Лазерная компьютерная мышь принцип работы. Как работает компьютерная мышь

При выборе компьютера или ноутбука основное внимание будущего пользователя приковано к характеристикам аппаратной части. Периферические устройства и дополнительные компоненты подбираются на следующем этапе. В этом отношении компьютерная мышка стоит отдельно, являясь весьма значимым атрибутом системы. От нее зависит удобство пользования ноутбуком или компьютером, поэтому в ходе выбора важно учитывать способ ее подключения, функциональные возможности, принципы передачи сигнала компьютеру и т. д. Кроме того, ввиду особенностей эксплуатации устройства поломки его случаются нередко. По этой причине будет не лишним знать основы ее технического устройства.

Разновидности

На первый взгляд все компьютерные мышки одинаковы, а отличия относятся лишь к дизайну и габаритам. Но детальный осмотр даже по внешнему виду позволяет выявить существенные различия. На сегодняшний день актуальны следующие виды компьютерных мышек: механические (шариковые), оптические и лазерные.

  • Механические устройства. Принцип считывания информации о передвижении основан на работе шарика, который напрямую взаимодействует с ковриком. Это простейшая конструкция, обладающая множеством недостатков, из-за которых такие модели почти ушли с рынка.
  • Оптические версии. Наиболее распространенный вариант, работающий с помощью светодиодов и сенсора. Обработка сигнала и передвижение курсора обеспечивается за счет возможности сканирования рабочей поверхности.
  • Лазерная во многом напоминает оптическую модель, но вместо светодиодов в ней используется лазер. Это технологически более совершенное устройство, обладающее высокой точностью обработки данных с поверхности.

Проводные и беспроводные

Кроме принципа считывания информации о передвижении, мышки различаются и по способу передачи импульсов. На проводной основе были разработаны самые первые шариковые модели, а сегодня этот же подход применяется и к новейшим лазерным устройствам. Наличие кабеля, работающего через интерфейс USB, предполагает два преимущества - отсутствие необходимости обеспечивать мышку питающими элементами и стабильность в передаче сигнала.

Беспроводные версии, несомненно, удобнее проводных аналогов. Прежде всего, пользователь получает свободу в процессе управления, которому не мешает провод. С другой стороны, мышка компьютерная беспроводная нуждается в батарейках, которые, между тем, добавляют устройству веса. Связь с компьютером может обеспечиваться разными технологиями - от радиоинтерфейса до Bluetooth и Wi-Fi.

Мышки нового поколения

Среди новейших разработок стоит выделить индукционные и гироскопические модификации мышек. В первом случае устройство дополняется специальным ковриком, по принципу работы напоминающим графический планшет. Модели гироскопических мышек считывают перемещение не только при взаимодействии с поверхностью, но и в пространстве. То есть управление таким устройством возможно даже на весу.

Среди инновационных продуктов данного сегмента, которые более доступны пользователям, выделяется мышка компьютерная трекбол. В устройстве таких моделей предусматривается наличие выпуклого шарика (тот самый трекбол), который располагается в боковой и верхней частях прибора. Вращение шариком обеспечивается манипуляциями ладонью, при этом сама мышка остается на месте. Последние версии трекболов снабжаются и оптическими датчиками движения.

Требования к мышке

С точки зрения продвинутого пользователя, существует еще масса критериев и нюансов, на основании которых подбирается мышка с соответствующими характеристиками. Но при этом не существует универсальных параметров, определяющих, какой должна быть модель для конкретных условий пользования. Можно лишь определить принципиальные моменты, от которых следует отталкиваться в ходе отбора.

Внешний вид и дизайн являются довольно значимыми факторами, поскольку дискомфорт в руке при многочасовом ежедневном использовании мышки иногда дает о себе знать. Наиболее распространена симметричная округлая форма устройства, которая подходит большинству пользователей. Исходя из конкретных требований владельца, определяется и потребность в специальных кнопках, благодаря которым компьютерная мышка расширяет свою функциональность. Стандартная же комбинация остается самой популярной: две кнопки и колесико.

Есть и другие параметры выбора мышки, среди которых время отклика, бесшумность, наличие антибактериальных покрытий и высокопрочных элементов корпуса - несомненно, каждая из этих особенностей положительно скажется на эксплуатации устройства, но не стоит забывать и о соответствующей им цене.

Внутреннее устройство

Иметь представление о внутреннем устройстве мышки весьма полезно, так как внезапный выход манипулятора из строя может доставить немало проблем. Далее будут рассмотрены и нюансы ремонта, но пока стоит обратиться к начинке мышки. Поскольку самой популярной разновидностью является оптическое устройство, ему и будет посвящено описание.

В стандартном исполнении мышка компьютерная содержит так называемую оптопару - то есть два оптических сенсора. Оба этих элемента составляют тандем излучателя и приемника - первый состоит из светодиода, а второй представляет собой фототранзистор. Данные элементы располагаются поблизости друг к другу на печатной плате.

Принцип работы оптической мышки

В момент передвижения мышки активизируются и валы вращения вместе с зафиксированными на них дисками. Кромка диска с перфорациями в ходе работы пересекает излучающийся поток, направленный к приемнику. Таким образом, на выходе приемного датчика формируется несколько сигналов импульсов, поступающих на микропроцессор. Скорость, с которой передвигается компьютерная мышка, определяет и темпы вращения валов. Следовательно, высокая частота поступающих импульсов отразится и на скорости перемещения курсора на мониторе.

Ремонт мышки

Необходимость ремонта возникает в силу разных причин и в большинстве случаев требует разборки корпуса мышки. Как правило, своими силами удается справиться с восстановлением контактов в печатной плате манипулятора и ремонтом кнопочных микропереключателей. Самой же распространенной проблемой мышек является элементарный обрыв провода.

В каждом из описанных случаев необходимо разобрать корпус манипулятора. Как правило, для этого достаточно выкрутить несколько винтов, после чего откроется доступ к содержимому устройства. В случаях, когда ремонт компьютерных мышек затрагивает печатную схему, используют устройство для пайки. С его помощью можно зафиксировать оборванные контакты и припаять те же провода кабеля. Проблемы с микропереключателями обычно сводятся к сдвинутым толкателям кнопок. Принципы их правильного расположения можно узнать из соседней работающей кнопки и попытаться механически восстановить надлежащую конфигурацию устройства.

Как сделать мышку своими руками?

Работа по созданию компьютерной мышки состоит из нескольких этапов. Во-первых, необходимо сделать корпус, изначально рассчитав его характеристики и дизайн. Во-вторых, следует подобрать электронную начинку. И заключительный этап предусматривает компоновку и распайку кабеля.

Для тех, кто располагает возможностью работы с 3D-принтером, ответ на вопрос «как сделать компьютерную мышку» облегчается, поскольку многие компоненты изготавливаются из полиамида. В остальных же случаях, по крайней мере, корпусную основу придется делать из древесины, так как это самый податливый и гибкий в моделировании материал. За счет нескольких фрезеровочных операций и обработке на станке ЧПУ можно получить любой вариант каркаса.

Компоненты для внутренней начинки самостоятельно изготовить не удастся, поэтому сразу следует обращаться к производителям готовых оптических датчиков, контроллеров и плат - среди изготовителей можно выделить фирмы Geyer, Murata и Molex. Так же стоит поступить с кабелем - к примеру, на эту роль вполне может подойти микрофонный четырехжильный провод.

Один из незаменимых компонентов любой современной вычислительной системы - это компьютерная мышь. Данный «грызун» давно стал частью не только персоналок, но и ноутбуков, правда, в немного измененном виде.

Как выглядит компьютерная мышь, знает каждый. В некоторой степени она действительно напоминает известного сельскохозяйственного вредителя, правда, с рядом оговорок. Есть мнение, что будущим поколениям пользователей данная ассоциация будет неочевидна. Хотя бы потому, что современная компьютерная мышь все чаще выполняется беспроводной, лишившись «хвоста».

Принцип работы данного удивительного устройства чрезвычайно прост: при его перемещении по поверхности относительные координаты передаются в компьютер, где специальным программным обеспечением преобразуются в движения курсора-указателя по экрану. Что интересно, им может быть не только привычная стрелочка операционной системы, но и персонаж в компьютерной игре. За кажущейся простотой скрывается труд инженеров, электронщиков и программистов. В зависимости от конструктивных особенностей, компьютерная мышь может по-разному регистрировать перемещения. Давайте вспомним, чем же отличаются эти, казалось бы, одинаковые устройства.

Первые модели, появившиеся лет 50 назад, были механическими. Внутри устройства находился массивный металлический шар, покрытый слоем резины. Нижней стороной он соприкасался с внешней поверхностью, а двумя другими - с роликами. Их могло быть и четыре, но обрабатывалось только два. При перемещении руки, держащей мышку, вращение шара передавалось роликам, от них - переключателям, а дальше преобразовывалось в последовательность электрических сигналов, отправляемых в компьютер. Двух роликов вполне достаточно для получения координат точки на плоскости. К недостаткам такого решения можно отнести необходимость периодической чистки шара от налипшей грязи (накручивались волосы, налипала пыль) и замену износившихся компонентов.

Вскоре им на смену пришли оптико-механические решения. Внешне все осталось без изменений, но переключатели были упразднены, уступив место более надежному решению - оптопаре. За «страшным» названием скрываются вполне безобидные светодиод и вместе называемые оптронной парой. Каждый ролик был объединен с перфорированным колесом, размещенным между датчиком и диодом. При вращении поток света прерывался, что регистрировалось датчиком и передавалось в компьютер. Зная частоту смены «окно/стенка», можно было определить скорость перемещения и направление.

В 1999 году появились оригинальные компьютерные мыши, названные оптическими, в которых от механического способа регистрации перемещения удалось полностью отказаться. Светодиод подсвечивает поверхность под мышкой, а примитивная фотокамера с определенной частотой делает снимки. обрабатывает их и на основании полученных результатов делает вывод о скорости и направлении смещения. Остается лишь передать эти данные программе-драйверу.

Вскоре им на смену пришли лазерные модификации. Процессор стал более производительным, точность фокусировки возросла, «проблемных» поверхностей, на которых датчик не работает, почти не осталось. Основное отличие от оптических в другом типе светодиода, который излучает не в видимом, а инфракрасном диапазоне. Кстати, самая дорогая компьютерная мышь - именно лазерная. Правда, ее высокая стоимость (более 24 тысяч долларов) объясняется прежде всего, инкрустацией драгоценных каменей, а не техническими особенностями.

Независимо от того, используете ли вы её для работы или игры, наши руки сжимают компьютерную мышь почти каждый день. В чём разница между оптической и лазерной мышью?

Они лежат на полках магазинов в большом ассортименте, большинство предназначено для правшей, в то время как немногие имеют эргономичный дизайн, подходящий и для левшей. Из всех особенностей и форм-факторов вы найдёте два базовых исполнения компьютерных мышек: с оптическим датчиком или на основе лазера. Что лучше? Давайте разбираться.

Угадай, что? Все современные компьютерные мыши оптические

Современные компьютерные мыши это те же фотокамеры, которые вместо захвата лиц захватывают изображения поверхности снизу (стола, подставки и т. д). Захваченные изображения преобразуются в данные для отслеживания текущего местоположения периферии на поверхности. В конечном счете это камера с низким разрешением на ладони предназначена только для отслеживания координат X и Y тысячи раз в секунду.

По сути, все компьютерные мыши состоят из крошечной камеры с низким разрешением (CMOS-сенсора), двух объективов и источника освещения. Все мыши оптические, с технической точки зрения, потому что собирают данные оптическим способом. Тем не менее те, что продаются как оптические модели, в работе опираются на инфракрасный или красный светодиод, который проецирует свет на поверхность. Этот светодиод обычно устанавливается под углом, и фокусирует освещение на луч. Луч отскакивает от поверхности, через объектив, который увеличивает отражённый свет, и передаёт на CMOS-датчик.

Датчик CMOS собирает свет и преобразует светлые частицы в электрический ток. Затем эти аналоговые данные преобразуются в 1 и 0, что приводит к захвату более 10,000 цифровых изображений каждую секунду. Эти изображения сравниваются для создания точного местоположения мыши, а затем конечные данные отправляются на ПК для размещения курсора каждую одну-восьмую миллисекунды.

На старых светодиодных мышках вы могли заметить, что светодиод был направлен вниз прямо и светил красным лучом на поверхность, которую видел датчик. Теперь светодиодный свет проецируется под углом и, как правило, невидим (инфракрасный). Это помогает вашей компьютерной мыши отслеживать движения на большинстве поверхностей.

Между тем компания Logitech первой ввела понятие использования лазера для компьютерной мыши ещё в 2004 году. В частности, он называется лазерным диодом с вертикальной полостью, или VCSEL, который используется в лазерных указателях, оптических приводах, считывателях штрих-кодов и на других устройствах.

Этот инфракрасный лазер просто заменяет инфракрасный / красный светодиод на оптических моделях. Но не беспокойтесь: он не испортит ваши глаза, потому, что излучает свет только в инфракрасном диапазоне, который человеческий глаз не воспринимает. Это главное преимущество позволяет лазерной мыши использовать луч большей интенсивности, что обеспечивает лучшую визуализацию и повышенную чувствительность.

В своё время лазерные модели считались намного превосходящими оптические версии. Со временем, однако, оптические мыши улучшились, и теперь они работают в самых разных ситуациях, с очень высокой степенью точности. Преимущество лазерной модели обусловлено большей чувствительностью, чем у мышки на светодиодах. Однако, если вы не являетесь ярым игроком, это не такая уж важная функция.

Итак, какова разница между использованием оптической и лазерной компьютерной мыши, кроме разницы в освещении?

Для начала надо упомянуть, что оба метода используют неровности поверхности для отслеживания положения периферии. Но, лазер может проникать глубже в текстуру поверхности. Это даёт больше информации для датчика CMOS и процессора внутри мыши, чтобы манипулировать и передавать данные на родительский ПК.

Например, несмотря на то что обычное стекло прозрачное, на нём всё ещё имеются очень мелкие неровности, которые можно отследить лишь с помощью лазера. Это позволяет использовать поверхность стеклянного стола при работе, хоть она неидеальная. Между тем, если мы разместим современную оптическую мышь на той же стеклянной поверхности, она не сможет отслеживать наши движения. Поместите стеклянную поверхность на чёрный рабочий стол, и оптическая мышка всё равно не сможет отслеживать движение. Удалите стекло, и оптическая мышь начнёт прекрасно работать.

Конечно, шансы постоянного использования компьютерной мыши на стеклянной поверхности крайне редки, но это демонстрирует то, как два процесса освещения отличаются по производительности. Светодиод будет отслеживать аномалии, обнаруженные на верхнем слое поверхности, в то время как лазер может проникнуть глубже, чтобы найти дополнительные позиционные детали. Оптические компьютерные мыши лучше всего работают на не глянцевых поверхностях и ковриках, а лазерные могут функционировать практически на любой глянцевой или не глянцевой поверхности.

Точность и чувствительность

Проблема с лазерными компьютерными мышками заключается в том, что они могут быть слишком точными, собирать бесполезную информацию, как невидимые частички поверхности. Это приводит к проблемам при движении на более медленных скоростях, вызывая «дрожание» на экране. Это некорректное отслеживание 1: 1, связано с бесполезными данными, передаваемыми в общий трекинг, используемого ПК. Результат, курсор не будет отображаться в точном месте в то время, когда ваша рука его туда направила. Хотя эта проблема во многом улучшилась за годы, лазерные мыши всё ещё не идеальны, к примеру, когда вы рисуете детали в Adobe Illustrator.

Тем не менее дрожание не имеет ничего общего с количеством точек на дюйм, которые мышь может отслеживать за секунду. Вместо этого, дрожание привязано ко всему, что сканируется лазером, собирается датчиком, и передаётся процессору родительского ПК для отображения экранного курсора. Чтобы сгладить некоторые из дрожаний, вы можете положить материал на основе ткани, а под него твёрдую тёмную поверхность, на ваш стол, чтоб лазер не собирал ненужные или нежелательные данные.

Другим вариантом может стать уменьшение чувствительность. Разрешение датчика CMOS на компьютерной мыши отличается от фотокамеры, поскольку оно основано на движении. Датчик состоит из заданного количества физических пикселей, выровненных по квадратной сетке. Разрешение связано с количеством отдельных изображений, захваченных каждым пикселем во время движения по поверхности.

Поскольку физические пиксели не могут быть изменены, датчик может использовать обработку изображения для разделения каждого пикселя на меньшей области. Тем не менее все компьютерные мыши имеют заданное физическое разрешение, а повышенная чувствительность связана с алгоритмами внутри датчика, поэтому можно ускорить движение курсора на экране, при одинаковых физических движениях. Таким образом, чем ближе вы к базовому разрешению, тем меньше нежелательных позиционных данных собирает датчик в компьютерной мыши на основе лазера.

Проще говоря, более низкая чувствительность приводит к более точному движению.

Что лучше?

Это зависит от приложения и окружающей среды. Если вы посмотрите на марку Logitech G, вы заметите, что там Logitech в основном фокусируется на светодиодных мышах, когда речь заходит о компьютерных играх. Это потому что пользователи обычно сидят за столом и, возможно, даже используют коврик для мыши, предназначенный для лучшего отслеживания и сцепления с поверхностью. Однако, у компании есть и лазерные мыши, та же Logitech предлагает небольшую часть устройств с лазером, которые не являются ориентированными на геймеров.

Другой производитель Razer, предпочитает лазерную технологию, потому что она предлагает более высокую чувствительность в играх. В целом мы не считаем, что оптическая или лазерная технология сама по себе полностью самодостаточная. Наша рекомендация более конкретна при офисном использовании.

Лазерная мышь может быть идеальной, когда вы находитесь в гостиничном номере, в гостиной, лежащим на диване, или листаете Facebook, сидя на заседании. Производительность может быть непостоянной, учитывая поверхность снизу, но с помощью лазерной мышки у вас определённо больше возможностей на любых поверхностях. Компьютерная мышка на основе лазеров пригодится, если приходится использовать ногу в качестве поверхности для отслеживания, или когда в офисе нет ничего, кроме блестящей мебели, которую абсолютно ненавидит ваше светодиодное устройство.

Большинство современных высокопроизводительных мышек используют лазер. Однако, как правило, они стоят дороже. В то время как лазер является более универсальной технологией, достойная оптическая мышь может справиться с меньшими затратами, пока вы используете её на ровной, не глянцевой поверхности.

Надеемся это статья помогла хоть немного лучше понять отличия технологий в главных периферийных устройствах, а то, какая компьютерная мышь нужна именно вам, решать тоже вам.

Сенсоры мышей: Лазер или Оптика?

Если вы нашли ошибку, не работает видео, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вы когда-нибудь задумывались, как устроены вещи, какой путь они проходят от идеи до реализации, насколько просты простые вещи? Насколько просто сделать расческу? А компьютерную мышь? А деревянную компьютерную мышь из цельного бруска красного дерева с ЖК-экранчиком, с собственной электронной начинкой и изготовленным и оплетенным специально для нее кабелем? Думаю, вам будет интересен мой путь, который я прошел за 2,5 года создания моей мышки.

Дизайн, конструирование, моделирование

Поскольку в конструировании я был полный ноль, то и к делу я подошел как полный профан. Купил пластилин и начал лепить мышь своей мечты.

Сначала я слепил мышь, которая идеально мне подходит для работы на десктопе. Она на фотографии большая темно-серая. Затем я слепил мышь, которая подошла бы мне на роль мобильной (темно-серая маленькая). А затем я отнес сворованный у детей кусок пластилина на работу, и коллеги вылепили мышь, претендующую на звание «народной». Она идеально ложилась в руку большинству мужского населения нашего коллектива (на фото разноцветная). И что же? Получились банальные и унылые формы, которые мы денно и нощно дергаем руками на все лады. Видимо, среди трех стандартных мышей любой пользователь найдет для себя удобную. Торжество идеала?

В результате за компьютером была смоделирована мышь, которая, с моей точки зрения, претендовала на роль изящной и красивой.

На тот момент она мне безумно нравилась. И, недолго думая, я разделил компьютерную модель на детали. Были продуманы элементы крепления и сопряжения с электронной начинкой. Звучит просто, а на деле были потрачены сотни часов кропотливой работы.

После этого полученные детали были выращены на 3D-станке для проверки собираемости.

Материал - полиамид. В руке сидит хорошо, как влитая. Все детали подходят друг к другу, технологическая сборка также прошла без проблем

Следующий этап - фрезерование в дереве. Приобрел, наверное, с десяток различных пород красных деревьев, но начал с дерева сапеле, остальные породы ждут своего часа.

Вживую дизайн не понравился. Вертикальные щели между кнопками и корпусом выглядели плохо и неопрятно. Видны технологические «болячки» при работе с деревом - сколы и увод дерева. Ну и главное - клавиши не гнулись, клика не было.

Долго думал над дизайном. Что-то смущало, и не было чувства удовлетворения. Потом понял - мыши не хватает солидности. Решил вернуться к первоначальному варианту мыши, который я лепил в самом начале, только на профессиональном уровне и с использованием скульптурного пластилина. В одной мыши сделано два варианта дизайна. Удобно для сравнения и принятия решения.

После получения финального варианта было сделано 3D-сканирование и перенос поверхностей в SolidWorks.

Вторая модель получилась не намного удачнее первой. Кнопки не нажимались, и исправить это в текущей модели было невозможно. Брак модели был заложен на уровне ДНК. Нужен более комплексный подход с одновременным контролем и дизайна, и технологии. Иначе ничего не получится. Будет или технологическое совершенство, или хороший дизайн, но не все сразу. Эти характеристики сидят на разных сторонах качелей. Поэтому выкидываю все в помойку и начинаю с начала. Эскиз-дизайн-лепка-тестирование-выращивание и так далее, но с технологическим контролем критических параметров с одной стороны, и дизайна с другой. Ищем золотую середину.

Третью модель делал уже в рамках классического цикла проектирования продукта. Начал с эскиза.

Нарисовались контуры.

И, наконец, утвержденный дизайн.

Пластилиновый макет.

3D-сканер, получение поверхности.

Компьютерная модель.

Затем начался процесс доводки корпуса. На станке ЧПУ выпиливался корпус, тестировался, дорабатывался, затем снова выпиливался. В итоге работоспособным получилась только десятая версия корпуса. Самой большой проблемой было сделать комфортным нажатие клавиш. В итоге в некоторых местах толщина дерева уменьшалась до 0,7 мм! На процесс доработки корпуса у меня ушел год.

Деревянными были сделаны также колесико и разъем.

На колесико я нанес лазерную гравировку с брендом Clickwood.

На подходе одиннадцатая версия корпуса, куда я внесу незначительные изменения. Также я начал разработку беспроводной версии мыши. Беспроводный модуль базируется на технологии Bluetooth, оптосенсор - лазерный. Аккумуляторы типоразмера ААА, 2 штуки, с возможностью замены. При подзарядке мышь будет продолжать работать. Все элементы расположены очень плотно, при компоновке пришлось изрядно поломать голову. В качестве контейнера для батареек служит полость, специально вырезанная в деревянном корпусе мыши.

Деревянные детали

Работа с деревом начинается с отбора древесины. Доски должны быть правильной геометрии, иметь минимум сучков и пороков, и иметь необходимую влажность.

Поначалу доски сушатся дома. Минимум полгода.

После этого доска распиливается на бруски небольшого размера, которые досушиваются несколько недель на месте их дальнейшей обработки. На всех этапах влажность контролируется специальным прибором. Если пренебречь процессом сушки, дерево теряет геометрическую стабильность, и изготовление и эксплуатация мыши становятся невозможными.

Подготовленные бруски обрабатываются на станке ЧПУ с помощью специально созданной программы.

С самого начала создания детали и до окончательной сборки мыши детали жестко фиксируются на металлической оснастке, чтобы ни на одном из этапов деталь не изменила своей формы и геометрических размеров.

Обработку верхней детали мыши приходится делать с ювелирной точностью, поскольку профиль ее разработан для мягкого клика и в некоторых местах очень тонок. Усилие нажатия я контролирую граммометром. В обычных мышах оно колеблется от 50 до 75 ГС. Я стараюсь добиться 50 ГС.

С деревом в моем проекте связаны самые большие трудности. Мало того, что это самая существенная часть себестоимости, так и доля брака тут весьма высока. Дерево - анизотропный материал. Его может и повести, могут попасться пороки, возникнуть сколы, да и просто ошибка в технологии финишного покрытия может привести к тому, что корпус мышки отправляется в помойку. Признаюсь, что технологию обработки я до сих пор совершенствую, и до конца не уверен, что нашел правильную. Для статистики: в первой партии из десяти корпусов до готового продукта дошло только три. Поэтому часть технологической цепочки, связанной с деревом, критически важна для себестоимости и качества готового продукта. Над ней идет постоянная работа.

В дальнейшем планирую поработать с костью. В частности, уже занимаюсь созданием колесика из кости.

Электронная часть

Первую схему мыши я разработал самостоятельно. В качестве сенсора взял топовый оптический датчик ADNS-3090 фирмы Avago, мозгами стал контроллер фирмы Atmel, остальные комплектующие брендовых компаний типа Murata, Yageo, Geyer, Omron и Molex.

Особое внимание уделил качественному питанию мыши, тут, по-моему, своим перфекционизмом достиг абсолюта

Первая работающая макетка.

В черном исполнении, финальная.

Также были эксперименты с различными кнопками. Я всегда пытался среди прочих подобрать себе тихую мышь. Ну а раз я ее делаю сам, то решил провести эксперимент и сделать такую мышь и опробовать ее в работе. Для этого щелкавшие левый и правый «микрики» заменил на мягкие и тихие, использовавшиеся для центральной кнопки (замечали, что центральная кнопка всегда щелкает тише?). Была создана специальная версия платы, куда и были смонтированы все три одинаковых «микрика».

Подобрал и купил для мыши партию позолоченных разъемов. Как обычно, в Китае. Не знаю как насчет «лучшего контакта», но с деревом гармонируют отлично.

Экранчик, прошивка

Увлекшись идеей разместить в мышке дисплей, начал его поиски среди сотен поставщиков. Требования были простые: жесткие габаритные ограничения и возможность хотя бы символьного отображения минимум восьми знакомест. Пока подбирал, узнал о дисплеях практически все. Они различаются по типам: символьные и графические, по технологии: TAB, COG, TFT, OLED, LCD, E-Paper и другие. Каждый тип или технология имеет еще массу разновидностей, размеров, цветов, подсветки, и пр. В общем, было в чем покопаться.

Перерыв половину интернета, выяснил, что нужный мне размер изготавливает всего одна фирма на всем белом свете. Все остальные варианты однозначно больше по габаритам. И даже найденный мной дисплей еле-еле помещался внутрь мыши. Как вариант рассматривался кастомный дисплей, который мне могли изготовить по моим требованиям, но это очень дорогой вариант для меня (около ста тысяч рублей). Для первой модели вполне подойдет графический дисплей с разрешением 128 на 64 пикселей, который я и выбрал.

Для того, чтобы разобраться в том, как реально выглядит и сочетается с моей мышью дисплей, мне пришлось заказать у производителей все разновидности этого дисплея. Что означают эти разновидности? Имя модели состоит из цифро-буквенных непроизносимых сочетаний типа FP12P629AU12. Все они компонуются из различных блоков и четко расшифровываются в спецификации. Например, приведенный пример может быть собран из блоков FP.12.P.629A.U12, где зашифрован тип, размер, вольтаж, контроллер, диапазон рабочих температур и прочая информация о модели. А последний блок самый хитрый. Он может иметь несколько десятков значений, каждое из которых означает ту или иную комбинацию из таких характеристик, как наличие и цвет подсветки, цвет фона, цвет символов, диапазон градусов, с которого четко читается информация. Вот как раз эти параметры мне были интересны.

В результате «для пробы» я заказал 18 различных модификаций. Производитель согласился, но сообщил, что минимальный заказ - 5 дисплеев для каждой модификации. Деваться было некуда, и мне пришлось согласиться, зная, что 90% уйдет в помойное ведро. И вот в один из пасмурных дней служба экспресс-доставки привезла мне домой огромную коробку, в которой можно жить бомжу средней комплекции. В коробе было 18 коробок поменьше, в каждой из которой вольготно размещались 5 дисплейчиков, надежно зафиксированных для дальней поездки в холодную Россию. Сопутствующей упаковки было столько, что теще хватило укрыть несколько грядок на зиму.

В итоге, после тщательных тестов на специально собранном стенде, годными для серии оказались два дисплея. Отличаются они только фоном: серый и желто-зеленый. Именно их я и буду предлагать для комплектации мыши. По умолчанию планирую ставить желто-зеленый, но будут доступны еще два варианта: дисплей с серым фоном и мышь совсем без дисплея.

Но главная интрига заключалась в том, какую информацию можно показывать на экранчике? Мне предлагали разные идеи: температуру окружающего воздуха, индикацию прихода писем, что-то еще не очень оригинальное.

Мой ход мыслей шел по другому пути. Начнем с того, что есть два существенных ограничения на показ оперативной информации: наличие перед пользователем огромного и качественного источника любой информации (монитор) и необходимость переворачивать мышь для получения информации. Кроме того, экранчик маленький, разрешение небольшое, светодиод мешает нормальному чтению. Поэтому вывод у меня получился один: информация должна носить только развлекательный характер, прикладная ценность которой стремится к нулю, но при этом WOW!-эффект должен быть убойным.

Какая же информация может обладать такими свойствами у заурядного по сложности устройства? Ее немного: пробег, время пользования, скорость перемещения, количество кликов и прокрутки колесика. От последнего параметра я решил отказаться, так как мне он показался неинтересным. Остальные все параметры имеют привязку к сессии (последнее время использования мыши от момента подачи на нее питания, т.е. подключения к компьютеру или включения самого компьютера) и ко всему времени существования мыши. Например, пользователь может в любой момент мыши узнать сколько раз он нажал левую кнопку мыши или сколько его мышка пробежала в метрах за сегодня или со времени ее покупки. Информация абсолютно бесполезная, зато особо любопытным поможет понять, как сильно он терзает мышь. Если появятся другие интересные идеи, то их можно будет реализовать новой прошивкой.

Также добавил общую информацию по мыши (модель, номер мыши и прошивки, месяц изготовления) и экранчик настроек. Можно будет выбрать язык и систему мер (английская или метрическая). Для хранения всех этой информации пришлось добавлять в схему flash-память постоянного хранения.

Чтобы поместить такой объем информации, мне пришлось все разбить на экраны. На каждом экране отображается один тип информации, и показываются значения параметров за сессию и за все время. Всего получилось шесть экранов, которые меняются колесиком мыши.

Первый вариант был реализован в чисто текстовом ключе, для чего даже были разработаны несколько вариантов шрифтов.

Сделал прошивку, чтобы оценить как выглядит текст с использованием созданного шрифта на экранчике мышки. Ужасно выглядит, что сказать.

Теперь стало очевидным, что на экранчике нужна графика, а не набор символьной информации. Поэтому я привлек к работе дизайнера, и мы вместе подготовили три варианта графического исполнения, в итоге самым удачным был признан второй вариант.

Конечно, такой дизайн требовал большего разрешения, поэтому его пришлось адаптировать.

Но это еще не конец истории. После того, как подобрал экранчик для мыши, я сделал заказ пробной партии для макеток. В итоге пришли экранчики, но почему-то количеством выводов отличающиеся от того, что указано в спецификации (datasheet). На запрос производителю пришел ответ, что, мол, все нормально, это небольшая модификация, и она никак не повлияет на работоспособность. Между тем, недостающие два проводника отвечали за яркость отображаемой графики.

Все это было очень подозрительно. И точно, как в воду глядел. Переделали плату под модифицированный экранчик, спаяли, и тут выяснилось, что экранчик совсем тусклый. Как будто у устройства сели батарейки. И выяснилось это после долгой и кропотливой работы по поиску и отбору экранчиков, закупке пробной партии всех модификаций и их испытаний. Время, деньги, и так далее.

Но история оказалась с хорошим концом. После переписки с китайцами выяснилось, что экранчик теперь может регулировать свою контрастность прямо из прошивки. Подлечили прошивку, и все стало показывать просто замечательно!

Все показывается, как и планировалось: пробег, скорость, количество кликов и прочее.

В дальнейшем прошивка также неоднократно менялась: появилась настройка для смены языка. Два языка на одном экране это плохо - ухудшается читаемость, англоязычного пользователя кириллическая абракадабра будет только раздражать, да и в будущем может понадобится поддержка других языков. Трудности начались, когда я пытался отъюстировать пробег мыши. Кажется, что там сложного: оптический сенсор передает приращение по двум координатам, которые нужно привести к системе мер и прибавлять по модулю к текущему значению. Вот и весь пробег.

Но, как оказалось, не все так просто. Двое людей с мышами, где установлен один и тот же сенсор могут получать кардинально различающиеся результаты! Все дело в том, что разрешающая способность сенсора (чувствительность) весьма сильно зависит от поверхности, по которой катается мышь. Лучший результат получается, когда мышь катается по белой бумаге. Чуть хуже по дереву и ткани. По ламинату и пленке совсем плохо. Заявленная паспортная чувствительность достигается только на идеальных, с точки зрения сенсора, поверхностях.

Для конечного пользователя это не имеет никакого значения. Он подключает мышь и методом проб и ошибок выставляет в операционной системе комфортную скорость движения курсора. Система запоминает этот коэффициент и использует его для увеличения или уменьшения значений приращения координат передвижения.

Но совсем другое дело, если вы задумали считывать эти параметры непосредственно с мыши. Мышь на одной поверхности покажет результат пробега один метр, на другой - полтора. Скорость также будет «врать». И с этим надо что-то делать.

Для решений этой задачи пришлось вводить параметр «Дискретность (Sensitivity)», который позволяет индивидуально подобрать коэффициент для каждой поверхности. По-умолчанию он равен единице, что соответствует поверхности белой бумаги. Его можно в настройках как увеличивать, так и уменьшать. Его можно вообще не трогать, все будет прекрасно работать и так. Но для истинных перфекционистов в прилагаемой к мышке листовке будет дана таблица, из которой можно подобрать коэффициент к имеющейся поверхности и инструкция, как можно самостоятельно настроить мышь для показа точного пробега.

При разработке прошивки обнаружился еще один побочный эффект работы сенсора. Если взять мышку и просто помахать ею в воздухе, то показания пробега также будут изменяться. Это связано с тем, что сенсор определяет окружающее пространство как некую поверхность и также пытается получать значения смещения мыши. Поэтому можно наблюдать такой эффект: вы переворачиваете мышь, смотрите на параметры пробега и удивляетесь тому, что они прямо у вас на глазах меняются в большую сторону. Конечно, можно установить в мыши датчик угла наклона, отключающего сенсор на время ее переворота, но делать это только для описанной ситуации неразумно. Возможно, в следующей версии он и появится, но не сейчас. Ведь мышь поднимают только чтобы посмотреть на показатели, а 99,9% процентов времени она находится на поверхности и получает правильную информацию.

Кабель

Кабель решил делать максимально гибким, чтобы он не мешал движению мышки и был «невидимым» для кинематики. Ну не нравится лично мне «пружинный» кабель.

Порой кажется, что при создании изделия кабель - самая несущественная часть изделия. Чего проще - купить в магазине нужное количество кабеля и распаять его. Плевое дело. Но, увы, не у нас в России. Порой кажется, что у нас промышленность уже не приспособлена делать ничего сложнее чугунных утюгов. Попытки найти кабель вылились в трехнедельные поиски и перетряхивание ассортимента абсолютно всех производителей российской кабельной продукции. Выяснилось: наши стандарты не описывают кабель, подходящий к современным электронным устройствам. Например, микрофонный четырехжильный кабель с оплеткой КММ 4х0.12 мм2 имеет наружный диаметр 5 мм. Это очень много. Старые мыши и клавиатуры имеют кажущимся толстый кабель, внешний диаметр которого составляет всего 3,5 мм. Ближайший аналог в продаже был кабель немецкой фирмы Lapp Kabel, но и у него внешний диаметр как раз и составлял 3,5 мм. А теперь представьте еще и оплетку на таком кабеле. Представили? Я вам скажу, что подобный кабель я видел на сетевых шнурах для утюгов

Итак, выяснилось: в России такой кабель не купить. Точка. Ну что же, мы не привыкли отступать. Иду в производство и пробую заказать, благо в России еще кабель делают. А для этого определимся с моими требованиями. Итак, что мне нужно:
Жилы - медные, из плетеных проволок (для гибкости).
Количество жил - 4.
Экран - да.
Гибкость - максимальная.
Внешний диаметр кабеля - строго не более 3 мм.
Цвет - Pantone 4625 C.
Итог: пытался списаться, наверное, с десятком возможных производителей кабельной продукции, никому не интересно возиться с моим заказом. Даже не спрашивали, какой километраж мне нужен. Итог: в России такой кабель не купить и не произвести. Грустно. Но мы не привыкли отступать.

Иду на Alibaba.com. Нахожу первого попавшегося китайского производителя, пишу письмо и буквально через несколько часов получаю ответ: сделаем для вас любой кабель! Я в шоке. Кидаю ему спецификацию, денег на доставку, и через неделю получаю образец. Вот это да! А я почти три месяца потерял, пытаюсь патриотично разместить заказ в России. Оказалось, что китайцы совершенно спокойно могут сделать мне кабель с внешним диаметром 2,5 мм.

В итоге: я заказал в Китае 4 различных сэмпла. Сначала не устроила царапаемость и матовость внешней оболочки, затем не устроила гибкость кабеля, затем опять не устроила гибкость, и в конце концов остановился на последнем присланном семпле, который готов был заказать. Гибче они не могут. Кабель имеет память. В итоге случайно получил кабель с памятью, хотя хотел максимально гибкий как веревка

Заказал километр, через две недели кабель был у меня. Общее потраченное время: шесть месяцев.

Оплел свой километр кабеля. Получилось два варианта.

Примерно 10% кабеля ушло на отбраковку. Это начало бухт, где оплетка расплетается и станок еще не вошел в рабочий режим. И некоторые места, где по какой-то причине образовались петли и узлы нитей оплетки.

Если конец кабеля не заделать термоусадкой, то он в момент распушится, нити-то синтетические! Поэтому монтаж кабельной сборки затрудняется превентивной насадкой термоусадки.

Внешний диаметр кабеля с оплеткой получился 3,2 мм, т.е. оплетка прибавила к диаметру кабеля 0,7 мм. Кажется немного, но у обычной мыши кабель идет в основном с диаметром 3,5 мм, и он в эпоху беспроводных мышей кажется толстым и тяжелым. В последнее время не бюджетные мыши начали комплектоваться кабелями диаметром 3 мм, и они уже не так мешают при работе, их практически незаметно. А вот кабель клавиатуры может быть с внешним диаметром 4 мм. И даже больше. Но для клавиатуры это не важно.

Пластиковые детали

Как бы я ни хотел сделать корпусные части мыши полностью из дерева, но без пластмассы здесь не обойтись. Нужны ножки, ось для колесика, саппорт для оси и стеклышко для дисплея.

Поэтому пришлось заказывать у китайцев пресс-форму.

После каждой тестовой отливки китайцы присылали мне десяток сэмплов, которые я тестировал на моей мышке.

В итоге я трижды дорабатывал пресс-форму, до тех пор, пока качество не стало меня удовлетворять. Проблемы были разные. Например, после сборки я получил проблему пыли, которая образуется между дисплеем и защитным стеклом. Выглядит это неопрятно. Тем более мышь будет скрести по поверхности, и пыль там будет постепенно скапливаться. Пришлось преобразовывать стеклышко в контейнер с бортиками, куда будет вкладываться дисплей, после чего контур будет герметизироваться.

Получилась вот такая деталька.

Доработка пресс-формы - совсем непростая задача, и изменения могут делаться только в сторону увеличения детали. Поэтому любая неточность или ошибка могут испортить всю работу. Для справки: каждая доработка - это полтора месяца ожидания новых семплов. А само изменение могло быть микроскопическим, но необходимым.

Не буду останавливаться на пластиковых деталях, эта технология сейчас лидирует, и ничего нового и интересного я здесь рассказать вам не смогу. Скажу лишь о ножках, для которых я долго подбирал материал с пониженным трением, после чего проводил испытания и «забеги» мышей с целью определения победителя с минимальным трением.

Обработка и покрытие

Вначале идет тщательная работа с удалением ворса, ошкуриванием и полировкой поверхности.

Передо мной стояла сложная задача. Нужно было стабилизировать дерево, чтобы геометрия мышки не менялась в зависимости от влажности, и защитить дерево от работы в агрессивной среде (пот и жир от руки).

С самого начала отказался от лака. Лак - это поверхностная пленка, которая со временем трескается, разрушается, и дерево оказывается оголенным. Пот и жир проникают в поры, дерево темнеет, и начинается необратимый процесс его деградации. Поэтому было решено использовать масло в качестве пропитки и защиты, а воск для придания коммерческого вида.

Чтобы было понятно: дерево насквозь пропитано порами, в которых содержится либо воздух, либо масло самого дерева (если дерево каучуконос). Наша задача - насколько возможно заполнить поры своим маслом, которое потом должно полимеризоваться и защитить дерево.

Чтобы не растягивать повествование, скажу что испробовал множество масел: льняное, тиковое, тунговое, вазелиновое, датское. Каждое масло имеет свой характер. Например, на тиковое масло очень плохо наносится воск, а льняное масло очень долго полимеризуется. Поэтому приходится в него вводить катализатор - сиккатив.

В итоге я разработал две технологии. Первая - технология вакуумной пропитки дерева. Работает она так: создаю в среде с маслом и деревом вакуум. Из пор начинает выходить воздух. После снятия вакуума поры заполняются маслом. Как плюс - дерево хорошо стабилизируется. Как минус - оно сильно темнеет. Смотрится хорошо, но на любителя.

Вторая технология - это поверхностное покрытие маслом. Масло наносится 1-2 или больше раз нетканой салфеткой.

Наносим карнаубский воск.

И растираем муслиновым кругом.

Затем с помощью монтажного фена «растворяю» сухие остатки воска в узких и сложных местах. В случае «нерастворимого» мусора беру в руки зубную щетку с жесткой щетиной, удаляю мусор и потом опять локально повторяю процедуру нанесения воска.

Если оценивать трудозатраты обработки, то ручного труда на одну мышь получается около четырех часов.

Сборка

Дальше идет операция монтажа, но перед ней нужно еще удалить следы обработки из технологических отверстий. Затем с помощью специальной ленты 3М юстирую и наклеиваю ножки (корпус может повести на доли миллиметра, и это сразу будет заметно: он будет шататься как хромоногая табуретка). Затем прокладываю кабель, монтирую плату, саппорт, устанавливаю колесико и также, при необходимости, юстирую кнопки (не должно быть дребезга) и силу нажатия. Эта операция также может занимать до четырех часов.

Так называемые "мышки" - неотъемлемая часть современного компьютера. С появлением новых, старые, еще работоспособные, но устаревшие морально, как правило, выбрасываются или пылятся без дела в кладовке. Однако им можно найти применение, практически не изменяя электронную начинку. Сделать это совсем несложно.

"КРАСНЫЙ ГЛАЗ" ВКЛЮЧАЕТ СВЕТ

Оригинальными включателями света сегодня никого не удивишь, однако представленный ниже - из оптической компьютерной мыши, на мой взгляд, необычен и удобен в городской квартире по нескольким причинам:

Во-первых, миниатюрная мышь хорошо входит в гнездо под штатный клавишный включатель на стене;
- во-вторых, не требуется непосредственного контакта с включателем - достаточно провести пальцем (или иным предметом) на расстоянии 1,5 см от "красного глаза" подсветки;
- в третьих, устройство изначально обладает эффектом триггера: один раз провел пальцем - свет загорелся, провел второй раз - выключился;
- предусмотрен и индикатор реагирования - при проводе пальцем у "подсветки", она загорается в три раза ярче.

К оптической компьютерной мыши добавляется простейший усилитель тока на транзисторе с исполнительным реле в коллекторной цепи с тем, чтобы сигналы от мыши управляли лампой освещения мощностью до 200 Вт (ограничены параметрами реле) - об этом ниже. Поскольку практически все компьютерные оптические мыши построены по одной схеме и принципу работы, рассмотрим одну из них - Defender Optical 1330, представленную на фото 1.


Фото 1. Вид оптической мыши Defender Optical 1330 со снятой крышкой корпуса


Фото 2. Печатная плата оптической мыши Defender Optical 1330 со стороны оптической линзы


Фото 3. Приемо-передатчик RX-9 комплекта беспроводной клавиатуры и манипулятора оптической мыши


Фото 4. Установка беспроводной мышки для охраны сейфа


Фото 5. Сирена KPS-4519 в качестве звуковой сигнализации

Основное устройство позиционирования координат - микросборка с обозначением U2 А2051В0323, совмещенная с фотоприемником (в одном корпусе). С вывода 6 данной микросборки на светодиод красного цвета постоянно поступают импульсы с частотой около 1 кГц, поэтому даже когда оптическая мышь находится без движения на столе, видна красная, едва мерцающая "подсветка". Однако значение ее не только подсвечивать место, занимаемое мышью - для красоты. Светодиод - это передатчик, а приемником служит сама микросборка со встроенным в ее корпус электронным узлом. Когда отраженные от любой поверхности световые сигналы достигают фотоприемника, уровень напряжения на выводе 6 U2 падает до нуля, и светодиод загорается в полную силу. Именно такую реакцию мы видим у мышки на компьютерном столе при попытке ее перемещения.

Время горения светодиода в полную силу составляет 1,3 с (если нет более продолжительных воздействий на мышь). Одна из главных деталей оптической мыши, как ни странно, не электроника, а пластмассовая линза, изогнутая под определенным радиусом (см. фото 2), без нее мышка "слепнет".

Устанавливать в стенную нишу под штатный выключатель мышку нужно в собранном корпусе, который надежно фиксирует оптическую линзу со стороны основания (подложки) мыши.

Когда на фотоприемник поступает отраженный от препятствия (вашего пальца, ладони) сигнал, на выводах 15 и 16 микросборки U1 НТ82М398А (и соответственно на выводах 4 и 5 микросборки U2) изменяется уровень логического сигнала на противоположный. Причем это не инверсные выводы, а независимые друг от друга. Изменение сигнала на них происходит в зависимости от вертикального или горизонтального перемещения мыши. Управляющий сигнал для исполнительного устройства (низкий уровень сменяется на высокий, вывод 15 U1 и вывод 4 U2) подключают к исполнительному устройству, к точке А.

Открывание транзистора и включение реле происходит при высоком логическом уровне в точке А. Диод VD1 защищает обмотку реле от бросков обратного тока. Резистор R1 ограничивает ток в базе транзистора. Реле может управлять не только лампой освещения, но и любой нагрузкой с током до 3 А. Источник питания - стабилизированный, с напряжением 5 В ±20%. Транзистор можно заменить на КТ603, КТ940, КТ972 с любым буквенным индексом, а исполнительное реле К1 - на РМК-11105, TRU-5VDC-SB-SL или аналогичное на напряжение срабатывания 4-5 В.


Рис. 1. Усилитель тока с исполнительным реле, управляющим нагрузкой в сети 220 В


Рис. 2. Схема адаптера для звуковой сигнализации открывания сейфа

Четырехпроводный кабель частично отпаивают от платы в месте соединения со штатным разъемом и перепаивают два провода (зеленый и белый к выводам 15 и 16 микросборки U1 со стороны элементов (не печатного монтажа), так как иначе провода будут мешать установке платы в корпус мыши.

Изначальная распайка разъема на плате мыши: 1-й вывод - общий провод, 2-й вывод - питание "+5 В", 3-й и 4-й -выходные импульсы.

Если схема и печатная плата у вашей мыши не соответствуют представленной на примере Defender Optical 1330, достаточно взять любой осциллограф или логический пробник (индицирующий хотя бы два основных состояния - высокое и низкое) и опытным путем найти на плате точки с управляющим сигналом.

Подойдет любая оптическая мышь для ПК, поэтому нет разницы какой разъем находится в конце соединительного кабеля компьютерной мыши, его все равно придется снимать. Также можно применить и беспроводные мыши (с передачей сигнала по радиоканалу, к примеру, из комплекта А4 TECH - адаптер мыши RX-9 5 В 180 мА), в части позиционирования координат у них такой же принцип работы, как и у проводных.

МЫШЬ-СТОРОЖ

Сейчас наступает новая волна смены поколений распространенного компьютерного манипулятора: "хвостатые" (с проводами) оптические мыши уступают дорогу своим беспроводным аналогам. К примеру, актуальны беспроводные оптические манилуляторы-мышки RP-650Z в комплекте с беспроводной клавиатурой (с эргономичным расположением основных клавиш и 19-ю дополнительными перепрограммируемыми кнопками). Сенсор фирмы Agilent Technologies, использованный в мышке RP-650Z, является лидером данного сектора рынка.

Оптическое разрешение мышки равно 800 dpi - этого вполне достаточно для хорошей работы. Приемо-передатчик радиосигнала и зарядник аккумуляторов типа АА с переключателем для быстрой зарядки, размещены в одном корпусе (фото 3). Этот блок подключается к USB-порту.

Фирма A4Tech маркирует свои манипуляторы индивидуальным электронным кодом, благодаря которому на одном канале приема могут соседствовать до 256 манипуляторов или клавиатур. Подобное техническое решение сужает пропускную полосу передачи данных, но при максимальном радиусе уверенного приема в 2 метра это не критично.

Необычный вариант использования беспроводной мыши - в качестве сигнализатора открывания сейфа, работы стиральной машины и даже... холодильника представлен ниже. Все эти варианты основаны на микросмещении предмета и даже на эффекте детонации. При установке мыши на металлическую дверь получится сигнализатор ее открывания или воздействия (еще один вариант применения).

Должен заметить, что не менее эффективный сигнализатор может быть получен, если в качестве мыши установить на контролируемую поверхность автомобильный датчик удара; он также срабатывает от детонации или механического воздействия на контролируемую поверхность, а его современные модели имеют даже несколько уровней регулировки чувствительности. В компьютерной мышке этой опции нет по определению ее первого и основного назначения, но это и не важно; ведь мы рассматриваем ее необычное применение.

Я установил беспроводную мышь RP-650Z (фирмы А4Тес11) на переднюю стенку сейфа, в котором хранится охотничье оружие, хотя хранить в нем можно что угодно (фото 4).

Сейф стоит во встроенном шкафу (ниша в стене городской квартиры); благодаря беспроводной технологии нет необходимости в проводах. В пределах 2 метров расположен приемо-передатчик радиосигнала (см. фото 3), который соединен с устройством-адаптером (схема на рис. 2).

Распайка разъема для USB порта относительно выше рассмотренного варианта не отличается. В беспроводной мышке RP-650Z управляющий сигнал (при смещении мыши уровень в данной модели меняется с высокого на низкий) берут с вывода 4 единственной микросборки UM1 (обозначение на плате). Поэтому в данном случае потребуется иная схема усилителя тока (см. рис. 2). Теперь при открывании сейфа и даже любом механическом воздействии на него (смещающем на доли миллиметра датчик-мышь) сработает устройство охраны.

В качестве НА1 применен звуковой капсюль со встроенным генератором звуковой частоты, подключать его надо строго в соответствии с полярностью. Транзистор VT1 р-n-р проводимости открывается тогда, когда напряжение в точке А близко к нулю, то есть в момент смещения мыши. Можно использовать и сирену KPS-4519 (фото 5), поскольку при приложенном питании 12 В она дает достаточную громкость звука для того, чтобы услышать его в соседних помещениях (более 80 дБ). Подключать сирену надо в соответствии с полярностью (красный провод - к "+" питания).

Два слова о закреплении мыши. На нижнюю часть ее корпуса, не закрывая светодиод и линзу, приклеивается магнит (от рекламных магнитов на холодильник). Теперь мышь надежно фиксируется на любой металлической поверхности (холодильника, стиральной машины и др.). При попытке ее снять также сработает сигнализация, сообщая владельцу о несанкционированном доступе к сейфу.

Благодаря "беспроводности" пользователь имеет возможность как угодно устанавливать мышь, удаляя ее от приемника на разумное расстояние, не заботясь о соединительных проводах. Вариантов применения данной технологии может быть сколь угодно много, и они ограничиваются лишь вашей фантазией.

Статьи по теме: