот же одноядерный процессор с небольшим плюсом в виде возможности задействования нескольких программ одновременно.

Как же быть? Выход из этой щекотливой ситуации вполне очевиден – требуется разработка нового поколения программного обеспечения, способного задействовать одновременно несколько ядер. Необходимо как-то распараллелить процессы. В реальности это оказалось весьма непросто. Конечно, некоторые задачи, возможно, довольно легко распараллелить. Например, относительно просто можно распараллелить кодирование видео и аудио.

Здесь в основе находится набор однотипных потоков, соответственно, организовать их одновременное выполнение – задача довольно простая. Выигрыш существующих многоядерных процессоров в решении задач кодирования перед «аналогичными» одноядерными будет пропорционален количеству этих ядер: если два ядра, то вдвое быстрее, четыре ядра – в четыре раза, 6 ядер – в шесть раз. К сожалению, подавляющую часть важных задач распараллелить гораздо сложнее. В большинстве случаев необходима серьезная переработка программного кода.

Уже несколько раз от представителей довольно мощных компьютерных компаний звучали радостные высказывания об удачной разработке оригинальных многоядерных процессоров нового поколения, которые способны самостоятельно разделять один поток на группу независимых потоков, но, к глубокому сожалению, никто из них пока не продемонстрировал ни одного подобного рабочего образца.

Шаги компьютерных компаний на пути к массовому использованию многоядерных процессоров весьма очевидны и незамысловаты. Основным заданием этих компаний является совершенствование процессоров, создание новых перспективных многоядерных процессоров, ведение продуманной ценовой политики, направленной на снижение цен (или сдерживание их роста). На сегодня, в среднем сегменте двух ведущих мировых компьютерных гигантов (AMD и Intel) можно увидеть очень широкое разнообразие двухъядерных и четырехъядерных процессоров.

При желании, можно найти еще более навороченные варианты. Радует то, что немаловажный шаг на пути к пользователю начинают делать сами разработчики современного программного обеспечения. Многие последние игры уже обзавелись поддержкой двух ядер. Самым мощным из них практически жизненно важен минимум двухъядерный процессор для обеспечения и поддержания оптимальной производительности.

Окинув взглядом прилавки лучших компьютерных магазинов, проанализировав положение дел с ассортиментом, можно сказать, что общая картина вовсе не плоха. Производителям многоядерных процессоров удалось достичь весьма высокого уровня выпуска годных кристаллов. Ценовая политика ими проводится довольно разумная. По существующим ценам видно, что, например, увеличение числа ядер процессора в два раза обычно не приводит к двойному повышению цены такого процессора для покупателя. Это весьма разумно и вполне логично. К тому же, многим совершенно ясно, что при увеличении количества ядер центрального процессора вдвое производительность в среднем возрастает далеко не в столько же раз.

Все же, стоит признать, что, несмотря на всю тернистость пути к созданию еще более совершенных многоядерных процессоров, альтернативы ему в ближайшем обозримом будущем просто-напросто нет. Рядовым потребителям, желающим идти в ногу со временем, остается лишь своевременно модернизировать свой компьютер, применяя новые процессоры с увеличенным числом встроенных ядер, выводя таким способом общую производительность на более высокий уровень. Различные одноядерные процессоры еще успешно применяются в мобильных телефонах, нетбуках и другой технике.

Если вы не знаете, где он находится, читайте статью: « ». Напишите в комментариях какой у вас процессор?

Статьи по теме: