Свинцово-кислотный или литий-ионный аккумулятор? Кто победит? Литий-полимерный аккумулятор: отличие от ионного, срок службы, устройство. Li-pol или Li-ion: какой лучше

  • Перевод

Смерть батареи: мы все видели, как это происходит. В телефонах, ноутбуках, фотоаппаратах, а теперь и электромобилях, процесс болезненный и - если повезет - медленный. С годами, литий-ионный аккумулятор, который когда-то питал ваши устройства в течение нескольких часов (и даже дней!) постепенно теряет свою способность удерживать заряд. В конце концов вы смиритесь, быть может, проклянёте Стива Джобса, а затем купите новую батарею, а то и вовсе новый гаджет.

Но почему это происходит? Что происходит в батарее, что заставляет её испустить дух? Короткий ответ заключается в том, что из-за ущерба от длительного воздействия высоких температур и большого числа циклов зарядки и разрядки в конце концов начинает нарушаться процесс перемещения ионов лития между электродами.

Более подробный ответ, который проведет нас через описание нежелательных химических реакций, коррозию, угрозу высоких температур и других факторов, влияющих на производительность, начинается с объяснения того, что происходит в литий-ионных аккумуляторах, когда всё работает хорошо.

Введение в литий-ионные аккумуляторы
В обычной литий-ионной батарее, мы найдем катод (или отрицательный электрод), сделанный из оксидов лития, таких как оксид лития с кобальтом. Мы также найдем анод или положительный электрод, который сегодня, как правило, изготавливается из графита. Тонкий пористый сепаратор удерживает два электрода друг от друга для предотвращения короткого замыкания. И электролит, изготовленный из органических растворителей и на основе солей лития, который позволяет ионам лития перемещаться внутри ячейки.

Во время зарядки электрический ток перемещает ионы лития от катода к аноду. Во время разрядки (другими словами, при использовании аккумулятора), ионы движутся обратно к катоду.

Даниэль Абрахам, ученый из Аргоннской национальной лаборатории, ведущей научные исследования деградации литий-ионных элементов, сравнил этот процесс с водой в системе гидроэнергетики. Движущаяся вверх вода требует энергии, но она очень легко течет вниз. Фактически, она поставляет кинетическую энергию, говорит Абрахам, похожим образом, литий-кобальтовый оксид в катоде «не хочет отдавать свой литий». Подобно движущейся вверх воде, необходима энергия, чтобы переместить атомы лития из оксида и переместить их в анод.

Во время зарядки ионы помещаются между листами графита, входящих в состав анода. Но, как выразился Абрахам, «они не хотят быть там, при первой возможности они будут двигаться назад», как вода течет вниз по склону. Это и есть разрядка. Долгоживущая батарея выдержит несколько тысяч таких циклов зарядки-разрядки.

Когда мёртвая батарея действительно мертва?
Когда мы говорим о «мёртвой» батарее, важно понять две метрики производительности: энергия и мощность. В некоторых случаях очень важна скорость, с которой вы можете получать энергию из батареи. Это мощность. В электромобилях высокая мощность делает возможным быстрое ускорение, а также торможение, при котором батарее требуется получить заряд в течение нескольких секунд.

В сотовых телефонах, с другой стороны, высокая мощность менее важна, чем ёмкость, или количество энергии, которое может вместить батарея. Батареи высокой ёмкости работают дольше от одного заряда.

Со временем батарея деградирует несколькими способами, которые могут влиять и на ёмкость, и на мощность, пока, в конце концов, она просто не сможет выполнять базовые функции.

Подумайте об этом по другой аналогии, связанной с водой: зарядка аккумулятора, как наполнение ведра водой из под крана. Объем ведра представляет собой вместительность аккумулятора, или ёмкость. Скорость, с которой вы можете наполнить его - повернув кран на полную мощность или тоненькой струйкой - это мощность. Но время, высокие температуры, множественные циклы и прочие факторы, в конечном итоге образуют дыру в ведре.

В аналогии с ведром вода просачивается. В батарее, ионы лития убираются, или «привязываются», говорит Абрахам. В итоге, они лишаются возможности перемещаться между электродами. Поэтому после нескольких месяцев мобильный телефон, который первоначально требовал зарядки раз в пару дней, теперь необходимо заряжать каждые сутки. Затем дважды в день. В конце концов, слишком много ионов лития «привяжутся», и аккумулятор не будет держать сколько-нибудь полезный заряд. Ведро прекратит держать воду.

Что ломается и почему
Активная часть катода (источника ионов лития в батарее) разработана с определенной атомной структурой для обеспечения стабильности и производительности. Когда ионы перемещаются к аноду, а затем возвращаются на обратно в катод, в идеале хотелось бы, чтобы они вернулись на прежнее место, чтобы сохранить стабильную кристаллическую структуру.

Проблема в том, что кристаллическая структура может меняться с каждой зарядкой и разрядкой. Ионы из квартиры А не обязательно вернутся домой, но могут вселиться в квартиру B по соседству. Тогда ион из квартиры B находит свое место занятым этим бродягой и, не вступая в конфронтацию, решает поселиться дальше по коридору. И так далее.

Постепенно эти «фазовые переходы» в веществе преобразовывают катод в новую кристаллическую структуру кристалла с иными электрохимическими свойствами. Точное расположение атомов, первоначально обеспечивающее необходимую производительность, изменяется.

В батареях гибридных автомобилей, которые необходимы только для подачи питания, когда транспортное средство ускоряется или тормозит, отмечает Абрахам, эти структурные изменения происходят гораздо медленнее, чем в электромобилях. Это связано с тем, что в каждом цикле в системе перемещается только небольшая часть ионов лития. В результате им легче возвращаться на свои исходные позиции.

Проблема коррозии
Деградация может происходить также и в других частях батареи. Каждый электрод соединен с коллектором тока, который является по сути куском металла (обычно медь для анода, алюминий для катода), которая собирает электроны и перемещает их во внешнюю цепь. Итак, у нас есть глина из такого «активного» материала, как литий-кобальтовый оксид (который представляет собой керамику и не является очень хорошим проводником), а также клееподобный связующий материал, нанесенный на кусок металла.

Если связующий материал разрушается, это приводит к «шелушению» поверхности коллектора тока. Если металл разъедается, он не может эффективно перемещать электроны.

Коррозия в батарее может возникнуть в результате взаимодействия электролита и электродов. Графитовый анод является «легкоотдающим», т.е. он легко «отдает» электроны в электролит. Это может привести к появлению нежелательного покрытия на поверхности графита. Катод, между тем, весьма «окисляемый», что означает, что он легко принимает электроны от электролита, что в некоторых случаях может разъедать алюминий коллектора тока или формировать покрытие на частях катода, говорит Абрахам.

Слишком много хорошего
Графит - материал, широко используемый для изготовления анодов - термодинамически неустойчив в органических электролитах. Это означает, что с самой первой зарядки нашей батареи, графит реагирует с электролитом. Это создает пористый слой (называемый твёрдым электролитным интерфейсом или ТЭИ), что в итоге защищает анод от дальнейших атак. Эта реакция также потребляет небольшое количество лития. В идеальном мире эта реакция происходила бы один раз, чтобы создать защитный слой, и на этом всё закончится.

В действительности, однако, ТЭИ является весьма нестабильным защитником. Он хорошо защищает графит при комнатной температуре, говорит Абрахам, но при высоких температурах или когда заряд батареи снижается до нуля («глубокий разряд»), ТЭИ может частично растворяться в электролите. При высоких температурах, электролиты также имеют тенденцию разлагаться и побочные реакции ускоряются.

Когда благоприятные условия вернутся, сформируется другой защитный слой, но это съест часть лития, приводя к тем же проблемам, что и у дырявого ведра. Нам придётся заряжать наш сотовый телефон чаще.

Итак, нам требуется ТЭИ для защиты графитового анода, и в таком случае хорошего может быть действительно слишком много. Если защитный слой слишком утолщается, он становится барьером для ионов лития, от которых требуется свободно перемещаться вперед-назад. Это влияет на мощность, которая, как подчеркивает Абрахам, «чрезвычайно важна» для электромобилей.

Создавая лучшие батареи
Так что же можно сделать, чтобы продлить жизнь наших батарей? Исследователи в лабораториях занимаются поиском электролитических добавок, которые бы функционировали подобно витаминам в нашем рационе, т.е. позволят батареи работать лучше и прожить дольше за счет уменьшения вредных реакций между электродами и электролитом, говорит Абрахам. Кроме того, они ищут новые, более стабильные кристаллические структуры для электродов, а также более стабильные связующие материалы и электролиты.

Тем временем, инженеры в компаниях, производящих батареи и электрические автомобили, работают над корпусами и термальными системами управления в попытке сохранять литий-ионные аккумуляторы в постоянном, здоровом диапазоне температур. Нам же, как потребителям, остается избегать экстремальных температур и глубокой разрядки, а также продолжать ворчать по поводу батарей, которые, кажется, всегда умирают слишком быстро.

Сегодня именнолитий-ионные аккумуляторынаиболее часто применяются в различных областях. Особенно широко они используются в мобильной электронике (КПК, мобильные телефоны, ноутбуки и многое другое), электромобилях и так далее. Это связано с их преимуществами в сравнении с ранее широко применявшимися никель-кадмиевыми (Ni-Cd) и никель-металлогидридными (Ni-MH) аккумуляторами. И если последние приблизились вплотную к своему теоретическому пределу, то технологии литий-ионные аккумуляторы находятся в начале пути.

Устройство

В литий-ионных аккумуляторах в качестве отрицательного электрода (катода) работает алюминий, а положительным электродом (анодом) выступает медь. Электроды могут быть выполнены в разной форме, однако, как правило, это фольга в форме продолговатого пакета или цилиндра.

  • Анодный материал на медной фольге и катодный материал на алюминиевой фольге разделяются пористым сепаратором, который пропитан электролитом.
  • Пакет электродов устанавливаются в герметичный корпус, а аноды и катоды подсоединяются к клеммам-токосъемникам
  • Под крышкой аккумулятора могут быть специальные устройства. Одно устройство реагирует увеличением сопротивления на положительный температурный коэффициент. Второе устройство разрывает электрическую связь между положительной клеммой и катодом при повышении давления газов в аккумуляторе сверх допустимого предела. В некоторых случаях корпус оснащается предохранительным клапаном, который сбрасывает внутреннее давление при нарушениях условий эксплуатации или аварийных ситуациях.
  • Для повышения безопасности эксплуатации в ряде аккумуляторов применяется и внешняя электронная защита. Она не допускает возможности чрезмерного разогрева, короткого замыкания и перезаряда аккумулятора.
  • Конструктивно аккумуляторы производятся в призматическом и цилиндрическом вариантах. Свернутый в виде рулона пакет сепаратора и электродов в цилиндрических аккумуляторах помешен в алюминиевый или стальной корпус, с которым соединяется отрицательный электрод. Через изолятор на крышку выводится положительный полюс аккумулятора. Призматические аккумуляторы создаются складыванием прямоугольных пластин друг на друга.

Подобные литий-ионные аккумуляторы позволяют обеспечить более плотную упаковку, однако в них труднее поддерживать сжимающие усилия на электроды, чем в цилиндрических. В ряде призматических батарей используется рулонная сборка пакета электродов, скрученных в эллиптическую спираль.

Большая часть аккумуляторов производится в призматических вариантах, так как основное их назначение — обеспечение работы ноутбуков и мобильников. Конструкция Li-ion аккумуляторов отличается абсолютной герметичностью. Данное требование продиктовано недопустимостью вытекания жидкого электролита. Если пары воды или кислород попадут внутрь, то происходит реакция с электролитом и материалами электродов, что ведет к полному выводу аккумулятора из строя.

Принцип действия

  • В литий-ионных аккумуляторах имеются два электрода в виде анода и катода, между ними находится электролит. На аноде при подключении батареи в замкнутую цепь образуется химическая реакция, которая приводит к образованию свободных электронов.
  • Указанные электроны стремятся попасть на катод, где меньше их концентрация. Однако от прямого пути к катоду от анода удерживает их электролит, который находится между электродами. Остается единственный путь – через цепь, куда замыкается батарея. При этом электроны, двигаясь по указанной цепи, питают устройство энергией.
  • Положительно заряженные ионы лития, которые были оставлены убежавшими электронами, в то же время через электролит направляются к катоду, дабы удовлетворить потребность в электронах на стороне катода.
  • После перемещения всех электронов к катоду наступает «смерть» батарейки. Но литий-ионный аккумулятор является перезаряжаемым, то есть процесс можно обратить вспять.

При помощи зарядного устройства можно впустить энергию в цепь, тем самым будет запущена реакция протекания в обратном направлении. В результате будет получено скопление электронов на аноде. После перезаряда аккумулятора он по большей части будет оставаться таковым до момента приведения его в действие. Однако с течением времени батарея будет утрачивать часть своего заряда даже в режиме ожидания.

  • Емкость батареи подразумевает количество ионов лития, которые могут внедриться в кратеры и крошечные поры анода или катода. Со временем, после многочисленных перезарядок катод и анод деградируют. В результате число ионов, которые они могут вместить, уменьшается. При этом аккумулятор более не может удерживать прежнее количество заряда. В конце концов, он полностью утрачивает свои функции.

Литий-ионные аккумуляторы выполнены так, что их зарядку нужно постоянно контролировать. С этой целью в корпус устанавливается специальная плата, она называется контроллер заряда. Чип на плате производит управление процессом зарядки аккумулятора.

Стандартная зарядка аккумулятора выглядит следующим образом:

  • Контроллер в начале процесса заряда подает ток величиной 10% от номинального. В данный момент напряжение поднимается до 2,8 В.
  • Затем ток заряда повышается до номинального. В данный период напряжение при постоянном токе растет до 4,2 В.
  • В завершении процесса заряда ток падает при постоянном напряжении 4,2 В до момент 100% заряда батареи.

Стадийность может отличаться в виду применения разных контроллеров, что ведет к разной скорости зарядки и соответственно суммарной стоимости аккумулятора. Литий-ионные аккумуляторы могут быть без защиты, то есть контроллер находится в зарядном устройстве, либо со встроенной защитой, то есть контроллер располагается внутри батареи. Могут быть устройства, где плата защиты встроена непосредственно в аккумулятор.

Разновидности и применение

Существуют два форм-фактора литий-ионных аккумуляторов:

  1. Цилиндрические литий-ионные аккумуляторы.
  2. Таблеточные литий-ионные аккумуляторы.

Разные подвиды электрохимической литий-ионной системы называются по типу применяемого активного вещества. Объединяет все эти литий-ионные аккумуляторы то, что все они являются герметичными необслуживаемым аккумуляторам.

Можно привести 6 наиболее распространенных типов литий-ионных аккумуляторов:
  1. Литий-кобальтовый аккумулятор . Он является популярным решением для цифровых камер, ноутбуков и мобильных телефонов в виду высокого показателя удельной энергоемкости. Аккумулятор состоит из катода из оксида кобальта и графитового анода. Недостатки литий-кобальтовых аккумуляторов: ограниченные возможности нагрузки, низкая термическая стабильность и относительно короткий срок службы.

Области применения; мобильная электроника.

  1. Литий-марганцевый аккумулятор . Катод из кристаллической литий-марганцевой шпинели выделяется трехмерной каркасной структурой. Шпинель обеспечивает низкое сопротивление, однако отличается более умеренной удельной энергоемкостью, чем кобальт.

Области применения; электрические силовые агрегаты, медицинское оборудование, электроинструмент.

  1. Литий-никель-марганец-кобальт-оксидный аккумулятор . В катоде батареи сочетаются кобальт, марганец и никель. Никель славится высокой удельной энергоемкостью, однако низкой стабильностью. Марганец обеспечивает низкое внутреннее сопротивление, однако приводит к низкой удельной энергоемкости. Сочетание металлов позволяет компенсировать их минусы и задействовать сильные стороны.

Области применения; для частного и промышленного использования ( , системы безопасности, солнечные электростанции, аварийное освещение, телекоммуникации, электромобили, электровелосипеды и так далее).

  1. Литий-железо-фосфатный аккумулятор . Его основные преимущества: длительный срок службы, высокие показатели силы тока, стойкость к неправильному использованию, повышенная безопасность и хорошая термическая стабильность. Однако у такого аккумулятора небольшая емкость.

Области применения;стационарные и портативные специализированные устройства, где нужны выносливость и высокие токи нагрузки.

  1. Литий-никель-кобальт-алюминий-оксидный аккумулятор . Его основные преимущества: высокие показатели плотности энергии и энергоемкости, долговечность. Однако показатели безопасности и высокая стоимость ограничивают его применение.

Области применения; электрические силовые агрегаты, промышленность и медицинское оборудование.

  1. Литий-титанатный аккумулятор . Его основные преимущества: быстрая зарядка, длительный срок службы, широкий температурный диапазон, отличные показатели производительности и безопасности. Это наиболее безопасная литий-ионная аккумуляторная батарея.

Однако у нее высокая стоимость и низкая удельная энергоемкость. На данный момент ведутся разработки по удешевлению производства и увеличению удельной энергоемкости.

Области применения; уличное , электрические силовые агрегаты автомобилей (Honda Fit-EV, Mitsubishi i-MiEV), ИБП.

Типичные характеристики

В целом литий-ионные аккумуляторы имеют следующие типичные характеристики:

  • Минимальное напряжение — не ниже 2,2-2,5В.
  • Максимальное напряжение – не выше 4,25-4,35В.
  • Время заряда: 2-4 часа.
  • Саморазряд при комнатной температуре – порядка 7 % в год.
  • Диапазон рабочих температур, начиная от −20 °C и заканчивая +60 °C.
  • Число циклов заряд/разряд до достижения потери 20% емкости составляет 500-1000.

Достоинства и недостатки

К преимуществам можно отнести:

  • Высокая энергетическая плотность при сравнении с щелочными аккумуляторами с применением никеля.
  • Достаточно высокое напряжение одного аккумуляторного элемента.
  • Отсутствие «эффекта памяти», что обеспечивает простую эксплуатацию.
  • Значительное число циклов заряда-разряда.
  • Длительный срок эксплуатации.
  • Широкий температурный диапазон, обеспечивающий неизменные рабочие характеристики.
  • Относительная экологическая безопасность.

Среди недостатков можно выделить:

  • Умеренный ток разряда.
  • Относительно быстрое старение.
  • Сравнительно высокая стоимость.
  • Невозможность работы без встроенного контроллера.
  • Вероятность самовозгорания при высоких нагрузках и при слишком глубоком разряде.
  • Конструкция требует существенных доработок, ведь она не доведена до совершенства.

Когда говорят о литиевых батарейках или аккумуляторах, то чаще всего даже не догадываются, что их в последние пару лет появилось чуть ли не десяток , каждая из которых представляет из себя литий с различными добавками других химических элементов, в итоге существенно отличающихся друг от друга.

Давайте разберёмся в их типах и начнём с классики:

Литий-ионные аккумуляторы - это классические перезаряжаемые аккумуляторов, в которой ионы лития перемещаются от отрицательного электрода к положительному электроду во время разряда и обратно при зарядке. Литий-ионные АКБ широко распространены в бытовой электронике. Они являются одним из самых популярных типов аккумуляторных батарей для портативной электроники, с одной из лучших энергетической плотностью, отсутствие эффекта памяти и медленной потери заряда, когда он не используется (низкий саморазряд).

Эта серия охватывает цилиндрические и призматические типоразмеры аккумуляторов. Li-ion имеет наивысшую плотность мощности среди любого аккумулятора старого типа. Очень легкий вес и большой цикл жизни делает его идеальным продуктом для многих решений.

Литий-титанат (титанат лития) - это относительно новый класс литий-ионных АКБ - (подробнее ). Он характеризуется очень длинным жизненным циклом, который измеряется в тысячах циклов. Литий-титанат свинца является также очень безопасным и сравним в этом плане с фосфатом железа. Энергетическая плотность ниже, чем у других литий-ионных источников тока и его номинальное напряжение 2.4 В.

Эта технология отличается очень быстрой зарядкой, низким внутренним сопротивлением, очень высоким жизненным циклом и отличной выносливостью (также безопасностью). LTO нашел свое применение в основном в электромобилях и наручных часах. В последнее время она начинает находить применение в мобильных медицинских устройствах, благодаря своей высокой безопасности. Одна из особенностей технологии заключается в том, что используются нанокристаллы на аноде вместо углерода, что обеспечивает гораздо более эффективную площадь поверхности. К сожалению, эта батарея имеет более низкие напряжения, чем другие типы литиевых АКБ.

Особенности:

  • Удельная энергия: около 30-110Wh/кг
  • Плотность энергии: 177 Вт * ч/л
  • Удельная мощность: 3,000-5,100 Вт/кг
  • Разряд КПД: примерно 85%; зарядки эффективность более 95%
  • Энергия-цена: 0.5 Вт/доллар
  • Срок годности: >10 лет
  • Саморазряд: 2-5 %/месяц
  • Долговечность: 6000 циклов до 90% емкости
  • Номинальное напряжение: от 1,9 до 2,4 В
  • Температура: от -40 до +55°C
  • Метод зарядки: используется стабильный постоянный ток, затем постоянное напряжение до тех пор, пока не достигнет порога.

Химическая формула: Li4Ti5O12 + 6LiCoO2 < > Li7Ti5O12 + 6Li0.5CoO2 (Е=2,1 В)

Литий-полимер имеет бОльшую плотность энергии в плане веса, чем литий-ионные АКБ. В очень тонких ячейках (до 5 мм) литий-полимер обеспечивает высокую объемную плотность энергии. Великолепная стабильность в перенапряжениях и высоких температурах.

Эта серия аккумуляторов может производиться в диапазоне от 30 до 23000 мА/ч, корпуса призматического и цилиндрического типов. Литий-полимерные аккумуляторы имеют ряд преимуществ: большую плотность энергии по объему, гибкость в размерах ячеек и более широкий запас прочности, с превосходной стабильностью напряжения даже на высокой температуре. Основные области применения: портативные плееры, Bluetooth, беспроводные устройства, КПК и цифровые камеры, электрические велосипеды, GPS навигаторы, ноутбуки, электронные книги.

Особенности:

  • Номинальное напряжение: 3,7 В
  • Зарядное напряжение: 4,2±0,05 В
  • Ток заряда, скорость: 0.2-10С
  • Предельное напряжение разряда: 2.5 В
  • Скорость разряда: до 50С
  • Выносливость в циклах: 400 циклов

Литий-фосфат железа имеет хорошие характеристики безопасности, длительный срок службы (до 2000 циклов), и невысокую стоимость производства. LiFePO4 батареи хорошо подходят для высоких токов разрядки, например военной техники, электроинструментов, электровелосипедов, мобильных компьютеров, ИБП и солнечных энергетических систем.

В качестве нового анодного материала для литий-ионных аккумуляторов, lifepo4 был впервые представлен в 1997 году и постоянно совершенствуется до настоящего времени. Он привлек внимание экспертов благодаря его надежной безопасности, долговечности, низкого воздействия на окружающую среду при утилизации, и удобных зарядно-разрядных характеристик. Многие специалисты утверждают, что lifepo4 аккумуляторы являются на сегодняшний день лучшим вариантом для автономного питания электроники.

Литий диоксид серы (батарея Li и SO2) - эти батареи имеют высокую плотность энергии и хорошую устойчивость к разряду на высокой мощности. Такие элементы используются в основном в военке, метеорологии и космонавтике.

Аккумуляторы на базе литий диоксида серы с металлическим литиевым анодом (самый легкий из всех металлов) и жидким катодом, содержащим пористый углеродный токосъемник с наполнением диоксида серы (SO2) выдают напряжение 2.9 В и имеют цилиндрическую форму.

Особенности:

  • Высокое рабочее напряжение, стабильное на протяжении большей части разряда
  • Чрезвычайно низкий саморазряд
  • Работоспособность в экстремальных условиях
  • Широкий рабочий температурный диапазон (-55°C до +65°С)

Литий-диоксид марганца (батарея Li-MnO2) - такие аккумуляторы обладают легким металлическим литиевым анодом и твердым катодом из диоксида марганца, погруженный в неагрессивный, нетоксичный органический электролит. Этот тип батареи соответствуют RoHS ЕС и характеризуется большой емкостью, высокой допустимой разрядкой и длинной продолжительностью службы.

Li-MnO2 широко используется в резервных источниках питания, аварийных радиобуях, пожарных сигнализациях, электронных системах контроля доступа, цифровых фотоаппаратах, медицинском оборудовании.

Особенности:

  • Высокая плотность энергии
  • Очень стабильное напряжение разрядки
  • Более чем 10-ти летний срок хранения
  • Рабочая температура: -40 до +60°С

Хлорида тионил лития (литий-SOCl2) батареи обладают легким металлическим литиевым анодом и жидким катодом, содержащий пористый углеродный токосъемник наполненный тионилхлоридом (SOCl2). Батарея Li-SOCL2 идеально подходят для автомобильных устройств, медицинской техники, а также военных и аэрокосмических устройств. Они имеют самый широкий диапазон рабочих температур от -60 до + 150°С.

Особенности:

  • Высокая плотность энергии
  • Долгий срок годности при хранении
  • Широкий температурный диапазон
  • Хорошая герметизация
  • Стабильное разрядное напряжение

Li-FeS2 батареи

Аккумуляторы и батареи Li-FeS2 расшифровываются как литий-железодисульфидные. Информация про них будет добавлена позже.

Литиевые аккумуляторы

Литиевые или литий-ионные (Li-ion) аккумуляторы в основном присутствуют в сотовых телефонах, ноутбуках, видеокамерах. Изделия дорогие, аккумуляторы тоже, поэтому и обращаться с ними нужно еще грамотнее, чем с любыми другими аккумуляторами. Так в чем же сила Литий-Йона? Здесь, наверное, еще больше слухов и мифов. Во-первых, она начинает появляться сама собой хотя бы потому, что продавцы техники с Li-ion аккумуляторами особых напутствий не дают, говоря, что батарея “умная” и сама все сделает как надо. А вот и не сама. Ведь сколько есть случаев, когда владельцы новых ноутбуков за месяц батарею приводили в негодность и потом платили хорошие за новую батарею. Конечно, литиевые батареи потому и дорогие, что напичканы электроникой, но она, к сожалению, не спасает от дурака.

Переразряд

Как и в случае никелевых аккумуляторов, литиевые также сильно боятся перезаряда и переразряда. Но, поскольку эти батареи используются в интеллектуальных устройствах и комплектуются собственными зарядными устройствами, их электроника не допускает перезаряда – т.о. его можно не бояться. А вот переразряд сложнее контролировать, поэтому он и является самой типичной причиной досрочного выхода аккумулятора из строя. Конечно, в дорогих и сложных устройствах, например, в ноутбуках, отключение происходит до падения напряжения до критического значения. Но прецеденты указывают на то, что это аварийное отключение лучше рассматривать как экстренную меру, до которой, по возможности, лучше не доводить. Это самое главное правило – избегать полной разрядки, поскольку низкое напряжение может отключить цепь аварийной защиты. Бывает, что люди «убивают» батареи, увлекшись тренировкой. Тренировка - вещь хорошая, но для литиевых батарей достаточно 2-3 полных цикла.

Для литиевых батарей нет эффекта памяти, поэтому их можно заряжать когда угодно, так что после тренировки лучше не разряжать батареи до конца. Рекомендуемый нижний порог – 5-10 %. Критический нижний порог – 3 %.

Много неполных циклов или один полный

У литиевых батарей срок службы – примерно 300 циклов. Полным циклом считается цикл полного заряда и полного (т.е. примерно до 3 % емкости) разряда, или наоборот. Если разрядить батарею до 50 %, а потом зарядить, то это будет 1/2 цикла, если до 75 % и зарядить – 1/4 цикла и т.д. Так вот, для телефонов и ноутбуков разница в пользе между полными и неполными циклами различна. В Интернете упорно утверждается, что куча народа заряжала телефоны при неполном разряде (т.е. каждый день дозаряжали телефон) и в итоге угробила их . В то же время, для ноутбуков достоверно известно, что полные циклы быстрее изнашивают батарею, чем неполные . Ситуация проясняется при детальном рассмотрении устройства Li-ion аккумуляторов (см. доп. материалы). Оказывается, многое зависит от контроллера. Именно он контролирует ток заряда, следит за состоянием батареи и т.д. Так вот, в ноутбуках контроллер расположен в самой батарее и корректируется системными утилитами, например калибровкой. В сотовых телефонах контроллер расположен в самом телефоне и так просто не корректируется. Хоть в литиевых батареях и нет эффекта памяти, но есть так называемый эффект “цифровой памяти” . Дело в том, что электроника управления зарядом-разрядом, размещенная в самой батарее, работает независимо от устройства, батарею использующего. Внутренняя электроника следит за уровнем напряжения элемента, прерывает заряд по достижении установленной максимальной величины (с учетом изменения напряжения, обусловленного током зарядки и температуры батареи), прерывает разряд при достижении критической величины и сообщает об этом “наверх” (для этих целей производится большая номенклатура специализированных микросхем). Система же мониторинга батареи “наверху” вычисляет уровень заряда, основываясь на информации о моментах выключения заряда и разряда от батареи и показаниях системы измерения тока. Но если условия работы таковы, что полной разрядки до аппаратного отключения или полной зарядки не происходит, эти вычисления после нескольких циклов могут стать не вполне корректными – емкость батареи со временем падает, да и показания измерителя тока не всегда могут соответствовать реальности. Обычно отклонения не превышают одного процента на каждый цикл, если только в процессе эксплуатации не произошло серьезных изменений, связанных, к примеру, с выходом из строя одного из элементов батареи. Система мониторинга имеет возможность “обучаться”, то есть пересчитывать значение полной емкости батареи, но для этого нужно выполнить как минимум один полный цикл заряд-разряд до срабатывания аппаратных схем самой батареи. Вот и выходит, что при очень частых циклах контроллер сбивается, а, следовательно, неправильно вычисляет заряд батареи и осуществляет неправильную зарядку, в результате чего батарея портится. В отличие от ноутбука, телефон перекалибровать нельзя. Все, что остается в данном случае, это сделать пару полных циклов, чтобы привести контроллер в порядок. Я рекомендую, в идеале, совмещать полные и неполные циклы, придерживаясь принципа “золотой середины”. Лично я со своим сотовым так и делал – в результате, после 2-х лет эксплуатации падение емкости составило не более 40 %, что является нормой. Отчасти, время тоже не щадит литиевые аккумуляторы – они изнашиваются со временем независимо от эксплуатации; век их недолог и разумно менять аккумуляторы раз в 2-3 года.

Хранение

Если аккумулятор не используется, рекомендуется хранить его при 40 % емкости в прохладном месте. Нижний предел температуры для хранения и эксплуатации – 00 С. Вообще литиевые аккумуляторы любят быть заряженными, т.е. их лучше и хранить и держать в заряженном состоянии, в отличие от никелевых. Но при длительном хранении максимальный заряд все же сильнее изнашивает батарею, поэтому оптимальным состоянием считается 40 % заряда .

Реанимация батареи

Вообще, если батарея сдохла, лучше купить новую, это самый логичный вариант, хотя и дорогой. Достоверных рецептов реанимации батарей я не встречал. Тут ходят настоящие легенды, особенно про ноутбуки, что люди реанимировали свой угробленный аккумулятор ноутбука и все у них замечательно. Одна из них звучит так: “Нужно полностью разрядить аккумулятор, оставить ноутбук на неделю; затем полностью зарядить аккумулятор и тоже оставить на неделю; через два месяца емкость должна восстановиться” .

Для сотовых телефонов: совмещать полные и неполные циклы (в пропорции “ХЗ”).
Для ноутбуков: как можно меньше полных циклов (после тренировки).
Для всех: рекомендуется делать 80%-ные циклы; не допускать полного разряда (ниже 3 %).

Какие есть типы литиевых аккумуляторов и особенности их конструкции?

Литиевые аккумуляторы на современном рынке прочно заняли несколько различных ниш. В основном они используются во всевозможной потребительской электронике, портативном инструменте и мобильных устройствах, бытовой технике и т. п. Существуют даже литиевые аккумуляторы 12 вольт для авто. Хотя широкого распространения в автомобилестроении они пока не получили. Использование литиевых аккумуляторов в различных отраслях народного хозяйства привело к тому, что на рынке появилось много разновидностей этих аккумуляторных батарей. Основные типы литиевых АКБ мы рассмотрим в сегодняшней статье.

Мы здесь не будем писать о принципе работы Li аккумуляторных батарей и истории их возникновения. Подробно о можно прочитать в статье по указанной ссылке. Также можете прочитать материалы отдельно про и . А в этом материале хотелось бы рассмотреть именно различные типы Li аккумуляторов в зависимости от их характеристик и назначения.

Итак, что касается мощности и ёмкости литиевых батарей. Деление здесь достаточно условное. Для того чтобы выпускать аккумуляторы различной ёмкости, с разными токами разряда, производители изменяют ряд параметров. Например, они регулируют толщину слоя электродной массы на фольге (в случае рулонной конструкции). В большинстве случаев этот электродный слой наносится медную (минусовой электрод) и алюминиевую (плюсовой) фольгу. Благодаря такому увеличению электродного слоя растут удельные параметры аккумулятора.

Однако при наращивании активной массы приходится уменьшать толщину проводящей основы (фольгу). В результате аккумулятор может пропустить меньший ток, не перегреваясь при этом. Кроме того, увеличение слоя электродной массы приводит к увеличению сопротивления элемента. Чтобы снизить сопротивление, часто для активной массы используют более активные и дисперсные вещества. Этими параметрами производители «играют» при выпуске АКБ с теми или иными параметрами. Аккумуляторный элемент с тонкой фольгой и толстой активной массой показывает высокие значения запасаемой энергии. А его мощность будет низкой, и наоборот. И это можно регулировать, не изменяя типоразмера изделия.

Аккумуляторные батареи с разными значениями ёмкости и разрядного тока получаются при изменении следующих параметров:

  • Толщина фольги;
  • Толщина сепаратора;
  • Материал плюсового и минусового электрода;
  • Размер частиц активной массы;
  • Толщина электрода.

При этом модели аккумуляторов, рассчитанных на более высокую мощность, оснащаются токовыводами больших размеров и массы. Это делается для предотвращения перегрева. Также для наращивания тока разряда используются всевозможные вещества, добавляемые в электролит или в электродную массу. У аккумуляторов с большой ёмкостью токовыводы, как правило, небольшие. Они рассчитываются на разрядный ток до 2С (обычно ток заряда-разряда аккумулятора указывается от его ёмкости) и зарядный ─ до 0,5С. Для литиевых АКБ большой ёмкости эти значения до 20С и до 40С, соответственно.

Модели литиевых аккумуляторов с высокой мощностью предназначены для питания стартёров, с высокой ёмкостью – для питания различной портативной аппаратуры. Что касается разработки литиевых батарей, то производители всевозможной электроники заказывают их в специальных фирмах. Те разрабатывают их с учётом предложенных условий, а затем размещают их в серийное производство. При разработке современных литиевых аккумуляторов учитываются следующие параметры:

  • Ёмкость;
  • Штатный и максимальный ток разряда;
  • Размеры;
  • Условия расположения внутри устройства;
  • Рабочая температура;
  • Ресурс (количество циклов заряд-разряд) и прочие.

Различные конструкции литиевых аккумуляторных батарей

По конструктивным особенностям литиевые аккумуляторы можно разделить по двум признакам:

  • Конструкция корпуса;
  • Конструкция электродов.

Конструкция электродов

Рулонного типа

На изображении ниже можно посмотреть Li─Ion аккумулятор с конструкцией рулонного типа.



Элементы рулонной конструкции изготавливаются двух типов:

  • Рулон электродов скручивается вокруг виртуальной пластины. В одном корпусе могут размещаться несколько рулонов, подключённых параллельно;
  • Цилиндрические. Различной высоты и диаметра.

Рулонная конструкция применяется там, где требуется аккумулятор небольшой ёмкости и мощность. Эта технология имеет небольшую трудоёмкость, поскольку скручивание электродных лент и сепаратора полностью автоматизировано. Недостатком такой конструкции является плохое теплоотведение от электродов. Фактически тепло отводится только через торец элемента.

Из набора электродов

Литиевые аккумуляторы со сборкой из отдельных электродов применяются при производстве призматических АКБ.

Тепло здесь также отводится с торца электрода. Производители стараются улучшить теплоотвод посредством регулировки состава и дисперсности активной массы.

Конструкция корпуса

Цилиндрические

Стоит уделить внимание цилиндрическим литиевым аккумуляторам. Они широко распространены в различной бытовой технике и электронике. Особенно популярны аккумуляторные элементы .

В качестве плюсов цилиндрического корпуса специалисты называют отсутствие изменения объёма при длительной эксплуатации. Это происходит за счёт того, что АКБ немного меняет объём в процессе заряда-разряда. Конструкция электродов в таком корпусе всегда рулонного типа. К недостаткам относят плохое теплоотведение.

Цилиндрические литиевые аккумуляторы могут иметь следующие токовыводы:

  • Винтовые борны;
  • Обычные контактные площадки.

Там, где более высокие требования к съёму тока, используются винтовые борны. Это АКБ с большим разрядным током и большой ёмкостью (более 20 Ач). Многочисленные испытания показывают, что цилиндрические литиевые аккумуляторы с винтовыми борнами выдерживают токи не более 10─15С. И это значения кратковременной нагрузки, при которой элемент быстро перегревается. При длительной работе они выдерживают разрядные токи 2─3С. В основном используют в портативном электроинструменте.



Аккумуляторные элементы с контактными площадками обычно используются для объединения в батареи. Для этого их сваривают лентой при помощи контактной сварки. Иногда производители уже выпускают элементы с лепестками под самостоятельную пайку. Причём вид лепестков может быть различным в зависимости от типа пайки.

В обозначении типоразмера цилиндрических литиевых аккумуляторов обычно присутствуют их размеры. Например, литий─ионные элементы 18650 имеют высоту 65, а диаметр ─ 18 мм.

Статьи по теме: