Визуальное мышление. Кодирование информации

«Информация 10 класс» - Врождённые информационные методы основаны на системе чувств восприятия субъекта и на мышлении. Содержание: Восприятие (сбор). Искусственные информационные методы бывают аппаратными и программными. Хране ние. Сканер как устройство восприятия информации. Информационные процессы в технике. Приобретенные методы являются результатом обучения или адаптации.

«Обработка овощей» - Сельдерей. Подготовка помидор, перца болгарского для фарширования. Кружочки - так режут овощи цилиндрической формы, типа моркови. 4*4*4(средний брюнуаз). Формы нарезки овощей. Формы нарезки моркови. Пастернак. Ревень. Фигурные формы нарезки картофеля. Обработка корнеплодов. Промывают Отрезают плодоножку Отрезают кожицу и удаляют семена.

«Обработка графической информации» - Рабочий и фоновые цвета. Примеры графических редакторов. Заголовок окна. Пуск/Программы/Стандартные/Paint Назначение. Вид окна графического редактора Paint. Строка меню. Палитра. Определение. Графический редактор – прикладная программа обработки графической информации. Использование компьютерной графики.

«Информация и её обработка» - Рассмотреть, как можно обработать информацию различных видов. Компьютер. Задание в рабочей тетради: Игра «Вспомни понятие». Кодирование. Например: Сейчас урок информатики. Диск. 2) Обработка текста – изменение смысла текста. Найди суммы пар чисел по образцу. Научиться объяснять смысл обработки информации.

«Технология обработки бумаги» - Полученная таким образом бумага будет своеобразной, но не слишком красивой. Бумага и история развития бумажных ремесел. Аппликация. Сначала приклеивайте квадратики по контуру рисунка, и только затем заполняйте фон. Цветку – цветок сплетай венок. "Поделки. Самодельная бумага. Народное название украшений, вырезанных из бумаги на Украине - вытынанки.

«Цифровая обработка сигналов» - Основные разделы ЦОС. Цифровая обработка сигналов. cos. План лекции. У.М. Сиберт. Определение. arctan. Информационные источники. Направления развития ЦОС. Этапы построения систем ЦОС. Вводные сведения по комплексной арифметике. Типовая блок-схема устройства ЦОС. Аппаратная и программная реализация. sin.

Действия, выполняемые с информацией, называются информационными процессами .

Информационные процессы - процессы передачи, накопления и переработки информации в общении людей, в живых организмах, технических устройствах и жизни общества. Информация передается в виде сообщений, определяющих форму и представление передаваемой информации. Примерами сообщений являются музыкальное произведение; телепередача; команды регулировщика на перекрестке; текст, распечатанный на принтере; данные, полученные в результате работы составленной вами программы, и т.д.

Информационные процессы можно разложить на составляющие:

1. Сбор и хранение.

2. Получение и передачу.

3. Обработку.

5. Использование информации.

Передача информации всегда двусторонний процесс: есть источник и есть приемник информации. Источник передает (отправляет) информацию, а приемник ее получает (воспринимает). Читая книгу или слушая учителя, ученик является приемником информации. Сообщение от источника к получателю передается посредством какой-либо среды – канала связи. Передача может происходить непосредственно при разговоре между людьми, через переписку, с помощью технических средств связи.

Получение – восприятие различных свойств объектов, явлений и процессов. Процесс обработки информации связан с получением новой или изменением формы или структуры данной информации; осуществлением поиска информации на внешних носителях.

Носитель информации – среда для записи и хранения информации.

Поиск – извлечение хранимой информации.

Методы поиска:

1. Непосредственное наблюдение.

2. Общение со специалистами по интересующему вопросу.

3. Чтение соответствующей литературы.

4. Просмотр видео, телепрограмм.

5. Прослушивание радиопередач и аудиокассет.

6. Работа в архивах и библиотеках.

Обработка информации – преобразование информации из одного вида в другой, производимое по строгим формальным правилам.

Человеку почти непрерывно приходится заниматься обработкой информации. Вот несколько вариантов обработки :

1. Получение новой информации из данной путем математических вычислений или логических рассуждений (например, решение математической задачи, раскрытие следователем по собранным уликам).

2. Изменение формы представления информации +без изменения ее содержания (например, перевод текста с одного языка на другой, шифровка (кодирование) текста).

3. Упорядочение (сортировка) информации (например, упорядочение списков класса в алфавитном прядке по фамилиям учеников, упорядочение расписания поездов по времени отправления).


4. Поиск нужной информации в некотором информационном массиве (например, поиск номера телефона в телефонной книге, поиск перевода иностранного слова в словаре, поиск сведений о рейсе самолета в расписаний аэропорта).

5. Замена одной буквы на другую в тексте; замена нулей на единицу, а единиц на нули в последовательности битов; сложение двух чисел, когда из информации, представляющей слагаемые, получается результат – сумма.

Слова «обработка информации», таким образом, вовсе не подразумевает восприятие информации или ее осмысление. ЭВМ-всего лишь машина и способна только к технической, машинной обработке информации. Конечно, технические преобразования информации обычно производятся с целью достижения некоторого осмысленного эффекта. Обработка информации на ЭВМ обычно состоит в выполнении огромного количества такого рода элементарных, технических операции.

Хранение - способ распространения информации в пространстве и времени. Человек хранит информацию в собственной памяти (внутренняя, оперативная информация) и на внешних носителях: бумаге, магнитной ленте (внешняя информация). Наша внутренняя память не всегда надежна. Человек нередко что–то забывает. Информация на внешних носителях хранится дольше, надежнее. Именно с помощью внешних носителей люди передают свои знания из поколения в поколение.

18. ПРОТОКОЛ HTTP. WWW-ТЕХНОЛОГИЯ. ГИПЕРТЕКСТОВЫЕ ДОКУМЕНТЫ. HTML-ТЕХНОЛОГИЯ. ТЕГИ.

ПРОТОКОЛ HTTP (HyperText Transfer Protocol - «протокол передачи гипертекста») - протокол прикладного уровня передачи данных в первую очередь в виде текстовых сообщений. Основой HTTP является технология «клиент-сервер», то есть предполагается существование потребителей (клиентов), которые инициируют соединение и посылают запрос, и поставщиков (серверов), которые ожидают соединения для получения запроса, производят необходимые действия и возвращают обратно сообщение с результатом.

HTTP в настоящее время повсеместно используется во Всемирной паутине для получения информации с веб-сайтов. В 2006 году в Северной Америке доля HTTP-трафика превысила долю P2P-сетей и составила 46%, из которых почти половина - это передача потокового видео и звука.

Основным объектом манипуляции в HTTP является ресурс, на который указывает URI (англ. Uniform Resource Identifier) в запросе клиента. Обычно такими ресурсами являются хранящиеся на сервере файлы, но ими могут быть логические объекты или что-то абстрактное. Особенностью протокола HTTP является возможность указать в запросе и ответе способ представления одного и того же ресурса по различным параметрам: формату, кодировке, языку и т.д. Именно благодаря возможности указания способа кодирования сообщения клиент и сервер могут обмениваться двоичными данными, хотя данный протокол является текстовым.

Структура протокола

HTTP - протокол прикладного уровня, аналогичными ему является FTP и SMTP. Обмен сообщениями идёт по обыкновенной схеме «запрос-ответ». Для идентификации ресурсов HTTP использует глобальные URI. В отличие от многих других протоколов, HTTP не сохраняет своего состояния. Это означает отсутствие сохранения промежуточного состояния между парами «запрос-ответ». Компоненты, использующие HTTP, могут самостоятельно осуществлять сохранение информации о состоянии, связанной с последними запросами и ответами. Браузер, посылающий запросы, может отслеживать задержки ответов. Сервер может хранить IP-адреса и заголовки запросов последних клиентов.

Каждое HTTP-сообщение состоит из трёх частей, которые передаются в указанном порядке:

1.Стартовая строка (англ. Starting line) - определяет тип сообщения;

2.Заголовки (англ. Headers) - характеризуют тело сообщения, параметры передачи и прочие сведения;

3.Тело сообщения (англ. Message Body) - непосредственно данные сообщения.

Заголовки и тело сообщения могут отсутствовать, но стартовая строка является обязательным элементом, так как указывает на тип запроса/ответа. Исключением является версия 0.9 протокола, у которой сообщение запроса содержит только стартовую строку, а сообщения ответа только тело сообщения.

WWW ( World Wide Web) - служба прямого доступа, требующая полноценного подключения к Интернету и позволяющая интерактивно взаимодействовать с представленной на web-сайтах информацией. Это самая современная и удобная служба Интернета. Она основывается на принципе гипертекста и способна представлять информацию, используя все возможные мультимедийные ресурсы: видео, аудио, графику, текст и т. д. Взаимодействие осуществляется по принципу клиент-сервер с использованием протокола передачи гипертекста (Hyper Text Transfer Protocol, HTTP). С помощью протокола HTTP служба WWW позволяет обмениваться документами в формате языка разметки гипертекста - HTML (Hyper Text Markup Language), который обеспечивает надлежащее отображение содержимого документов в браузерах пользователей. Принцип гипертекста , лежащий в основе WWW, состоит в том, что каждый элемент HTML-документа может являться ссылкой на другой документ или его часть, при этом документ может ссылаться как на документы на этом же сервере, так и на других серверах Интернета. Ссылки WWW могут указывать не только на документы, свойственные службе WWW, но и на прочие службы и информационные ресурсы Интернета. Более того, большинство программ-клиентов WWW - браузеров (browsers), обозревателей, или навигаторов, не просто понимают такие ссылки, но и являются программами-клиентами соответствующих служб: FTP, сетевых новостей Usenet, электронной почты и т. д. Таким образом, программные средства WWW являются универсальными для различных служб Интернета, а сама информационная система WWW выполняет по отношению к ним интегрирующую функцию.

Необходимо подчеркнуть, что Интернет и WWW это не тождественные понятия. Узкое определение Интернета представляет его как взаимосвязь компьютерных сетей на базе семейства протоколов TCP/IP, в пространстве которой становится возможным функционирование протоколов более высокого уровня, в том числе протокола передачи гипертекста (HTTP) - протокола World Wide Web, гипертекстового сервиса доступа к удаленной информации. Кроме World Wide Web, на этом уровне (он называется прикладным или уровнем приложений) действуют и другие протоколы, например электронной почты (РОРЗ, SMTP, IMAP), общения в режиме реального времени (IRC) и групп новостей (NNTP). Язык наращиваемой разметки (XML) Язык наращиваемой разметки XML (Extensible Markup Language) предоставляет формат для описания структурированных данных. Это позволяет более точно объявлять содержимое и получать более значимые результаты поиска на нескольких платформах. Кроме того, XML делает возможным создание нового поколения веб-приложений для просмотра данных и управления ими.

Сам по себе стандарт XML является очень обобщенным форматом данных, он создан консорциумом, состоящим из многих компаний. В него вошло очень много различных концепций и идей, подчас довольно далеких друг от друга. Это направленность одновременно и на размеченный текст (на чем основан XHTML), и на хранение структурированных данных (где наличие и атрибутов, и вложенных тегов является избыточным; пустые текстовые поля и концы строк также лишь усложняют жизнь разработчикам программ). Стандарт XML-схемы постигла та же участь – одну и ту же схему можно писать разными способами: например, тип элемента можно указывать через механизм типов или с помощью ссылки на другой элемент.


19. ГЛОБАЛЬНЫЕ СЕТИ WAN – НАЗНАЧЕНИЕ, СТРУКТУРА И ПРИНЦИПЫ РАБОТЫ. ОСНОВНЫЕ ТЕХНОЛОГИИ WAN. ОБОРУДОВАНИЕ WAN-СЕТЕЙ. ТОПОЛОГИИ СЕТЕЙ.

Глобальные сети WAN

Глобальная сеть (wide area network, WAN) охватывает значительную географическую область, часто целую страну или даже континент. Она объединяет маши­ны, предназначенные для выполнения программ пользователя (то есть приложе­ний). Мы будем следовать традиционной терминологии и называть эти машины хостами. Хосты соединяются коммуникационными подсетями, называемыми для краткости просто подсетями. Хосты обычно являются собственностью клиентов (то есть просто клиентскими компьютерами), в то время как коммуникационной подсетью чаще всего владеет и управляет телефонная компания или поставщик услуг Интернета. Задачей подсети является передача сообщении от хоста хосту, подобно тому как телефонная система переносит слова от говорящего слушаю­щему. Таким образом, коммуникативный аспект сети (подсеть) отделен от при­кладного аспекта (хостов), что значительно упрощает структуру сети.

В большинстве глобальных сетей подсеть состоит из двух раздельных компонен­тов: линий связи и переключающих элементов. Линии связи, также называемые каналами или магистралями, переносят данные от машины к машине. Переклю­чающие элементы являются специализированными компьютерами, используемы­ми для соединения трех или более линий связи. Когда данные появляются на входной линии, переключающий элемент должен выбрать выходную линию - дальнейший маршрут этих данных. В прошлом для названия этих компьютеров не было стандартной терминологии. Сейчас их называют маршрутизаторами (router).

Следует также сделать замечание по поводу термина «подсеть» (subnet). Из­начально его единственным значением являлся набор маршрутизаторов и линий связи, используемый для передачи пакета от одного хоста к другому. Однако спустя несколько лет этот термин приобрел второй смысл, связанный с адресацией в се­ти. Таким образом, имеется некая двусмыслен­ность, связанная с термином «подсеть».

Большинство глобальных сетей содержат большое количество кабелей или телефонных линий, соединяющих пару маршрутизаторов. Если какие-либо два маршрутизатора не связаны линией связи напрямую, то они должны общаться при помощи других маршрутизаторов. Когда пакет посылается от одного мар­шрутизатора другому через несколько промежуточных маршрутизаторов, он по­лучается каждым промежуточным маршрутизатором целиком, хранится на нем, пока требуемая линия связи не освободится, а затем пересылается дальше. Под­сеть, работающая но такому принципу, называется подсетью с промежуточным хранением (store-and-forward) или подсетью с коммутацией пакетов (packet-switched). Почти у всех глобальных сетей (кроме использующих спутники свя­зи) есть подсети с промежуточным хранением. Небольшие пакеты фиксирован­ного размера часто называют ячейками (cell).

20. ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ. ПОКОЛЕНИЯ ЭВМ. ОСНОВНЫЕ ВИДЫ АРХИТЕКТУР ЭВМ И ПК.

Развитие компьютерной архитектуры

В период развития компьютерных технологий были разработаны сотни разных компьютеров. Многие из них давно забыты, но некоторые сильно повлияли на со­временные идеи. В этом разделе мы дадим краткий обзор некоторых ключевых исторических моментов, чтобы лучше понять, каким образом разработчики дошли до создания современных компьютеров. Мы рассмотрим только основные моменты развития, оставив многие подробности за скобками.

Поколения ЭВМ

1. Поколение: 1951-1954 электронные-лампы (база процессора) , база ОЗУ – электронно-лучевые трубки, язык программирования – машинный код, средство связи пользователя с ЭВМ – пульт управления и перфокарты, ОЗУ -100 байт.

Первым человеком, создавшим счетную машину, был французский ученый Блез Паскаль (1623-1662),

2. Поколение: 1958-1960 транзисторы (полупроводниковые элементы) , база ОЗУ – ферритовые сердечники, язык программирования – + ассемблер, средство связи пользователя с ЭВМ – перфокарты и перфоленты, ОЗУ -1000байт

3. Поколение: 1965-1966 – интегральные схемы , база ОЗУ – ферритовые сердечники, язык программирования – процедурные языки высокого уровня, средство связи пользователя с ЭВМ – алфавитно-цифровой терминал, ОЗУ -10000 байт.

4. Поколение:

a. 1976-1979 – большие интегральные схемы, база ОЗУ – БИС, язык программирования – +новые процедурные языки высокого уровня, средство связи пользователя с ЭВМ – графический дисплей, клавиатура, ОЗУ -100000 байт.

b. с 1985 – сверхбольшие интегральные схемы, база ОЗУ – СБИС, язык программирования – +непроцедурные языки высокого уровня, средство связи пользователя с ЭВМ –цветной графический дисплей, клавиатура, мышь.ОЗУ -10000000 байт. Многопроцессорность.

5. До сих пор пятого поколения компьютеров не разработона, но известны предполагаемые характеристики: оптоэлектроника, +криоэлектроника, СБИС, 1000000000000 байт, новые непроцедлурные, + устройства голосовой связи.

Архитектура ЭВМ – наиболее общие принципы построения вычислительных систем, реализующие программное управление работой и взаимодействие основных функциональных узлов.

CISC и RISC-архитектура.:

Разработчи­ки пытались уменьшить пропасть между тем, что компьютеры способны делать, и тем, что требуют языки высокого уровня. Едва ли кто-нибудь тогда думал о раз­работке более простых машин, так же как сейчас мало кто занимается разработкой менее мощных операционных систем, сетей, редакторов и т.д. (к несчастью).

В компании IBM группа разработчиков во главе с Джоном Коком противосто­яла этой тенденции: они попытались воплотить идеи Сеймура Крея, создав экспе­риментальный высокоэффективный мини-компьютер 801. Хотя IBM не занима­лась сбытом этой машины, а результаты эксперимента были опубликованы только через несколько лет, весть быстро разнеслась по свету, и другие производители тоже занялись разработкой подобных архитектур.

В 1980 году группа разработчиков в университете Беркли во главе с Дэвидом Паттерсоном и Карло Секвином начала разработку процессоров VLSI без исполь­зования интерпретации. Для обозначения этого понятия они придумали термин RISC и назвали новый процессор RISC I, вслед за которым вскоре был выпущен RISC II. Немного позже, в 1981 году, Джон Хеннеси в Стенфорде разработал и вы­пустил другую микросхему, которую он назвал MIPS. Эти две микросхемы разви­лись в коммерчески важные продукты SPARC и MIPS соответственно.

Новые процессоры существенно отличались от коммерческих процессоров того времени. Поскольку они не были совместимы с существующей продукцией, разработчики вправе были включать туда новые наборы команд, которые могли бы увеличить общую производительность системы. Так как основное внимание уде­лялось простым командам, которые могли быстро выполняться, разработчики вско­ре осознали, что ключом к высокой производительности компьютера была разра­ботка команд, к выполнению которых можно быстро приступать. Сколько времени занимает выполнение одной команды, было не так важно, как то, сколько команд может быть начато в секунду.

В то время как разрабатывались эти простые процессоры, всеобщее внимание привлекало относительно небольшое количество команд (обычно их было около 50). Для сравнения: число команд в DEC VAX и больших IBM в то время составляло от 200 до 300. RISC - это сокращение от Reduced Instruction Set Computer -компьютер с сокращенным набором команд. RISC противопоставлялся CISC (Complex Instruction Set Computer - компьютер с полным набором команд). В качестве примера CISC можно привести VAX, который доминировал в то время в научных компьютерных центрах. На сегодняшний день мало кто считает, что главное различие RISC и CISC состоит в количестве команд, но название со­храняется до сих пор.

Учитывая преимущества производительности RISC, можно было бы предпо­ложить, что такие компьютеры, как Alpha компании DEC, стали доминировать над компьютерами CISC на рынке. Однако ничего подобного не про­изошло. Возникает вопрос: почему?

Во-первых, компьютеры RISC были несовместимы с другими моделями, а мно­гие компании вложили миллиарды долларов в программное обеспечение для про­дукции Intel. Во-вторых, как ни странно, компания Intel сумела воплотить те же идеи в архитектуре CISC. Процессоры Intel, начиная с 486-го, содержат ядро RISC, которое выполняет самые простые (и обычно самые распространенные) коман­ды за один цикл тракта данных, а по обычной технологии CISC интерпретиру­ются более сложные команды. В результате обычные команды выполняются быс­тро, а более сложные и редкие - медленно. Хотя при таком «гибридном» подходе работа происходит не так быстро, как у RISC, данная архитектура имеет ряд пре­имуществ, поскольку позволяет использовать старое программное обеспечение без изменений.


21. КЛАССИЧЕСКАЯ АРХИТЕКТУРА КОМПЬЮТЕРА (ПРИНЦИПЫ ПОСТРОЕНИЯ ЭВМ ФОН НЕЙМАНА). ФУНКЦИОНАЛЬНАЯ СХЕМА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА.

Архитектура ЭВМ – описание устройства и функционирования ЭВМ без подробностей технической реализации.

В понятие архитектуры входит: описание состава основных функциональных узлов и их информационного взаимодействия; описание способов представления информации в ПК; описание структуры процессора и языка машинных команд.

Всем известный IBM PC-совместимый компьютер представляет собой реализацию так называемой Фон-неймановской архитектуры вычислительных машин. Эта архитектура была представлена Джоном Фон-нейманом еще в 1945 году и имеет следующие основные признаки (рис 1.2).. Машина фон-Неймана - вычислительная система, построенная на следующих принципах, она состоит из:

1. Устройства управления (УУ).

2. Арифметико-логического устройства (АЛУ).

3. Памяти (ЗУ – запоминающее устройство).

4. Устройств ввода/вывода (УВВ).

В ней реализуется концепция хранимой программы: программы и данные хранятся в одной и той же памяти. Код программы хранится и выполняется последовательно (линейно) сверху вниз.

Рис. 1.2 Архитектура фон-Неймана

Машина фон Неймана - математическая модель, абстракция принципов по которым работают почти все современные электронные компьютеры.

Устройство управления и арифметико-логическое устройство, обычно объединенные в центральный процессор, они определяют действия, подлежащие выполнению, путем считывания команд из оперативной памяти. Внутренний код машины в двоичном формате.

Подавляющее большинство вычислительных машин в настоящее время являются фон-неймановскими машинами.

ПРИНЦИПЫ

1. Принцип хранимой программы – первоначально программа задавалась путем установки перемычек на спец.панели. Нейман догадался, что программа может хранится в виде набора нулей и единиц, в той же памяти, что и обрабатываемое число, данные. Т.е. код программы и её данные находятся в одном и том же адресном пр-ве ОП.

2. Адресный принцип – в команде указываются не числа, над которыми надо выполнять арифметические действия, а адреса ячеек памяти , где эти числа хранятся.

3. Автоматизм – после ввода программы и данных машина работает автоматически, выполняя предписания программы без вмешательства человека. Последовательное выполнение программы – CPU выбирает из памяти команды последовательно. В ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в УУ.

4. линейное пространство памяти – информация может оперативно храниться в ячейках с последовательными адресами, которые наз. оперативной памятью.

5. двоичное представление информации.

6. отсутствие разницы между данными и командами в памяти.

22. ВНЕШНИЕ УСТРОЙСТВА КОМПЬЮТЕРНЫХ СИСТЕМ. ПЕРСПЕКТИВЫ РАЗВИТИЯ.

Клавиатуры

Существует несколько видов клавиатур.

У первых компьютеров IBM PC под каждой клавишей находился переключатель, который давал ощутимую отдачу и щелкал при нажатии клавиши. Сегодня у самых дешевых клавиатур при нажатии клавиш происходит лишь механический контакт с печатной платой. У клавиатур получше между клавишами и печатной платой кладется слой из эластичного материала. Под каждой клавишей находится небольшой купол, который прогибается в случае нажатия клавиши. Проводящий материал, находящийся внутри купола, замыкает схему. У некоторых клавиатур под каждой клавишей находится магнит, который при нажатии клавиши проходит через катушку и таким образом вызывает электрический ток. Также используются другие методы, как механические, так и электромагнитные.

В персональных компьютерах при нажатии клавиши происходит процедура прерывания и запускается программа обработки прерывания (эта программа является частью операционной системы). Программа обработки прерывания считывает регистр аппаратного обеспечения в контроллер клавиатуры, чтобы получить номер клавиши, которая была нажата (от 1 до 102). Когда клавишу отпускают, происходит второе прерывание. Так, если пользователь нажимает клавишу SHIFT, затем нажимает и отпускает клавишу «М>, а затем отпускает клавишу SHIFT, операционная система понимает, что ему нужна заглавная, а не строчная буква «М». Обработка совокупности клавиш SHIFT, CTR L и AL T совершается только программным обеспечением.

Информация - это сведения о чем-либо

Понятие и виды информации, передача и обработка, поиск и хранение информации

Информация - это, определение

Информация - это любые сведения , принимаемые и передаваемые, сохраняемые различными источниками. - это вся совокупность сведений об окружающем нас мире, о всевозможных протекающих в нем процессах, которые могут быть восприняты живыми организмами, электронными машинами и другими информационными системами.

- это значимые сведения о чём-либо, когда форма их представления также является информацией, то есть имеет форматирующую функцию в соответствии с собственной природой.

Информация - это все то, чем могут быть дополнены наши знания и предположения.

Информация - это сведения о чём-либо, независимо от формы их представления.

Информация - это психический любого психофизического организма, производимый им при использовании какого-либо средства, называемого средством информации.

Информация - это сведения, воспринимаемые человеком и (или) спец. устройствами как отражение фактов материального или духовного мира в процессе коммуникации.

Информация - это данные, организованные таким образом, что имеют смысл для имеющего с ними дело человека.

Информация - это значение, вкладываемое человеком в данные на основании известных соглашений, используемых для их представления.

Информация - это сведения, разъяснения, изложение.

Информация - это любые данные или сведения, которые кого-либо интересуют.

Информация - это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые воспринимают информационные системы (живые организмы, управляющие машины и др.) в процессе жизнедеятельности и работы.

Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертёж, радиопередача и т.п.) может содержать разное количество информации для разных людей — в зависимости от их предшествующих знаний, от уровня понимания этого сообщения и интереса к нему.

В случаях, когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, интересуются не содержанием сообщения, а тем, сколько символов это сообщение содержит.

Информация (Information) - это

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

В настоящее время не существует единого определения информации как научного термина. С точки зрения различных областей знания данное понятие описывается своим специфическим набором признаков. Например, понятие «информация» является базовым в курсе информатики, и невозможно дать его определение через другие, более «простые» понятия (так же, в геометрии, например, невозможно выразить содержание базовых понятий «точка», «прямая», «плоскость» через более простые понятия).

Содержание основных, базовых понятий в любой науке должно быть пояснено на примерах или выявлено путём их сопоставления с содержанием других понятий. В случае с понятием «информация» проблема его определения ещё более сложная, так как оно является общенаучным понятием. Данное понятие используется в различных науках (информатике, кибернетике, биологии, физике и др.), при этом в каждой науке понятие «информация» связано с различными системами понятий.

Понятие информации

В современной науке рассматриваются два вида информации:

Объективная (первичная) информация — свойство материальных объектов и явлений (процессов) порождать многообразие состояний, которые посредством взаимодействий (фундаментальные взаимодействия) передаются другим объектам и запечатлеваются в их структуре.

Субъективная (семантическая, смысловая, вторичная) информация - смысловое содержание объективной информации об объектах и процессах материального мира, сформированное сознанием человека с помощью смысловых образов (слов, образов и ощущений) и зафиксированное на каком-либо материальном носителе.

В бытовом смысле информация — сведения об окружающем мире и протекающих в нём процессах, воспринимаемые человеком или специальным устройством.

В настоящее время не существует единого определения информации как научного термина. С точки зрения различных областей знания, данное понятие описывается своим специфическим набором признаков. Согласно концепции К. Шеннона, информация — это снятая неопределенность, т.е. Сведения, которые должны снять в той или иной степени существующую у приобретателя до их получения неопределенность, расширить его понимание объекта полезными сведениями.

С точки зрения Грегори Бетона элементарная единица информации это "небезразличное различие" или действенное различие для какой-то большей воспринимающей системы. Те различия, которые не воспринимаются, он называет "потенциальными", а воспринимаемые - "действенными". "Информация состоит из небезразличных различий» (с) "Любое восприятие информации с необходимостью является получением сведений о различии». С точки зрения информатики, информация обладает рядом фундаментальных свойств: новизна, актуальность, достоверность, объективность, полнота, ценность и др. Анализом информации занимается, прежде всего, наука логика. Слово «информация» происходит от латинского слова informatio, что в переводе обозначает сведение, разъяснение, ознакомление. Понятие информации рассматривалось ещё античными философами.

Информация (Information) - это

До начала промышленной революции, определение сути информации оставалось прерогативой преимущественно философов. Далее рассматривать вопросы теории информации стала новая на то время наука кибернетика.

Иногда для того, чтобы постичь суть какого-то понятия, полезно подвергнуть анализу значение слова, которым это понятие обозначается. Прояснение внутренней формы слова и изучение истории его употребления может пролить неожиданный свет на его смысл, затмеваемый привычным "технологическим" использованием этого слова и современными коннотациями.

Слово информация вошло в русский язык в Петровскую эпоху. Впервые фиксируется в "Духовном регламенте" 1721 г. в значении "представление, понятие о чем-л.". (В европейских языках оно закрепилось раньше - около XIV в.)

Информация (Information) - это

Исходя из этой этимологии, информацией можно считать всякое значимое изменение формы или, другими словами, любые материально зафиксированные следы, образованные взаимодействием предметов или сил и поддающиеся пониманию. Информация, таким образом, это превращенная форма энергии. Носителем информации является знак, а способом ее существования - истолкование: выявление значения знака или последовательности знаков.

Значением может быть реконструируемое по знаку событие, послужившее причиной его возникновения (в случае "природных" и непроизвольных знаков, таких, как следы, улики и проч.), либо сообщение (в случае условных знаков, свойственных сфере языка). Именно вторая разновидность знаков составляет тело человеческой культуры, которая, согласно одному из определений, есть "совокупность не наследственно передающейся информации".

Информация (Information) - это

Сообщения могут содержать информацию о фактах или интерпретацию фактов (от лат. interpretatio, истолкование, перевод).

Живое существо получает информацию с помощью органов чувств, а также посредством размышления или интуиции. Обмен информацией между субъектами есть общение или коммуникация (от лат. communicatio, сообщение, передача, производное в свою очередь от лат. communico, делать общим, сообщать, беседовать, соединять).

С практической точки зрения информация всегда представляется в виде сообщения. Информационное сообщение связано с источником сообщения, получателем сообщения и каналом связи.

Возвращаясь к латинской этимологии слова информация, попробуем ответить на вопрос, чему именно придается здесь форма.

Очевидно, что, во-первых, некоторому смыслу, который, будучи изначально бесформенным и невыраженным, существует лишь потенциально и должен быть "построен", чтобы стать воспринимаемым и передаваемым.

Во-вторых, человеческому уму, который воспитывается мыслить структурно и ясно. В-третьих, обществу, которое именно благодаря тому, что его члены разделяют эти смыслы и совместно их используют, обретает единство и функциональность.

Информация (Information) - это

информация как выраженный разумный смысл есть знание, которое может храниться, передаваться и являться основой для порождения другого знания. Формы консервации знания (историческая память) многообразны: от мифов, летописей и пирамид до библиотек, музеев и компьютерных баз данных.

Информация - сведения об окружающем нас мире, о протекающих в нем процессах, которые воспринимают живые организмы, управляющие машины и другие информационные системы.

Слово «информация» латинское. За долгую жизнь его значение претерпевало эволюции, то расширяя, то предельно сужая свои границы. Вначале под словом «информация» подразумевали: «представление», «понятие», затем-«сведения», «передача сообщений».

В последние годы ученые решили, что обычное (всеми принятое) значение слова «информация» слишком эластично, расплывчато, и дали ему такое значение: «мера определенности в сообщении».

Информация (Information) - это

Теорию информации вызвали к жизни потребности практики. Ее возникновение связывают с работой Клода Шеннона «Математическая теория связи», изданной в 1946г. Основы теории информации опираются на результаты, полученные многими учеными. Ко второй половине XX века земной шар гудел от передающейся информации, бегущей по телефонным и телеграфным кабелям и радиоканалам. Позже появились электронные вычислительные машины - переработчики информации. А для того времени основной задачей теории информации являлось, прежде всего, повышение эффективности функционирования систем связи. Сложность при проектировании и эксплуатации средств, систем и каналов связи в том, что конструктору и инженеру недостаточно решить задачу с физических и энергетических позиций. С этих точек зрения система может быть самой совершенной и экономичной. Но важно еще при создании передающих систем обратить внимание на то, какое количество информации пройдет через эту передающую систему. Ведь информацию можно измерить количественно, подсчитать. И поступают при подобных вычислениях самым обычным путем: абстрагируются от смысла сообщения, как отрешаются от конкретности в привычных всем нам арифметических действиях (как от сложения двух яблок и трех яблок переходят к сложению чисел вообще: 2+3).

Ученые заявили, что они «полностью игнорировали человеческую оценку информации». Последовательному ряду из 100 букв, например, они приписывают определенное значение информации, не обращая внимания, имеет ли эта информация смысл и имеет ли, в свою очередь, смысл практическое применение. Количественный подход - наиболее разработанная ветвь теории информации. В соответствии с этим определением совокупность 100 букв - фраза из 100 букв из газеты, пьесы Шекспира или теоремы Эйнштейна - имеет в точности одинаковое количество информации.

Такое определение количества информации является в высшей степени полезным и практичным. Оно в точности соответствует задаче инженера связи, который должен передать всю информацию, содержащуюся в поданной телеграмме, вне зависимости от ценности этой информации для адресата. Канал связи бездушен. Передающей системе важно одно: передать нужное количество информации за определенное время. Как же вычислить количество информации в конкретном сообщении?

Информация (Information) - это

Оценка количества информации основывается на законах теории вероятностей, точнее, определяется через вероятности событий. Это и понятно. Сообщение имеет ценность, несет информацию только тогда, когда мы узнаем из него об исходе события, имеющего случайный характер, когда оно в какой-то мере неожиданно. Ведь сообщение об уже известном никакой информации не содержит. Т.е. если вам, допустим, кто-то позвонит по телефонному аппарату и скажет: «Днем бывает светло, а ночью темно», то такое сообщение вас удивит лишь нелепостью высказывания очевидного и всем известного, а не новостью, которую оно содержит. Иное дело, например, результат забега на скачках. Кто придет первым? Исход здесь трудно предсказать.Чем больше интересующее нас событие имеет случайных исходов, тем ценнее сообщение о его результате, тем больше информации. Сообщение о событии, у которого только два одинаково возможных исхода, содержит одну единицу информации, называемую битом. Выбор единицы информации не случаен. Он связан с наиболее распространенным двоичным способом ее кодирования при передаче и обработке. Попытаемся хотя бы в самом упрощенном виде представить себе тот общий принцип количественной оценки информации, который является краеугольным камнем всей теории информации.

Мы уже знаем, что количество информации зависит от вероятностей тех или иных исходов события. Если событие, как говорят ученые, имеет два равновероятных исхода, это означает, что каждого исхода равна 1/2. Такова вероятность выпадения «орла» или «решки» при бросании монеты. Если событие имеет три равновероятных исхода, то вероятность каждого равна 1/3. Заметьте, сумма вероятностей всех исходов всегда равна единице: ведь какой-нибудь из всех возможных исходов обязательно наступит. Событие, как вы сами понимаете, может иметь и неравновероятные исходы. Так, при футбольном матче между сильной и слабой командами вероятность победы сильной команды велика - например, 4/5. ничьей намного меньше, например 3/20. Вероятность же поражения совсем мала.

Выходит, что количество информации - это мера уменьшения неопределенности некоторой ситуации. Различные количества информации передаются по каналам связи, и количество проходящей через канал информации не может быть больше его пропускной способности. А ее определяют по тому, какое количество информации проходит здесь за единицу времени. Один из героев романа Жюля Верна «Таинственный остров», журналист Гедеон Спиллет, передавал по телефонному аппарату главу из Библии, чтобы его конкуренты не могли воспользоваться телефонной связью. В этом случае канал был загружен полностью, а количество информации было равно нулю, ибо абоненту передавались известные для него сведения. Значит, канал работал вхолостую, пропустив строго определенное количество импульсов, ничем их не нагрузив. А между тем, чем больше информации несет каждый из определенного числа импульсов, тем полнее используется пропускная способность канала. Поэтому нужно разумно кодировать информацию, найти экономный, скупой язык для передачи сообщений.

Информацию «просеивают» самым тщательным образом. В телеграфе часто встречающиеся буквы, сочетания букв, даже целые фразы изображают более коротким набором нулей и единиц, а те, что встречаются реже,- более длинным. В случае, когда уменьшают длину кодового слова для часто встречающихся символов и увеличивают для редко встречающихся, говорят об эффективном кодировании информации. Но на практике довольно часто случается, что код, возникший в результате самого тщательного «просеивания», код удобный и экономный, может исказить сообщение из-за помех, которые всегда, к сожалению, бывают в каналах связи: искажения звука в телефоне, атмосферные помехи в , искажение или затемнение изображения в телевидении, ошибки при передаче в телеграфе . Эти помехи, или, как их называют специалисты, шумы, обрушиваются на информацию. А от этого бывают самые невероятные и, естественно, неприятные неожиданности.

Поэтому для повышения надежности в передаче и обработке информации приходится вводить лишние символы - своеобразную защиту от искажений. Они - эти лишние символы - не несут действительного содержания в сообщении, они избыточны. С точки зрения теории информации все то, что делает язык красочным, гибким, богатым оттенками, многоплановым, многозначным, - избыточность. Как избыточно с таких позиций письмо Татьяны к Онегину! Сколько в нем информационных излишеств для краткого и всем понятного сообщения « Я вас люблю»! И как информационно точны рисованные обозначения, понятные всем и каждому, кто входит сегодня в метро, где вместо слов и фраз объявлений висят лаконичные символьные знаки, указывающие: «Вход», «Выход».

В этой связи полезно вспомнить анекдот, рассказанный в свое время знаменитым американским ученым Бенджаменом Франклином, о шляпочнике, пригласившем своих друзей для обсуждения проекта вывески.Предполагалось нарисовать на вывеске шляпу и написать: «Джон Томпсон, шляпочник, делает и продает шляпы за наличные ». Один из друзей заметил, что слова «за наличные деньги » являются излишними - такое напоминание будет оскорбительным для покупателя . Другой нашел также лишним слово «продает», так как само собой понятно, что шляпочник продает шляпы, а не раздает их даром. Третьему показалось, что слова «шляпочник» и «делает шляпы» представляют собой ненужную тавтологию, и последние слова были выкинуты. Четвертый предложил выкинуть и слово «шляпочник» - нарисованная шляпа ясно говорит, кто такой Джон Томпсон. Наконец, пятый уверял, что для покупателя совершенно безразлично, будет ли шляпочник называться Джоном Томпсоном или иначе, и предложил обойтись без этого указания.Таким образом, в конце концов на вывеске не осталось ничего, кроме шляпы. Конечно, если бы люди пользовались только такого рода кодами, без избыточности в сообщениях, то все «информационные формы» - книги, доклады, статьи - были бы предельно краткими. Но проиграли бы в доходчивости и красоте.

Информацию можно разделить на виды по разным критериям: по истинности: истинная и ложная;

по способу восприятия:

Визуальная — воспринимается органами зрения;

Аудиальная — воспринимается органами слуха;

Тактильная — воспринимается тактильными рецепторами;

Обонятельная — воспринимается обонятельными рецепторами;

Вкусовая — воспринимаемая вкусовыми рецепторами.

по форме представления:

Текстовая — передаваемая в виде символов, предназначенных обозначать лексемы языка;

Числовая — в виде цифр и знаков, обозначающих математические действия;

Графическая — в виде изображений, предметов, графиков;

Звуковая — устная или в виде записи передача лексем языка аудиальным путём.

по назначению:

Массовая — содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума;

Специальная — содержит специфический набор понятий, при использовании происходит передача сведений, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация;

Секретная — передаваемая узкому кругу лиц и по закрытым (защищённым) каналам;

Личная (приватная) — набор сведений о какой-либо личности, определяющий социальное положение и типы социальных взаимодействий внутри популяции.

по значению:

Актуальная - информация ценная в данный момент времени;

Достоверная - информация, полученная без искажений;

Понятная - информация, выраженная на языке понятном тому, кому она предназначена;

Полная - информация, достаточная для принятия правильного решения или понимания;

Полезная - полезность информации определяется субъектом, получившим информацию в зависимости от объёма возможностей её использования.

Значение информации в различных областях знаний

В теории информации в наше время разрабатывают много систем, методов, подходов, идей. Однако ученые считают, что к современным направлениям в теории информации добавятся новые, появятся новые идеи. В качестве доказательства правильности своих предположений они приводят «живой», развивающийся характер науки, указывают на то, что теория информации удивительно быстро и прочно внедряется в самые различные области человеческого знания. Теория информации проникла в физику, химию, биологию, медицину, философию, лингвистику, педагогику, экономику, логику, технические науки, эстетику. По признанию самих специалистов, учение об информации, возникшее в силу потребностей теории связи и кибернетики, перешагнуло их рамки. И теперь, пожалуй, мы вправе говорить об информации как научном понятии, дающем в руки исследователей теоретико - информационный метод, с помощью которого можно проникнуть во многие науки о живой и неживой природе, об обществе, что позволит не только взглянуть на все проблемы с новой стороны, но и увидеть еще неувиденное. Вот почему термин «информация» получил в наше время широкое распространение, став частью таких понятий, как информационная система, информационная культура, даже информационная этика.

Многие научные дисциплины используют теорию информации, чтобы подчеркнуть новое направление в старых науках. Так возникли, например, информационная география, информационная экономика, информационное право. Но чрезвычайно большое значение приобрел термин «информация» в связи с развитием новейшей компьютерной техники, автоматизацией умственного труда, развитием новых средств связи и обработки информации и особенно с возникновением информатики. Одной из важнейших задач теории информации является изучение природы и свойств информации, создание методов ее обработки, в частности преобразования самой различной современной информации в программы для ЭВМ, с помощью которых происходит автоматизация умственной работы-своеобразное усиление интеллекта, а значит, развитие интеллектуальных ресурсов общества.

Слово «информация» происходит от латинского слова informatio,что в переводе означает сведение, разъяснение, ознакомление. Понятие «информация» является базовым в курсе информатики, однако невозможно дать его определение через другие, более «простые» понятия.Понятие «информация» используется в различных науках, при этом в каждой науке понятие «информация»связано с различными системами понятий. Информация в биологии: Биология изучает живую природу и понятие «информация» связывается с целесообразным поведением живых организмов. В живых организмах информация передается и храниться с помощью объектов различной физической природы (состояние ДНК), которые рассматриваются как знаки биологических алфавитов. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Филосовский подход: информация - это взаимодействие, отражение, познание. Кибернетический подход: информация - это характеристики управляющего сигнала, передаваемого по линии связи.

Роль информации в философии

Традиционализм субъективного постоянно доминировал в ранних определениях информации, как категории, понятия, свойства материального мира. Информация существует вне нашего сознания, и может иметь отражение в нашем восприятии только как результат взаимодействия: отражения, чтения, получения в виде сигнала, стимула. Информация не материальна, как и все свойства материи. Информация стоит в ряду: материя, пространство, время, системность, функция, и др. что есть основополагающие понятия формализованного отражения объективной реальности в её распространении и изменчивости, разнообразии и проявлений. Информация — свойство материи и отражает её свойства (состояние или способность взаимодействия) и количество (мера) путём взаимодействия.

С материальной точки зрения информация — это порядок следования объектов материального мира. Например, порядок следования букв на листе бумаги по определенным правилам является письменной информацией. Порядок следования разноцветных точек на листе бумаги по определенным правилам является графической информацией. Порядок следования музыкальных нот является музыкальной информацией. Порядок следования генов в ДНК является наследственной информацией. Порядок следования битов в ЭВМ является компьютерной информацией и т.д. и т.п. Для осуществления информационного обмена требуется наличие необходимых и достаточных условий.

Информация (Information) - это

Необходимые условия:

Наличие не менее двух различных объектов материального или нематериального мира;

Наличие у объектов общего свойства, позволяющего идентифицировать объекты в качестве носителя информации;

Наличие у объектов специфического свойства, позволяющего различать объекты друг от друга;

Наличие свойства пространства, позволяющее определить порядок следования объектов. Например, расположение письменной информации на бумаге — это специфическое свойство бумаги, позволяющее располагать буквы слева направо и сверху вниз.

Достаточное условие одно: наличие субъекта, способного распознавать информацию. Это человек и человеческое общество, общества животных, роботов и т.д. Информационное сообщение строится путем выбора из базиса копий объектов и расположение этих объектов в пространстве в определенном порядке. Длина информационного сообщения определяется как количество копий объектов базиса и всегда выражается целым числом. Необходимо различать длину информационного сообщения, которое всегда измеряется целым числом, и количество знаний, содержащегося в информационном сообщении, которое измеряется в неизвестной единице измерения. С математической точки зрения информация — это последовательность целых чисел, которые записаны в вектор. Числа — это номер объекта в базисе информации. Вектор называется инвариантом информации, так как он не зависит от физической природы объектов базиса. Одно и то же информационное сообщение может быть выражено буквами, словами, предложениями, файлами, картинками, нотами, песнями, видеоклипами, любой комбинацией всех ранее названных.

Информация (Information) - это

Роль информации в физике

информация - это сведения об окружающем мире (объекте, процессе, явлении, событии), которые являются объектом преобразования (включая хранение, передачу и т.д.) и используются для выработки поведения, для принятия решения, для управления или для обучения.

Характерными чертами информации являются следующие:

Это наиболее важный ресурс современного производства: он снижает потребность в земле, труде, капитале, уменьшает затрата сырья и энергии. Так, например, обладая умением архивировать свои файлы (т.е. имея такую информацию), можно не тратиться на покупку новых дискет;

Информация вызывает к жизни новые производства. Например, изобретение лазерного луча явилось причиной возникновения и развития производства лазерных (оптических) дисков;

Информация является товаром, причем информации ее не теряет после продажи. Так, если студент сообщит своему товарищу сведения о расписании занятий в течение семестра, он эти данные не потеряет для себя;

Информация придает дополнительную ценность другим ресурсам, в частности, трудовым. Действительно, работник с высшим образованием ценится больше, чем со средним.

Как следует из определения, с информацией всегда связывают три понятия:

Источник информации - тот элемент окружающего мира (объект, явление, событие), сведения о котором являются объектом преобразования. Так, источником информации, которую в данный момент получает читатель настоящего учебного пособия, является информатика как сфера человеческой деятельности;

Приобретатель информации - тот элемент окружающего мира, который использует информацию (для выработки поведения, для принятия решения, для управления или для обучения). Приобретатель настоящей информации - сам читатель;

Сигнал - материальный носитель, который фиксирует информацию для переноса ее от источника к приобретателю. В данном случае сигнал носит электронный характер. Если же студент возьмет данное пособие в библиотеке, то та же информация будет иметь бумажный носитель. Будучи прочитанной и запомненной студентом, информация приобретет еще один носитель - биологический, когда она “записывается” в память обучаемого.

Сигнал является важнейшим элементом в данной схеме. Формы его представления, а также количественные и качественные характеристики содержащейся в нем информации, важные для приобретателя информации, рассматриваются далее в данном разделе учебника. Основные характеристики компьютера как основного инструмента, выполняющего отображение источника информации в сигнал (связь 1 на рисунке) и “доведение” сигнала до приобретателя информации (связь 2 на рисунке), приводятся в части Компьютер. Структура процедур, реализующих связи 1 и 2 и составляющих информационный процесс, является предметом рассмотрения в части Информационный процесс.

Объекты материального мира находятся в состоянии непрерывного изменения, которое характеризуется обменом энергией объекта с окружающей средой. Изменение состояния одного объекта, всегда приводит к изменению состояния, некоторого другого объекта окружающей среды. Это явление, вне зависимости от того, как, какие именно состояния и каких именно объектов изменились, может рассматриваться, как передача сигнала от одного объекта, другому. Изменение состояния объекта при передаче ему сигнала, называется регистрацией сигнала.

Сигнал или последовательность сигналов образуют сообщение, которое может быть воспринято получателем в том или ином виде, а также в том или ином объёме. Информация в физике есть термин, качественно обобщающий понятия «сигнал» и «сообщение». Если сигналы и сообщения можно исчислять количественно, то можно сказать, что сигналы и сообщения являются единицами измерения объёма информации. Сообщение (сигнал) разными системами интерпретируется по-своему. Например, последовательно длинный и два коротких звуковых сигнала в терминологии азбуки Морзе — это буква де (или D), в терминологии БИОС от компании award — неисправность видеокарты.

Информация (Information) - это

Роль информации в математике

В математике теория информации (математическая теория связи) — раздел прикладной математики, определяющий понятие информации, её свойства и устанавливающий предельные соотношения для систем передачи данных. Основные разделы теории информации — кодирование источника (сжимающее кодирование) и канальное (помехоустойчивое) кодирование. Математика является больше чем научной дисциплиной. Она создает единый язык всей Науки.

Предметом исследований математики являются абстрактные объекты: число, функция, вектор, множество, и другие. При этом большинство из них вводится аксиоматически (аксиома), т.е. без всякой связи с другими понятиями и без какого-либо определения.

Информация (Information) - это

информация не входит в число предметов исследования математики. Тем не менее, слово «информация» употребляется в математических терминах - собственная информация и взаимная информация, относящихся к абстрактной (математической) части теории информации. Однако, в математической теории понятие «информация» связано с исключительно абстрактными объектами - случайными величинами, в то время как в современной теории информации это понятие рассматривается значительно шире - как свойство материальных объектов. Связь между этими двумя одинаковыми терминами несомненна. Именно математический аппарат случайных чисел использовал автор теории информации Клод Шеннон. Сам он подразумевает под термином «информация» нечто фундаментальное (нередуцируемое). В теории Шеннона интуитивно полагается, что информация имеет содержание. Информация уменьшает общую неопределённость и информационную энтропию. Количество информации доступно измерению. Однако он предостерегает исследователей от механического переноса понятий из его теории в другие области науки.

"Поиск путей применения теории информации в других областях науки не сводится к тривиальному переносу терминов из одной области науки в другую. Этот поиск осуществляется в длительном процессе выдвижения новых гипотез и их экспериментальной проверке." К. Шеннон.

Информация (Information) - это

Роль информации в кибернетике

Основоположник кибернетики Нор берт Винер говорил об информации так:

информация — это не материя и не энергия, информация — это информация". Но основное определение информации, которое он дал в нескольких своих книгах, следующее: информация — это обозначение содержания, полученное нами из внешнего мира, в процессе приспосабливания к нему нас и наших чувств.

Информация — это основное понятие кибернетики, точно так же экономическая И. — основное понятие экономической кибернетики.

Определений этого термина много, они сложны и противоречивы. Причина, очевидно, в том, что И. как явлением занимаются разные науки, и кибернетика лишь самая молодая из них. И. — предмет изучения таких наук, как наука об управлении, математическая , генетика, теория средств массовой И. (печать, радио , телевидение), информатика, занимающаяся проблемами научно-технической И., и т. д. Наконец, последнее время большой интерес к проблемам И. проявляют философы: они склонны рассматривать И. как одно из основных универсальных свойств материи, связанное с понятием отражения. При всех трактовках понятия И. она предполагает существование двух объектов: источника И. и приобретателя (получателя) И. Передача И. от одного к другому происходит с помощью сигналов, которые, вообще говоря, могут не иметь никакой физической связи с ее смыслом: эта связь определяется соглашением. Напр., удар в вечевой колокол означал, что надо собираться на площадь, но тем, кто не знал об этом порядке, он не сообщал никакой И.

В ситуации с вечевым колоколом человек, участвующий в соглашении о смысле сигнала, знает, что в данный момент могут быть две альтернативы: вечевое собрание состоится или не состоится. Или, выражаясь языком теории И., неопределенное событие (вече) имеет два исхода. Принятый сигнал приводит к уменьшению неопределенности: человек теперь знает, что событие (вече) имеет только один исход — оно состоится. Однако, если заранее было известно, что вече состоится в таком-то часу, колокол ничего нового не сообщил. Отсюда вытекает, что чем менее вероятно (т. е. более неожиданно) сообщение, тем больше И. оно содержит, и наоборот, чем больше вероятность исхода до совершения события, тем меньше И. содержит сигнал. Примерно такие рассуждения привели в 40-х гг. XX в. к возникновению статистической, или “классической”, теории И., которая определяет понятие И. через меру уменьшения неопределенности знания о свершении какого-либо события (такая мера была названа энтропией). У истоков этой науки стояли Н. Винер, К. Шеннон и советские ученые А. Н. Колмогоров, В. А. Котельников и др. Им удалось вывести математические закономерности измерения количества И., а отсюда и такие понятия, как пропускная способность канала И., емкость запоминающих И. устройств и т. п., что послужило мощным стимулом к развитию кибернетики как науки и электронно-вычислительной техники как практического применения достижений кибернетики.

Что касается определения ценности, полезности И. для получателя, то здесь еще много нерешенного, неясного. Если исходить из потребностей экономического управления и, следовательно, экономической кибернетики, то И. можно определить как все те сведения, знания, сообщения, которые помогают решить ту или иную задачу управления (т. е. уменьшить неопределенность ее исходов). Тогда открываются и некоторые возможности для оценки И.: она тем полезнее, ценнее, чем скорее или с меньшими издержками приводит к решению задачи. Понятие И. близко понятию данные. Однако между ними есть различие: данные — это сигналы, из которых еще надо извлечь И. Обработка данных есть процесс приведения их к пригодному для этого виду.

Процесс их передачи от источника к приобретателю и восприятия в качестве И. может рассматриваться как прохождение трех фильтров:

Физического, или статистического (чисто количественное ограничение по пропускной способности канала, независимо от содержания данных, т. е. с точки зрения синтактики);

Семантического (отбор тех данных, которые могут быть поняты получателем, т. е. соответствуют тезаурусу его знаний);

Прагматического (отбор среди понятых сведений тех, которые полезны для решения данной задачи).

Это хорошо показано на схеме, взятой из книги Е. Г. Ясина об экономической информации. Соответственно выделяются три аспекта изучения проблем И. — синтаксический, семантический и прагматический.

По содержанию И. подразделяется на общественно-политическую, социально-экономическую (в том числе экономическую И.), научно-техническую и т. д. Вообще же классификаций И. много, они строятся по различным основаниям. Как правило, из-за близости понятий точно так же строятся и классификации данных. Напр., И. подразделяется на статическую (постоянную) и динамическую (переменную), и данные при этом — на постоянные и переменные. Другое деление — первичная, производная, выходная И. (так же классифицируются данные). Третье деление — И. управляющая и осведомляющая. Четвертое — избыточная, полезная и ложная. Пятое — полная (сплошная) и выборочная. Эта мысль Винера дает прямое указание на объективность информации, т.е. её существование в природе независимо от сознания (восприятия) человека.

Информация (Information) - это

Объективную информацию современная кибернетика определяет как объективное свойство материальных объектов и явлений порождать многообразие состояний, которые посредством фундаментальных взаимодействий материи передаются от одного объекта (процесса) другому, и запечатлеваются в его структуре. Материальная система в кибернетике рассматривается как множество объектов, которые сами по себе могут находиться в различных состояниях, но состояние каждого из них определяется состояниями других объектов системы.

Информация (Information) - это

В природе множество состояний системы представляет собой информацию, сами состояния представляют собой первичный код, или код источника. Таким образом, каждая материальная система является источником информации. Субъективную (семантическую) информацию кибернетика определяет как смысл или содержание сообщения.

Роль информации в информатике

Предметом изучения науки являются именно данные: методы их создания, хранения, обработки и передачи. Контент (также: «наполнение» (в контексте), «наполнение сайта») — термин, означающий все виды информации (как текстовой, так и мультимедийной — изображения, аудио, видео), составляющей наполнение (визуализированное, для посетителя, содержимое) веб-сайта. Применяется для отделения понятия информации, составляющей внутреннюю структуру страницы/сайта (код), от той, что будет в итоге выведена на экран.

Слово «информация» происходит от латинского слова informatio,что в переводе означает сведение, разъяснение, ознакомление. Понятие «информация» является базовым в курсе информатики, однако невозможно дать его определение через другие, более «простые» понятия.

Можно выделить следующие подходы к определению информации:

Традиционный (обыденный) - используется в информатике: информация - это сведения, знания, сообщения о положении дел, которые человек воспринимает из окружающего мира с помощью органов чувств (зрения, слуха, вкуса, обоняния, осязания).

Вероятностный - используется в теории об информации: информация - это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределённости и неполноты знаний.

Информация храниться, передается и обрабатывается в символьной (знаковой) форме. Одна и та же информация может быть представлена в различной форме:

Знаковой письменной, состоящей из различных знаков среди которых выделяют символьную в виде текста, чисел, спец. символов; графическую; табличную и тд.;

Виде жестов или сигналов;

Устной словесной форме (разговор).

Представление информации осуществляется с помощью языков, как знаковых систем, которые строятся на основе определенного алфавита и имеют правила для выполнения операций над знаками. Язык - определенная знаковая система представления информации. Существуют:

Естественные языки - разговорные языки в устной и письменной форме. В некоторых случаях разговорную речь могут заменить язык мимики и жестов, язык специальных знаков (например, дорожных);

Формальные языки - специальные языки для различных областей человеческой деятельности, которые характеризуются жестко зафиксированным алфавитом, более строгими правилами грамматики и синтаксиса. Это язык музыки (ноты), язык математики (цифры, математические знаки), системы счисления, языки программирования и т.д. В основе любого языка лежит алфавит - набор символов/знаков. Полное число символов алфавита принято называть мощностью алфавита.

Носители информации - среда или физическое тело для передачи, хранения и воспроизведения информации. (Это электрические, световые, тепловые, звуковые, радио сигналы, магнитные и лазерные диски, печатные издания, фотографии и тд.)

Информационные процессы - это процессы, связанные с получением, хранением, обработкой и передачей информации (т.е. действия, выполняемые с информацией). Т.е. это процессы, в ходе которых изменяется содержание информации или форма её представления.

Для обеспечения информационного процесса необходим источник информации, канал связи и приобретатель информации. Источник передает (отправляет) информацию, а приемник её получает (воспринимает). Передаваемая информация добивается от источника до приемника с помощью сигнала (кода). Изменение сигнала позволяет получить информацию.

Будучи объектом преобразования и использования, информация характеризуется следующими свойствами:

Синтаксис - свойство, определяющее способ представления информации на носителе (в сигнале). Так, данная информация представлена на электронном носителе с помощью определенного шрифта. Здесь же можно рассматривать такие параметры представления информации, как стиль и цвет шрифта, его размеры, междустрочный интервал и т.д. Выделение нужных параметров как синтаксических свойств, очевидно, определяется предполагаемым способом преобразования. Например, для плохо видящего человека существенным является размер и цвет шрифта. Если предполагается вводить данный текст в компьютер через сканер, важен формат бумаги;

Семантика - свойство, определяющее смысл информации как соответствие сигнала реальному миру. Так, семантика сигнала “информатика” заключается в данном ранее определении. Семантика может рассматриваться как некоторое соглашение, известное приобретателю информации, о том, что означает каждый сигнал (так называемое правило интерпретации). Например, именно семантику сигналов изучает начинающий автомобилист, штудирующий правила дорожного движения, познавая дорожные знаки (в этом случае сигналами выступают сами знаки). Семантику слов (сигналов) познаёт обучаемый какому-либо иностранному языку. Можно сказать, что смысл обучения информатике заключается в изучении семантики различных сигналов - суть ключевых понятий этой дисциплины;

Прагматика - свойство, определяющее влияние информации на поведение приобретателя. Так прагматика информации, получаемой читателем настоящего учебного пособия, заключается, по меньшей мере, в успешной сдаче экзамена по информатике. Хочется верить, что этим прагматика данного труда не ограничится, и он послужит для дальнейшего обучения и профессиональной деятельности читателя.

Информация (Information) - это

Следует отметить, что различные по синтаксису сигналы могут иметь одинаковую семантику. Например, сигналы “ЭВМ” и “компьютер” означают электронное устройство для преобразования информации. В этом случае обычно говорят о синонимии сигналов. С другой стороны, один сигнал (т.е., информация с одним синтаксическим свойством) может иметь разную прагматику для потребителей и разную семантику. Так, дорожный знак, известный под названием “кирпич” и имеющий вполне определенную семантику (“въезд запрещен”), означает для автомобилиста запрет на въезд, а на пешехода никак не влияет. В то же время, сигнал “ключ” может иметь разную семантику: скрипичный ключ, родниковый ключ, ключ для открытия замка, ключ, используемый в информатике для кодирования сигнала с целью его защиты от несанкционированного доступа (в этом случае говорят об омонимии сигнала). Есть сигналы - антонимы, имеющие противоположную семантику. Например, "холодный" и "горячий", "быстрый" и "медленный" и т.д.

Предметом изучения науки информатика являются именно данные: методы их создания, хранения, обработки и передачи. А сама информация, зафиксированная в данных, её содержательный смысл интересны пользователям информационных систем, являющимся специалистами различных наук и областей деятельности: медика интересует медицинская информация, геолога — геологическая, бизнесмена — коммерческая и т.п. (в том числе специалиста по информатике интересует информация по вопросам работы с данными).

Семиотика - наука о информации

Информацию нельзя себе представить без ее получения, обработки, передачи и т.д., то есть вне рамок обмена информацией. Все акты информационного обмена осуществляются посредством символов или знаков, с помощью которых одна система воздействует на другую. Поэтому основной нayкой, изучающей информацию, является семиотика - наука о знаках и знаковых системах в природе и обществе (теория знаков). В каждом акте информационного обмена можно обнаружить три его «участника», три элемента: знак, объект, который он обозначает, и получателя (использователя) знака.

В зависимости от того, отношения между какими элементами рассматриваются, семиотику разделяют на три раздела: синтактику, семантику и прагматику. Синтактика изучает знаки и отношения между ними. При этом она абстрагируется от содержания знака и от его практического значения для получателя. Семантика изучает отношения между знаками и обозначаемыми ими объектами, отвлекаясь при этом от получателя знаков и ценности последних: для него. Понятно, что изучение закономерностей смыслового отображения объектов в знаках невозможно без учета и использования общих закономерностей построения любых знаковых систем, изучаемых синтактикой. Прагматика изучает отношения между знаками и их использователями. В рамках прагматики изучаются все факторы, отличающие один акт информационного обмена от другого, все вопросы практических результатов использования информации и ценности ее для получателя.

При этом неизбежно затрагиваются многие аспекты отношений знаков между собой и с объектами, ими обозначаемыми. Таким образом, три раздела семиотики соответствуют трем уровням абстрагирования (отвлечения) от особенностей конкретных актов обмена информацией. Изучение информации во всем ее многообразии соответствует прагматическому уровню. Отвлекаясь от получателя информации, исключая его из рассмотрения, мы переходим к изучению ее на семантическом уровне. С отвлечением от содержания знаков анализ информации переводится на уровень синтактики. Такое взаимопроникновение основных разделов семиотики, связанное с различными уровнями абстрагирования, можно представить с помощью схемы «Три раздела семиотики и их взаимосвязь». Измерение информации осуществляется соответственно так же в трех аспектах: синтактическом, семантическом и прагматическом. Потребность в таком различном измерении информации, как будет показано ниже, диктуется практикой проектирования и фирмы работы информационных систем. Рассмотрим типичную производственную ситуацию.

В конце смены планировщик участка подготавливает данные о выполнении графика производства. Эта данные поступают в информационно-вычислительный центр (ИВЦ) предприятия, где обрабатываются, и в виде сводок о состоянии производства на текущий момент выдаются руководителям. Начальник цеха на основании полученных данных принимает решение об изменении плана производства на следующий плановый или принятии каких-либо других организационных мер. Очевидно, что для начальника, цеха количество информации, которое содержала сводка, зависит от величины экономического аффекта, полученного от ее использования при принятии решений, от того, насколько полезны были полученные сведения. Для планировщика участка количество информации в том же сообщении определяется точностью соответствия его фактическому положению дел на участке и степенью неожиданности сообщаемых фактов. Чем они неожиданней, тем быстрее нужно сообщить о них руководству, тем больше информации в данном сообщении. Для работников ИВЦ первостепенное значение будет иметь количество знаков, длина сообщения, несущего информацию, поскольку именно она определяет время загрузки вычислительной техники и каналов связи. При этом ни полезность информации, ни количественная мера смысловой ценности информации их практически не интересует.

Естественно, что организуя систему управления производством, строя модели выбора решения, мы в качестве меры информативности сообщений будем использовать полезность информации. При построении системы учета и отчетности, обеспечивающей руководство данными о ходе производственного процесса за меру количества информации следует принимать новизну полученных сведений. Компания же процедур механической переработки информации требует измерения объема сообщений в виде количества обрабатываемых знаков. Три таких существенно различных подхода к измерению информации не противоречат и не исключают друг друга. Наоборот, измеряя информацию в разных шкалах, они позволяют полнее и всестороннее оценить информативность каждого сообщения и эффективнее организовать систему управления производством. По меткому выражению проф. Н.Е. Кобринского, когда речь идет о рациональной компании потоков информации, количество, новизна, полезность информации оказываются между собой так же связанными, как количество, качество и стоимость продукции в производстве.

Информация в материальном мире

информация — одно из общих понятий, связанных с материей. Информация существует в любом материальном объекте в виде многообразия его состояний и передается от объекта к объекту в процессе их взаимодействия. Существование информации как объективного свойства материи логически вытекает из известных фундаментальных свойств материи — структурности, непрерывного изменения (движения) и взаимодействия материальных объектов.

Структурность материи проявляется как внутренняя расчленённость целостности, закономерный порядок связи элементов в составе целого. Иными словами, любой материальный объект, от субатомной частицы Мета вселенной (Большой взрыв) в целом, представляет собой систему взаимосвязанных подсистем. Вследствие непрерывного движения, понимаемого в широком смысле как перемещение в пространстве и развитие во времени, материальные объекты изменяют свои состояния. Состояния объектов изменяется и при взаимодействиях с другими объектами. Множество состояний материальной системы и всех её подсистем представляет информацию о системе.

Строго говоря, в силу неопределенности, бесконечности, свойства структурности, количество объективной информации в любом материальном объекте бесконечно. Эта информация называется полной. Однако можно выделять структурные уровни с конечными множествами состояний. Информация, существующая на структурном уровне с конечным числом состояний, называется частной. Для частной информации смысл понятие количества информации.

Из приведенного представления логично и просто вытекает выбор единицы измерения количества информации. Представим себе систему, которая может находиться всего в двух равновероятных состояниях. Присвоим одному из них код «1», а другому — «0». Это минимальное количество информации, которое может содержать система. Оно и является единицей измерения информации и называется бит. Существуют и другие, более сложно определяемые, способы и единицы измерения количества информации.

В зависимости от материальной формы носителя, информация бывает двух основных видов — аналоговая и дискретная. Аналоговая информация изменяется во времени непрерывно и принимает значения из континуума значений. Дискретная информация изменяется в некоторые моменты времени и принимает значения из некоторого множества значений. Любой материальный объект или процесс является первичным источником информации. Все возможные его состояния составляют код источника информации. Мгновенное значение состояний представляется как символ («буква») этого кода. Для того чтобы информация могла передаваться от одного объекта другому как к приемнику, необходимо, чтобы был какой-то промежуточный материальный носитель, взаимодействующий с источником. Такими переносчиками в природе, как правило, являются быстро распространяющиеся процессы волновой структуры - космические, гамма и рентгеновские излучения, электромагнитные и звуковые волны, потенциалы (а может быть и ещё не открытые волны) гравитационного поля. При взаимодействии электромагнитного излучения с объектом в результате поглощения или отражения изменяется его спектр, т.е. изменяются интенсивности некоторых длин волн. Изменяются при взаимодействиях с объектами и гармоники звуковых колебаний. Информация передаётся и при механическом взаимодействии, однако механическое взаимодействие, как правило, приводит к большим изменениям структуры объектов (вплоть до их разрушения), и информация сильно искажается. Искажение информации при её передаче называется дезинформация.

Перенос информации источника на структуру носителя называется кодированием. При этом происходит преобразование кода источника в код носителя. Носитель с перенесенным на него кодом источника в виде кода носителя называется сигналом. Приемник сигнала имеет свой набор возможных состояний, который называется кодом приемника. Сигнал, взаимодействуя с объектом-приемником, изменяет его состояния. Процесс преобразования кода сигнала в код приёмника называется декодированием.Передачу информации от источника приемнику можно рассматривать как информационное взаимодействие. Информационное взаимодействие кардинально отличается от других взаимодействий. При всех других взаимодействиях материальных объектов происходит обмен веществом и (или) энергией. При этом один из объектов теряет вещество или энергию, а другой получает их. Это свойство взаимодействий называется симметричностью. При информационном взаимодействии приемник получает информацию, а источник не теряет её. Информационное взаимодействие несимметрично.Объективная информация сама по себе не материальна, она является свойством материи, как, например, структурность, движение, и существует на материальных носителях в виде своих кодов.

Информация в живой природе

Живая природа сложна и разнообразна. Источниками и приемниками информации в ней являются живые организмы и их клетки. Организм обладает рядом свойств, отличающих его от неживых материальных объектов.

Основные:

Непрерывный обмен веществом, энергией и информацией с окружающей средой;

Раздражимость, способность организма воспринимать и перерабатывать информацию об изменениях окружающей среды и внутренней среды организма;

Возбудимость, способность реагировать на действие раздражителей;

Самоорганизация, проявляемая как изменения организма для адаптации к условиям внешней среды.

Организм, рассматриваемый как система, имеет иерархическую структуру. Эта структура относительно самого организма подразделяется на внутренние уровни: молекулярный, клеточный, уровень органов и, наконец, собственно организм. Однако организм взаимодействует и над организменными живыми системами, уровнями которых являются популяция, экосистема и вся живая природа в целом (биосфера). Между всеми этими уровнями циркулируют потоки не только вещества и энергии, но и информации.Информационные взаимодействия в живой природе происходят так же, как и в неживой. Вместе с тем, живая природа в процессе эволюции создала широкое разнообразие источников, носителей и приёмников информации.

Реакция на воздействия внешнего мира проявляется у всех организмов, поскольку она обусловлена раздражимостью. У высших организмов адаптация к внешней среде носит характер сложной деятельности, которая эффективна лишь при достаточно полной и своевременной информации об окружающей среде. Приёмниками информации из внешней среды у них являются органы чувств, к которым относят зрение, слух, обоняние, вкус, осязание и вестибулярный аппарат. Во внутренней структуре организмов имеются многочисленные внутренние рецепторы, связанные с нервной системой. Нервная система состоит из нейронов, отростки которых (аксоны и дендриты) представляют собой аналог каналов передачи информации. Главными органами, обеспечивающими хранение и обработку информации у позвоночных, являются спинной мозг и головной мозг. В соответствии с особенностями органов чувств информацию, воспринимаемую организмом, можно классифицировать как визуальную, слуховую, вкусовую, обонятельную и тактильную.

Попадая на сетчатку человеческого глаза, сигнал особым образом возбуждает составляющие её клетки. Нервные импульсы клеток через аксоны передаются в мозг. Мозг запоминает это ощущение в виде определенной комбинации состояний составляющих его нейронов. (Продолжение примера — в секции "информация в человеческом обществе"). Накапливая информацию, мозг создает на своей структуре связанную информационную модель окружающего мира. В живой природе для организма — приёмника информации важной характеристикой является её доступность. Количество информации, которое нервная система человека способна подать в мозг при чтении текстов, составляет примерно 1 бит за 1/16 с.

Информация (Information) - это

Исследование организмов затруднено их сложностью. Допустимая для неживых объектов абстракция структуры как математического множества вряд ли допустима для живого организма, потому что для создания более или менее адекватной абстрактной модели организма необходимо учесть все иерархические уровни его структуры. Поэтому сложно ввести меру количества информации. Очень сложно определяются связи между компонентами структуры. Если известно, какой орган является источником информации, то что является сигналом и что приемником?

До появления вычислительных машин биология, занимающаяся исследованиями живых организмов, применяла только качественные, т.е. описательные модели. В качественной модели учесть информационные связи между компонентами структуры практически невозможно. Электронно-вычислительная техника позволила применить в биологических исследованиях новые методы, в частности, метод машинного моделирования, предполагающий математическое описание известных явлений и процессов, происходящих в организме, добавление к ним гипотез о некоторых неизвестных процессах и расчет возможных вариантов поведения организма. Полученные варианты сравниваются с реальным поведением организма, что позволяет определить истинность или ложность выдвинутых гипотез. В таких моделях можно учесть и информационное взаимодействие. Чрезвычайно сложными являются информационные процессы, обеспечивающие существование самой жизни. И хотя интуитивно понятно, что это свойство прямо связано с формированием, хранением и передачей полной информации о структуре организма, абстрактное описание этого феномена представлялось до некоторых пор невозможным. Тем не менее, информационные процессы, обеспечивающие существование этого свойства, частично раскрыты благодаря расшифровке генетического кода и прочтению геномов различных организмов.

Информация в человеческом обществе

Развитие материи в процессе движения направлено в сторону усложнения структуры материальных объектов. Одна из самых сложных структур - человеческий мозг. Пока это единственная известная нам структура, обладающая свойством, которое сам человек называет сознанием. Говоря об информации мы, как мыслящие существа, априорно подразумеваем, что информация, кроме её наличия в виде принимаемых нами сигналов, имеет ещё и какой-то смысл. Формируя в своем сознании модель окружающего мира как взаимосвязанную совокупность моделей его объектов и процессов, человек использует именно смысловые понятия, а не информацию. Смысл — сущность любого феномена, которая не совпадает с ним самим и связывает его с более широким контекстом реальности. Само слово прямо указывает, что смысловое содержание информации могут формировать только мыслящие приемники информации. В человеческом обществе решающее значение приобретает не сама информация, а её смысловое содержание.

Пример (продолжение). Испытав такое ощущение, человек присваивает объекту понятие - «помидор», а его состоянию понятие — «красный цвет». Кроме того, его сознание фиксирует связь: «помидор» - « красного цвета». Это и есть смысл принятого сигнала. (Продолжение примера: ниже в этой секции). Способность мозга создавать смысловые понятия и связи между ними является основой сознания. Сознание можно рассматривать как саморазвивающуюся смысловую модель окружающего мира.Смысл это не информация. Информация существует только на материальном носителе. Сознание человека считается нематериальным. Смысл существует в сознании человека в виде слов, образов и ощущений. Человек может произносить слова не только вслух, но и «про себя». Он также «про себя» может создавать (или вспоминать) образы и ощущения. Однако, он может восстановить информацию, соответствующую этому смыслу, произнеся слова или написав их.

Информация (Information) - это

Пример (продолжение). Если слова «помидор» и «красный цвет» — смысл понятий, то где же тогда информация? информация содержится в мозге в виде определенных состояний его нейронов. Она содержится также в напечатанном тексте, состоящем из этих слов, и при кодировании букв трехразрядным двоичным кодом её количество равно 120 бит. Если произнести слова вслух, информации будет значительно больше, но смысл останется тем же. Наибольшее количество информации несёт зрительный образ. Это отражается даже в народном фольклоре — "лучше один раз увидеть, чем сто раз услышать".Восстановленная таким образом информация называется семантической информацией, поскольку она кодирует смысл некоторой первичной информации (семантика). Услышав (или увидев) фразу, произнесенную (или написанную) на языке, которого человек не знает, он получает информацию, но не может определить её смысл. Поэтому для передачи смыслового содержания информации необходимы некоторые договора между источником и приемником о смысловом содержании сигналов, т.е. слов. Такие договоренности могут быть достигнуты в процессе общения. Общение является одним из важнейших условий существования человеческого общества.

В современном мире информация представляет собой один из важнейших ресурсов и, в то же время, одну из движущих сил развития человеческого общества. Информационные процессы, происходящие в материальном мире, живой природе и человеческом обществе изучаются (или, по крайней мере, учитываются) всеми научными дисциплинами от философии до маркетинга. Возрастающая сложность задач научных исследований привела к необходимости привлечения к их решению больших коллективов ученых разных специальностей. Поэтому практически все рассматриваемые ниже теории являются междисциплинарными. Исторически сложилось так, что исследованием непосредственно информации занимаются две комплексных отрасли науки — кибернетика и информатика.

Современная кибернетика — это мульти дисциплинарная отрасль науки, исследующая сверхсложные системы, такие как:

Человеческое общество (социальная кибернетика);

Экономика (экономическая кибернетика);

Живой организм (биологическая кибернетика);

Человеческий мозг и его функция — сознание (искусственный интеллект).

Информатика, сформировавшаяся как наука в середине прошлого века, отделилась от кибернетики и занимается исследованиями в области способов получения, хранения, передачи и обработки семантической информации. Обе эти отрасли используют несколько основополагающих научных теорий. К ним относятся теория информации, и её разделы — теория кодирования, теория алгоритмов и теория автоматов. Исследования смыслового содержания информации основываются на комплексе научных теорий под общим названием семиотика.Теория информации — комплексная, в основном математическая теория, включающая в себя описание и оценки методов извлечения, передачи, хранения и классификации информации. Рассматривает носители информации как элементы абстрактного (математического) множества, а взаимодействия между носителями как способ расположения элементов в этом множестве. Такой подход дает возможность формально описать код информации, то есть определить абстрактный код и исследовать его математическими методами. Для этих исследований применяет методы теории вероятностей, математической статистики, линейной алгебры, теории игр и других математических теорий.

Основы этой теории заложил американский учёный Э. Хартли в 1928 г., который определил меру количества информации для некоторых задач связи. Позднее теория была существенно развита американским учёным К. Шенноном, российскими учёными А.Н. Колмогоровым, В.М Глушковым и др.Современная теория информации включает в себя как разделы теорию кодирования, теорию алгоритмов, теорию цифровых автоматов (см. ниже) и некоторые другие.Существуют и альтернативные теории информации, например "Качественная теория информации", предложенная польским учёным М. Мазуром.C понятием алгоритма знаком любой человек, даже не подозревая об этом. Вот пример неформального алгоритма:«Помидоры нарезать кружочками или дольками. Положить в них нашинкованный лук, полить растительным маслом, затем посыпать мелко нарезанным стручковым перцем, перемешать. Перед употреблением посыпать солью, уложить в салатник и украсить зеленью петрушки». (Салат из помидоров).

Первые в истории человечества правила решения арифметических задач были разработаны одним из известных учёных древности Аль - Хорезми в IX веке нашей эры. В его честь формализованные правила для достижения какой-либо цели называют алгоритмами.Предметом теории алгоритмов является нахождение методов построения и оценки эффективных (в том числе и универсальных) вычислительных и управляющих алгоритмов для обработки информации. Для обоснования таких методов теория алгоритмов использует математический аппарат теории информации.Современное научное понятие алгоритмов как способов обработки информации введено в работах Э. Поста и А. Тьюринга в 20-х годах ХХ века (Машина Тьюринга). Большой вклад в развитие теории алгоритмов внесли русские ученые А. Марков (Нормальный алгоритм Маркова) и А. Колмогоров.Теория автоматов — раздел теоретической кибернетики, в котором исследуются математические модели реально существующих или принципиально возможных устройств перерабатывающих дискретную информацию в дискретные моменты времени.

Понятие автомата возникло в теории алгоритмов. Если существуют некоторые универсальные алгоритмы решения вычислительных задач, то должны существовать и устройства (пусть и абстрактные) для реализации таких алгоритмов. Собственно, абстрактная машина Тьюринга, рассматриваемая в теории алгоритмов, является в то же время и неформально определённым автоматом. Теоретическое обоснование построения таких устройств является предметом теории автоматов.Теория автоматов использует аппарат математических теорий - алгебры, математической логики, комбинаторного анализа, теории графов, теории вероятностей и др.Теория автоматов вместе с теорией алгоритмов являются основной теоретической базой для создания электронных вычислительных машин и автоматизированных управляющих систем.Семиотика — комплекс научных теорий, изучающих свойства знаковых систем. Наиболее существенные результаты достигнуты в разделе семиотики — семантике. Предметом исследований семантики является смысловое содержание информации.

Знаковой системой считается система конкретных или абстрактных объектов (знаков, слов), с каждым из которых определенным образом сопоставлено некоторое значение. В теории доказано, что таких сопоставлений может быть два. Первый вид соответствия определяет непосредственно материальный объект, который обозначает это слово и называется денотат (или, в некоторых работах, - номинант). Второй вид соответствия определяет смысл знака (слова) и называется концепт. При этом исследуются такие свойства сопоставлений как «смысл», «истинность», «определимость», «следование», «интерпретация» и др. Для исследований используется аппарат математической логики и математической лингвистики.Идеи семантики, намеченные ещё Г. В. Лейбницем и Ф де Соссюром в XIX веке, сформулировали и развили Ч. Пирс (1839-1914), Ч. Моррис (р. 1901), Р. Карнап (1891-1970) и др.Основным достижением теории является создание аппарата семантического анализа, позволяющего представить смысл текста на естественном языке в виде записи на некотором формализованном семантическом (смысловом) языке.Семантический анализ является основой для создания устройств (программ) машинного перевода с одного естественного языка на другой.

Хранение информации осуществляется с помощью её переноса на некоторые материальные носители. Семантическая информация, зафиксированная на материальном носителе для хранения, называется документом. Хранить информацию человечество научилось очень давно. В наиболее древних формах хранения информации использовалось расположение предметов — раковин и камней на песке, узелков на верёвке. Существенным развитием этих способов явилась письменность — графическое изображение символов на камне, глине, папирусе, бумаге. Огромное значение в развитии этого направления имело изобретение книгопечатания. За свою историю человечество накопило огромный объём информации в библиотеках, архивах, периодических изданиях и других письменных документах.

В настоящее время особое значение получило хранение информации в виде последовательностей двоичных символов. Для реализации этих методов используются разнообразные запоминающие устройства. Они являются центральным звеном систем хранения информации. Кроме них в таких системах используются средства поиска информации (поисковая система), средства получения справок (информационно-справочные системы) и средства отображения информации (устройство вывода). Сформированные по назначению информации такие информационные системы образуют базы данных, банки данных и база знаний.

Передачей семантической информации называется процесс её пространственного переноса от источника к получателю (адресату). Передавать и получать информацию человек научился даже раньше, чем хранить её. Речь является способом передачи, который использовали наши далекие предки в непосредственном контакте (разговоре) — ею мы пользуемся и сейчас. Для передачи информации на большие расстояния необходимо использовать значительно более сложные информационные процессы.Для осуществления такого процесса информация должна быть некоторым образом оформлена (представлена). Для представления информации используются различные знаковые системы — наборы заранее оговоренных смысловых символов: предметов, картинок, написанных или напечатанных слов естественного языка. Представленная с их помощью семантическая информация о каком-либо объекте, явлении или процессе называется сообщением.

Очевидно, что для передачи сообщения на расстояние информация должна быть перенесена на какой-либо мобильный носитель. Носители могут перемещаться в пространстве с помощью транспортных средств, как это происходит с письмами, посылаемыми по почте. Такой способ обеспечивает полную достоверность передачи информации, поскольку адресат получает оригинал сообщения, однако требует значительного времени для передачи. С середины XIX века получили распространение способы передачи информации, использующие естественно распространяющийся носитель информации — электромагнитные колебания (электрические колебания, радиоволны, свет). Реализация этих способов требует:

Предварительного переноса информации, содержащейся в сообщении, на носитель — кодирования;

Обеспечения передачи полученного таким образом сигнала адресату по специальному каналу связи;

Обратного преобразования кода сигнала в код сообщения — декодирования.

Информация (Information) - это

Использование электромагнитных носителей делает доставку сообщения адресату почти мгновенной, однако требует дополнительных мер по обеспечению качества (достоверности и точности) передаваемой информации, поскольку реальные каналы связи подвержены воздействию естественных и искусственных помех. Устройства, реализующие процесс передачи данных, образуют системы связи. В зависимости от способа представления информации системы связи можно подразделять на знаковые ( , телефакс), звуковые (), видео и комбинированные системы (телевидение). Наиболее развитой системой связи в наше время является Интернет.

Обработка информации

Поскольку информация не материальна, её обработка заключается в различных преобразованиях. К процессам обработки можно отнести любые переносы информации с носителя на другой носитель. Информация, предназначенная для обработки, называется данными. Основным видом обработки первичной информации, полученной различными приборами, является преобразование в форму, обеспечивающую её восприятие органами чувств человека. Так, фотоснимки космоса, полученные в рентгеновских лучах, преобразуются в обычные цветные фотографии с использованием специальных преобразователей спектра и фотоматериалов. Приборы ночного видения преобразуют изображение, получаемое в инфракрасных (тепловых) лучах, в изображение в видимом диапазоне. Для некоторых задач связи и управления, необходимо преобразование аналоговой информации. Для этого используются аналого-цифровые и цифро-аналоговые преобразователи сигналов.

Важнейшим видом обработки семантической информации является определение смысла (содержания), заключающегося в некотором сообщении. В отличие от первичной семантическая информация не имеет статистических характеристик, то есть количественной меры — смысл либо есть, либо его нет. А сколько его, если он есть — установить невозможно. Содержащийся в сообщении смысл описывается на искусственном языке, отражающем смысловые связи между словами исходного текста. Словарь такого языка, называемый тезаурусом, находится в приемнике сообщения. Смысл слов и словосочетаний сообщения определяется путем их отнесения к определенным группам слов или словосочетаний, смысл которых уже установлен. Тезаурус, таким образом, позволяет установить смысл сообщения и, одновременно, пополняется новыми смысловыми понятиями. Описанный вид обработки информации применяется в информационно-поисковых системах и системах машинного перевода.

Одним из широко распространенных видов обработки информации является решение вычислительных задач и задач автоматического управления с помощью вычислительных машин. Обработка информации всегда производится с некоторой целью. Для её достижения должен быть известен порядок действий над информацией, приводящий к заданной цели. Такой порядок действий называется алгоритмом. Кроме самого алгоритма необходимо также некоторое устройство, реализующее этот алгоритм. В научных теориях такое устройство называется автоматом.Следует отметить как важнейшую особенность информации тот факт, что в силу несимметричности информационного взаимодействия при обработке информации возникает новая информация, а исходная информация не теряется.

Аналоговая и цифровая информация

Звук это волновые колебания в какой-либо среде, например в воздухе. Когда человек говорит, колебание связок горла преобразуются в волновые колебания воздуха. Если рассматривать звук не как волну, а как колебания в одной точке, то эти колебания можно представить, как изменяющееся во времени давление воздуха. С помощью микрофона можно уловить изменения давления и преобразовать их в электрическое напряжение. Произошло преобразование давления воздуха в колебания электрического напряжения.

Такое преобразование может происходить по различным законам, чаще всего преобразование происходит по линейному закону. Например, по такому:

U(t)=K(P(t)-P_0),

где U(t) - электрическое напряжение, P(t) - давление воздуха, P_0 - среднее давление воздуха, а K - коэффициент преобразования.

И электрическое напряжение, и давление воздуха являются непрерывными функциями во времени. Функции U(t) и P(t) являются информацией о колебаниях связок горла. Эти функции непрерывны и такая информация называется аналоговой.Музыка это частный случай звука и её тоже можно представить в виде какой-нибудь функции от времени. Это будет аналоговое представление музыки. Но музыку так же записывают в виде нот. Каждая нота имеет длительность кратную заранее заданной длительности, и высоту (до, ре, ми, фа, соль и т.д). Если эти данные преобразовать в цифры, то мы получим цифровое представление музыки.

Человеческая речь, так же является частным случаем звука. Её тоже можно представить в аналоговом виде. Но так же как музыку можно разбить на ноты, речь можно разбить на буквы. Если каждой букве дать свой набор цифр, то мы получим цифровое представление речи.Разница между аналоговой информацией и цифровой в том, что аналоговая информация непрерывна, а цифровая дискретна.Преобразование информации из одного вида в другой в зависимости от рода преобразования называют по-разному: просто «преобразование», например, цифро-аналоговое преобразование, или аналого-цифровое преобразование; сложные преобразования называют «кодированием», например, дельта-кодирование, энтропийное кодирование; преобразование между такими характеристиками, как амплитуда, частота или фаза называют «модуляцией», например амплитудно-частотная модуляция, широтно-импульсная модуляция.

Информация (Information) - это

Обычно, аналоговые преобразования достаточно просты и с ними легко справляются различные устройства изобретенные человеком. Магнитофон преобразует намагниченность на пленке в звук, диктофон преобразует звук в намагниченность на пленке, видеокамера преобразует свет в намагниченность на пленке, осцилограф преобразует электрическое напряжение или ток в изображение и т.д. Преобразование аналоговой информации в цифровую заметно сложнее. Некоторые преобразования машине совершить не удается или удается с большим трудом. Например, преобразование речи в текст, или преобразование записи концерта в ноты, и даже по природе своей цифровое представление: текст на бумаге очень тяжело машине преобразовать в тот же текст в памяти компьютера.

Информация (Information) - это

Зачем же тогда использовать цифровое представление информации, если оно так сложно? Основное приимущество цифровой информации перед аналоговой это помехозащищенность. То есть в процессе копирования информации цифровая информация копируется так как есть, её можно копировать практически бесконечное количество раз, аналоговая же информация в процессе копирования зашумляется, её качество ухудшается. Обычно аналоговую информацию можно копировать не более трех раз.Если у Вас есть двух-кассетный аудио-магнитофон, то можете произвести такой эксперимент, попробуйте переписать несколько раз с кассеты на кассету одну и ту же песню, уже через несколько таких перезаписей Вы заметите как сильно ухудшилось качество записи. Информация на кассете хранится в аналоговом виде. Музыку в формате mp3 Вы можете переписывать сколько угодно раз, и качество музыки от этого не ухудшается. Информация в файле mp3 хранится в цифровом виде.

Количество информации

Человек или какой нибудь другой приемник информации, получив порцию информации, разрешает некоторую неопределенность. Возьмем для примера все тоже дерево. Когда мы увидели дерево, то мы разрешили ряд неопределенностей. Мы узнали высоту дерева, вид дерева, плотность листвы, цвет листьев и, если это плодовое дерево, то мы увидели на нём плоды, насколько они созрели и т.п. До того как мы посмотрели на дерево, мы всего этого не знали, после того как мы посмотрели на дерево, мы разрешили неопределенность - получили информацию.

Если мы выйдем на луг и посмотрим на него, то мы получим информацию другого рода, насколько луг большой, как высока трава и какого цвета трава. Если на этот же самый луг выйдет биолог, то он помимо всего прочего сможет узнать: какие сорта трав растут на лугу, какого типа этот луг, он увидит какие цветы зацвели, какие только зацветут, пригоден ли луг для выпаса коров и т.п. То есть, он получит количество информации больше чем мы, так как у него, перед тем как он посмотрел на луг, было больше вопросов, биолог разрешит большее количество неопределенностей.

Информация (Information) - это

Чем большая неопределенность была разрешена в процессе получения информации, тем большее количество информации мы получили. Но это субъективная мера количества информации, а нам бы хотелось иметь объективную меру. Существует формула для расчета количества информации. Мы имеем некоторую неопределенность, и у нас существует N-ое количество случаев разрешения неопределенности, и каждый случай имеет некоторую вероятность разрешения, тогда количество полученной информации можно расчитать по следующей формуле, которую предложил нам Шеннон:

I = -(p_1 log_{2}p_1 + p_2 log_{2}p_2 +... +p_N log_{2}p_N), где

I - количество информации;

N - количество исходов;

p_1, p_2,..., p_N- вероятности исхода.

Информация (Information) - это

Количество информации измеряется в битах - сокращение от английских слов BInary digiT, что означает двоичная цифра.

Для равновероятных событий формулу можно упростить:

I = log_{2}N, где

I - количество информации;

N - количество исходов.

Возьмем, для примера, монету и бросим её на стол. Она упадет либо орлом, либо решкой. У нас есть 2 равновероятных события. После того, как мы бросили монетку, мы получили log_{2}2=1 бит информации.

Попробуем узнать сколько информации мы получим после того, как бросим кубик. У кубика шесть граней - шесть равновероятных событий. Получаем: log_{2}6 approx 2,6. После того, как мы бросили кубик на стол, мы получили приблизительно 2,6 бита информации.

Вероятность того, что мы увидим марсианского динозавра, когда выйдем из дома, равна одной десяти-миллиардной. Сколько информации мы получим о марсианском динозавре после того как выйдем из дома?

Left({{1 over {10^{10}}} log_2{1 over {10^{10}}} + left({ 1 - {1 over {10^{10}}}} ight) log_2 left({ 1 - {1 over {10^{10}}} } ight)} ight) approx 3,4 cdot 10^{-9} бита.

Предположим, что мы бросили 8 монет. У нас 2^8 вариантов падения монет. Значит после броска монет мы получим log_2{2^8}=8 бит информации.

Когда мы задаем вопрос и можем в равной вероятности получить ответ «да» или «нет», то после ответа на вопрос мы получаем один бит информации.

Удивительно, что если применить формулу Шеннона для аналоговой информации, то мы получим бесконечное количество информации. Например, напряжение в точке электрической цепи может принимать равновероятное значение от нуля до одного вольта. Количество исходов у нас равно бесконечности и, подставив это значение в формулу для равновероятных событий, мы получим бесконечность - бесконечное количество информации.

Сейчас я покажу, как закодировать «войну и мир» с помощью всего лишь одной риски на любом металлическом стержне. Закодируем все буквы и знаки, встречающиеся в «войне и мир», с помощью двухзначных цифр - их должно нам хватить. Например, букве «А» дадим код «00», букве «Б» - код «01» и так далее, закодируем знаки препинания, латинские буквы и цифры. Перекодируем «войну и мир» с помощью этого кода и получим длинное число, например, такое 70123856383901874..., пририсуем перед этим числом запятую и ноль (0,70123856383901874...). Получилось число от нуля до единицы. Поставим риску на металлическом стержне так, чтобы отношение левой части стержня к длине этого стержня равнялось как раз нашему числу. Таким образом, если вдруг нам захочется почитать «войну и мир», мы просто измерим левую часть стержня до риски и длину всего стержня, поделим одно число на другое, получим число и перекодируем его назад в буквы («00» в «А», «01» в «Б» и т.д.).

Информация (Information) - это

Реально такое проделать нам не удастся, так как мы не сможем определять длины с бесконечной точностью. Увеличивать точность измерения нам мешают некоторое инженерные проблемы, а квантовая физика нам показывает, что после определенного предела, нам уже будет мешать квантовые законы. Интуитивно нам понятно, что чем меньшая точность измерения, тем меньше информации мы получаем, и чем большая точность измерения, тем больше информации мы получаем. Формула Шеннона не подходит для измерения количества аналоговой информации, но для этого существуют другие методы, которые рассматриваются в «Теории информации». В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено - не намагничено, есть отверстие - нет отверстия, заряжено - не заряжено, отражает свет - не отражает свет, высокий электрический потенциал - низкий электрический потенциал. При этом одно состояние принято обозначать цифрой 0, а другое - цифрой 1. Последовательностью битов можно закодировать любую информацию: текст, изображение, звук и т.п.

Наравне с битом, часто используется величина называемая байтом, обычно она равна 8 битам. И если бит позволяет выбрать один равновероятный вариант из двух возможных, то байт - 1 из 256 (2^8). Для измерения количества информации также принято использовать более крупные единицы:

1 Кбайт (один килобайт) 210 байт = 1024 байта

1 Мбайт (один мегабайт) 210 Кбайт = 1024 Кбайта

1 Гбайт (один гигабайт) 210 Мбайт = 1024 Мбайта

Реально приставки СИ кило-, мега-, гига- должны использоваться для множителей 10^3, 10^6 и 10^9, соответственно, но исторически сложилась практика использования множителей со степенями двойки.

Бит по Шеннону и бит, который используется в компьютерной технике, совпадают, если вероятности появления нуля или единички в компьютерном бите равны. Если вероятности не равны, то количества информации по Шеннону становиться меньше, это мы увидели на примере марсианского динозавра. Компьютерное количество информации дает верхнюю оценку количества информации. Энергозависимая память после подачи на неё питания инициализируется обычно каким-то значением, например, все единички или все нули. Понятно, что после подачи питания на память, никакой информации там нет, так как значения в ячейках памяти строго определены, никакой неопределенности нет. Память может хранить в себе какое-то количество информации, но после подачи на неё питания никакой информации в ней нет.

Дезинформация — заведомо ложная информация, предоставляемая противнику или деловому партнёру для более эффективного ведения военных действий, сотрудничества, проверки на утечку информации и направление её утечки, выявление потенциальных клиентов чёрного рынка.Также дезинформацией (также дезинформированные) называется сам процесс манипулирования информацией, как то: введение кого-либо в заблуждение путём предоставления неполной информации или полной, но уже не нужной информации, искажения контекста, искажения части информации.

Цель такого воздействия всегда одна — оппонент должен поступить так, как это необходимо манипулятору. Поступок объекта, против которого направлена дезинформация, может заключаться в принятии нужного манипулятору решения или в отказе от принятия невыгодного для манипулятора решения. Но в любом случае конечная цель — это действие, которое будет предпринято оппонентом.

Дезинформация, таким образом, — это товар деятельности человека, попытка создать ложное впечатление и, соответственно подтолкнуть к желаемым действиям и/или бездействию.

Информация (Information) - это

Виды дезинформации:

Введение в заблуждение конкретного лица или группы лиц (в том числе и целой нации);

Манипулирование (поступками одного человека или группы лиц);

Создание общественного мнения относительно какой-то проблемы или объекта.

Информация (Information) - это

Введение в заблуждение — это не что иное, как прямой обман, предоставление ложной информации. Манипулирование — это способ воздействия, направленный непосредственно на изменение направления активности людей. Выделяют следующие уровни манипулирования:

Усиление существующих в сознании людей выгодных манипулятору ценностей (идей, установок);

Частичное изменение взглядов на то или иное событие или обстоятельство;

Кардинальное изменение жизненных установок.

Создание общественного мнения — это формирование в обществе определённого отношения к выбранной проблеме.

Источники и ссылки

ru.wikipedia.org - свободная энциклопедия Википедия

youtube.com - видеохостинг ютуб

images.yandex.ua - картинки яндекс

google.com.ua - картинки Гугл

ru.wikibooks.org - викиучебник

inf1.info - Планета Информатики

old.russ.ru - Русский Журнал

shkolo.ru - Информационный справочник

5byte.ru - Сайт информатики

ssti.ru - Информационные технологии

klgtu.ru - Информатика

informatika.sch880.ru - сайт учителя информатики О.В. Подвинцевой

Энциклопедия культурологии

Основное понятие кибернетики, точно так же экономическая И. основное понятие экономической кибернетики. Определений этого термина много, они сложны и противоречивы. Причина этого, очевидно, в том, что И. как явлением занимается… … Экономико-математический словарь


Wir verwenden Cookies für die beste Präsentation unserer Website. Wenn Sie diese Website weiterhin nutzen, stimmen Sie dem zu. OK

Понятие информации. Свойства информации. Информационные процессы: получение, передача, преобразование и хранение информации

Информация - одно из основных понятий науки. Наряду с такими понятиями, как вещество, энергия, пространство и время оно составляет основу современной научной картины мира. Его нельзя определить через более простые понятия.

Термин информация происходит от латинского слова informatio, что означает - разъяснение, сообщение, осведомленность.

Под информацией в быту (житейский аспект) понимают сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специальными устройствами.

Под информацией в технике понимают сообщения, передаваемые в форме знаков или сигналов.

Под информацией в теории информации понимают не любые сведения, а лишь те которые, снимают полностью или уменьшают существующую неопределенность. По определению К. Шеннона информация – это снятая неопределенность.

Под информацией в кибернетике, по определению Н. Винера понимают ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы.

Под информацией в семантической теории (смысл сообщения) понимают сведения, обладающие новизной.

Информация - это отражение внешнего мира с помощью знаков и сигналов.

Свойства информации , т.е. ее качественные признаки.

Объективность . Информация объективна, если она не зависит от чьего – либо мнения.

Достоверность . Информация достоверна, если она отражает истинное положение дел.

Полнота . Информацию можно считать полной, если ее достаточно для понимания и принятия решения.

Актуальность – важность, существенность для настоящего времени.

Адекватность – определенный уровень соответствия создаваемого с помощью полученной информации образа реальному объекту, процессу, явлению.

Информационные процессы

Обмен, хранение и обработка информации присущи живой природе, человеку, обществу, техническим устройствам. В системах различной природы действия с информацией: обмен, хранение, обработка - одинаковы. Эти действия называют ИНФОРМАЦИОННЫМИ ПРОЦЕССАМИ.

Рассмотрим более подробно различные виды информационных процессов между автоматом и автоматом (техническими устройствами).

Обмен информацией

Передачу и прием информации называют обменом информации. Передача информации между автоматами выполняется с использованием технических средств связи. Ретрансляционная вышка передает информацию, которую воспринимает блок приема телевизора. Радиостанция передает информацию, которую воспринимает блок приема радиоприемника. Видеомагнитофон передает информацию с видеокассеты на экран.

При обмене информацией нужны источник информации и приемник информации. Передаваемая от источника информация достигает приемника с помощью последовательности сигналов, которая называется СООБЩЕНИЕМ. Сигналы могут быть звуковыми, электрическими, электромагнитными и т.д. Информация может поступать непрерывно, а может и дискретно, то есть в виде последовательности сигналов, отделенных друг от друга временными или пространственными промежутками.

Преобразование информации

Обработка информации – преобразование информации из одного вида в другой, осуществляемое по строгим формальным правилам.

Обработка информации по принципу «черного ящика» - процесс, в котором пользователю важна и необходима лишь входная и выходная информация, но правила, по которым происходит преобразование, его не интересуют и не принимаются во внимание.

Возможность автоматизированной обработки информатизации основывается на том, что обработка информации не подразумевает ее осмысления.

Хранение информации

Информация для магнитофона, видеомагнитофона, киноаппарата хранится на специальных устройствах: аудиокассетах, видеокассетах, кинолентах. Устройство, предназначенное для хранения информации называют НОСИТЕЛЕМ информации. Носитель информации может быть разной природы: механический, магнитный, электрический. Носители информации различаются по форме представления информации, по принципу считывания, по типам материала.

Информация запоминается в виде сигналов или знаков. С помощью микрофона и других устройств магнитофона звуковая информация записывается на магнитную ленту, т.е. на магнитной ленте хранится информация. С помощью магнитной головки магнитофона информация считывается с магнитной ленты. Информация ЗАПИСЫВАЕТСЯ на носитель посредством изменения физических, химических или механических свойств окружающей среды. Запись и считывание информации осуществляется в результате физического воздействия с носителем информации записывающих и считывающих устройств.

Информация. Передача информации

Информация передаётся в форме сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними. Источник посылает передаваемое сообщение , которое кодируется в передаваемый сигнал . Этот сигнал посылается по каналу связи . В результате в приёмнике появляется принимаемый сигнал , который декодируется и становится принимаемым сообщением .

Примеры:

  1. Сообщение , содержащее информацию о прогнозе погоды, передаётся приёмнику (телезрителю) от источника – специалиста-метеоролога посредством канала связи – телевизионной передающей аппаратуры и телевизора.
  2. Живое существо своими органами чувств (глаз, ухо, кожа, язык и т.д.) воспринимает информацию из внешнего мира , перерабатывает её в определенную последовательность нервных импульсов, передает импульсы по нервным волокнам, хранит в памяти в виде состояния нейронных структур мозга, воспроизводит в виде звуковых сигналов, движений и т.п., использует в процессе своей жизнедеятельности.

Передача информации по каналам связи часто сопровождается воздействием помех , вызывающих искажение и потерю информации .

Свойства информации

Свойства информации:

Информация достоверна, если она отражает истинное положение дел . Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

Достоверная информация со временем может стать недостоверной , так как она обладает свойством устаревать , то есть перестаёт отражать истинное положение дел .

Информация полна, если её достаточно для понимания и принятия решений . Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки .

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п.

Ценность информации зависит от того, насколько она важна для решения задачи , а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека .

Только своевременно полученная информация может принести ожидаемую пользу . Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка .

Если ценная и своевременная информация выражена непонятным образом , она может стать бесполезной .

Информация становится понятной , если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по разному излагаются в школьных учебниках и научных изданиях.

Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, учебниках, всевозможных инструкциях.

Обработка информации

Обработка информации получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов

Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения объёма и разнообразия информации.

Средства обработки информации это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер универсальная машина для обработки информации.

Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов.

Живые организмы и растения обрабатывают информацию с помощью своих органов и систем.

Одна из важнейших тем по информатике. Она подробно рассматривается в школьной программе. Знания по теме информация и информационные процессы являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Они уже позволят вам с легкостью набрать 15 тестовых баллов (15%). Ниже подробным образом рассмотрены такие понятия, как измерение количества информации , алфавитный и вероятностный подходы для равновероятных и неравновероятных событий. На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. По каждой теме раздела, помимо подробного теоретического материала, представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас есть возможность скачать с файлообменника уже готовые подробные решения к данным задачам , иллюстрирующие различные способы получения верного ответа.

1.
2.
3.
4.
5.
6.

Информация

Информация - сведения, которые мы получаем из окружающего мира.

Информация - общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растительном мире; передача признаков от клетки к клетке, от организма к организму. В первоначальном и наиболее узком смысле, информация - атрибут мыслящих существ, людей: сведения, данные, факты, полученные из опыта, наблюдения или путем размышления, зафиксированные в материальной форме для сообщения другим мыслящим существам или самому себе. Любая информация с неизбежностью содержит два компонента - содержательный (имеет смысл, понятный тем, кому она предназначена) и материальный (должна быть представлена в осязаемой форме на том или ином физическом носителе).

Информатика - наука, изучающая свойства инфор­мации, а также способы представления, накопления, обработки и передачи информации с помощью техни­ческих средств.

Информация - знание того, что означают воспринятые сведения для данной личности". Это определение касается только семантического (смыслового) свойства информации, к тому же для конкретной личности.

    Формы существования мира:
  • вещество - многообразие материальных объектов;
  • энергия - взаимодействие объектов;
  • информация - сведения об окружающем мире.
    Рассмотрение информации в разных сферах деятельности:
  • Информация в быту - это сведения об окружающем мире и протекающих в нем процессах.
  • Информация в технике - это последовательности знаков и сигналов.
  • Информация в науке - мера уменьшения неопределенности знаний.
  • Информация в кибернетике - часть знаний для управления информационными процессами.
  • Информация в рамках семантической теории рассматривается, как нечто новое (новизна).
    Различение информации:
  • по способу восприятия: визуальная, аудиальная, тактильная, обонятельная, вкусовая;
  • по форме представления: текстовая, числовая, графическая, звуковая, комбинированная;
  • по общественному значению: общественная, личная, специальная и др.
    Свойства информации:
  • Объективность - независимость от мнения человека.

    Информация не зависит от чьего-либо мнения, суждения.

    Например, сообщение «На улице тепло» - субъективная информация, а сообщение «На улице 22°С» - объективная.

    Объективную информацию можно получить с помощью исправных датчиков, измерительных приборов. Но, отражаясь в сознании конкретного человека, она перестает быть объективной, так как преобразуется (в большей или меньшей степени) в зависимости от опыта, мнения, суждения и других качеств конкретного субъекта.

  • Полнота - достаточность для принятия решения.

    Информация является полной, если ее достаточно для принятия решения.

    Например, историческая информа­ция никогда не бывает полной и ее полнота уменьшает­ся по мере удаленности от нас исторической эпохи.

  • Достоверность - отражение истинного положения дел.

    Информация достоверна, если она отражает истин­ное положение дел.

    Объективная информация всегда достоверна, но достоверная информация может быть как объективной, так и субъективной. Основные механизмы получения недостоверной информации: 1. преднамеренное искажение (дезинформация); 2. искажение в результате помех («испорченный телефон»); 3. преувеличение или преуменьшение реального факта (слухи, рыбацкие и охотничьи истории и т.д.).

    Например, историческая или социально-политическая информация подвержена всем трем способам полу­чения и передачи недостоверной информации.

  • Адекватность - соответствие текущему моменту.

    Адекватность информации - это определенный уровень соответствия создаваемого с помощью полученной информации образа реальному объекту, процессу, явлению и т.п.

    В реальной жизни вряд ли возможна ситуация, когда вы сможете рассчитывать на полную адекватность информации. Всегда присутствует некоторая степень неопределенности. От степени адекватности информации реальному состоянию объекта или процесса зависит правильность принятия решений человеком.

    Пример: Вы успешно закончили школу и хотите продолжить образование по экономическому направлению. Поговорив с друзьями, вы узнаете, что подобную подготовку можно получить в разных вузах. В результате таких бесед вы получаете весьма разноречивые сведения, которые не позволяют вам принять решение в пользу того или иного варианта, т.е. полученная информация неадекватна реальному состоянию дел. Для того чтобы получить более достоверные сведения, вы покупаете справочник для поступающих в вузы, из которого получаете исчерпывающую информацию. В этом случае можно говорить, что информация, полученная вами из справочника, адекватно отражает направления обучения в вузах и помогает вам определиться в окончательном выборе.

    Возможность и эффективность использования информации обусловливаются такими основными ее потребительскими показателями качества, как репрезентативность, содержательность, достаточность, доступность, актуальность, своевременность, точность, достоверность, устойчивость.

  • Доступность - возможность получения.

    Доступность (информации [ресурсов автоматизированной информационной системы]) (англ. availability) - состояние информации (ресурсов автоматизированной информационной системы), при котором субъекты, имеющие право доступа, могут реализовывать их беспрепятственно.

    К правам доступа относятся: право на чтение, изменение, копирование, уничтожение информации, а также права на изменение, использование, уничтожение ресурсов.

  • Актуальность - важность в данный момент.

    Актуальность информации - это ее важность, существенность для настоящего времени.

    Своевременность информации играет важную роль в объективной оценке ситуации и в процессе принятия решения.

    Причины неактуальности информации:

    1. Устаревание;
    2. Ненужность, бесполезность.

Информационные процессы

Информационные процессы - действия, совершаемые над информацией.

    Информационные процессы:
  • Обработка информации (перевод информации из одного вида в другой по определенным правилам).
  • Хранение информации.
  • Передача информации.

Сбор информации - поиск и отбор по каким-либо критериям.

    Способы сбора информации:
  • Автоматизированный (с измерительными приборами).
  • Механизированный (без измерительных приборов).
  • Автоматический (используются датчики, счетчики и др. Человек выступает в роли наблюдателя).
    Поиск информации:
  • Наблюдение.
  • Общение со специалистами.
  • Литература.
  • Телевидение.
  • Радио.
  • Банки и базы данных и т.д.
    Систематизация информации:
  • Библиотеки данных.
  • Фото и видео архивы/альбомы и др.

Кодирование информации - преобразование одного набора знаков в другой.

Регистрация - фиксирование на носителе.

Данные - зарегистрированные сигналы.

Носитель - устройство, предназначенное для хранения и передачи информации.

    Виды носителей:
  • Человекочитаемые.
  • Машиночитаемые.

Хранение - помещение информации в хранилище для последующего извлечения и использования.

    Память:
  • Внутренняя.
  • Внешняя
    Память:
  • Долговременная.
  • Оперативная.

Общая схема передачи информации:

Измерение количества информации

Человек воспринимает информацию в аналоговой форме, т.е. непрерывным потоком. В компьютере же информация обрабатывается в дискретной или цифровой форме. Отсюда и название процесса дискретизации, т.е. разбиения потока информации на отдельные сигналы, последовательности сигналов. Цифровой сигнал состоит из нескольких дискретных потоков.

Бит - минимальная единица информации.

Байт - основная единица информации.

Ниже приведена таблица единиц измерения информации:

Название Символ Множитель
Килобайт KB 2 10
Мегабайт MB 2 20
Гигабайт GB 2 30
Терабайт TB 2 40
Петабайт PB 2 50
Эксабайт EB 2 60
Зеттабайт ZB 2 70
Йоттабайт YB 2 80

Эта таблица используется для перевода "больших" единиц измерения в байты.

1байт = 2 3 бит = 8бит.

К примеру: 2Кб = 2*2 10 байт = 2*2 13 бит = 2 14 бит = 16384бит. (2 10 = 1024).

Для расчета вероятности отдельного события (pi) используют следующую формулу:

    В этой формуле:
  • N i - количество определенных событий.
  • p i
  • N - количество возможных событий.

Существует формула для расчета количества информации об одном событии из множества:

    В этой формуле:
  • I i - количество информации об одном событии.
  • p i - вероятность отдельного события.

Задачи по теме "".

Более сложные задачи по теме "".


Использование алфавитного подхода полностью оправдывает себя при использовании технических средств работы с информацией. В этом случае теряют смысл понятия «новые - старые», «понятные - непонятные» сведения. Этот способ не связывает количество информации с содержанием сообщения.

Используя алфавитный подход в определении информации , для нас становится важным длина кода. Если раньше мы не учитывали длину ответа, то при использовании алфавитного подхода это приобретает значение. При подсчете количества информации для нас имеет вес каждый знак в коде, каждая буква в сообщении.

Алфавитный подход - объективный способ измерения информации в отличие от субъективного вероятностного подхода.

При алфавитном подходе не рассматривается содержание информации, а сообщения рассматриваются как последовательности знаков определенных знаковых систем.

    Языки:
  • Естественные (например, биологический).
  • Формальные (используются созданные человеком системы знаков, символов).

Для записи сообщения на формальном языке используется определенный алфавит. Согласно алфавитному подходу количество различных символов, используемых в данном алфавите - мощность алфавита (N) может быть найдена по следующей формуле:


    В этой формуле:
  • N - мощность алфавита.
  • i - информационный вес одного символа.

Отсюда можем выразить информационный вес одного символа (i):


Информационная емкость сообщения при алфавитном подходе может быть найдена по следующей формуле:

    В этой формуле:
  • I - количество информации, содержащееся в сообщении.
  • k - количество символов в сообщении.

Задачи по теме "".

Более сложные задачи по теме "Алфавитный подход к измерению информации".

Как решать логарифмы

По просьбам "трудящихся" выкладываю небольшое и, на мой взгляд, достаточно простое объяснение того, как решать log.

Итак, разберем тему на простом примере: i=log 2 N.

Фактически, эта формула отвечает на вопрос: "Как найти i из формулы N=2 i ".

Таким образом, когда мы видим запись i=log 2 N, мы должны проговорить: "в какую степень нужно возвести 2, чтобы получить N? Эта степень - и есть Ваш ответ, т.е. если N=4, то i=2 (потому что 2 в квадрате равно 4)".

Разберем еще пару примеров на эту тему:

    Вычислить:
  1. i=log 2 16.
  2. i=log 3 81.
  3. I=log 2 (1/4).
  4. I=log 5 (1/125).
    Решение:
  1. В какую степень нужно возвести 2, чтобы получить 16? - в 4 (2*2*2*2=2 4 =16). Ответ: i=4.
  2. В какую степень нужно возвести 3, чтобы получить 81? - в 4 (3*3*3*3=3 4 =81). Ответ: i=4.
  3. В какую степень нужно возвести 2, чтобы получить 1/4? - в -2
    (Помни: a -x =1/a x . 1/(2*2)=2 -2 =1/4).
    Ответ: I=-2.
  4. В какую степень нужно возвести 5, чтобы получить 1/125? - в -3 (1/(5*5*5)=5 -3 =1/125). Ответ: I=-3.

Задачи и решения

Время перейти к решению возможных задач по теме ""...

Сюда включены и несколько "необычные" задачи (ведь кодирование не обязательно должно быть двоичным...). Однако отличие состоит лишь в количестве различных сигналов, поэтому их решение сводится к похожим формулам.

    1. Выберите правильные определения термина «бит»:
  • Бит – минимальная единица измерения информации.
  • Бит - количество информации, равное одной восьмой части байта.
  • Бит – это количество информации, которое уменьшает неопределенность знаний в два раза.
  • Бит может принимать только два значения – 0 или 1.
  • Бит - основная единица измерения информации.
  • Бит – количество информации, необходимое для передачи сообщения «Да»/«Нет».

Замечание: если ответ в задаче получается не целый, то выберите следующее целое число (пример: если получается 2,16 бит, ответ: 3 бита).

2. Загадали число от 1 до 8. Какое количество информации в сообщении о том, какое число загадано (в битах)?

3. Бросили шестигранный игральный кубик. Какое количество информации в сообщении о том, какое число выпало на кубике?

4. Загадали число от 1 до 100. Загадавший человек на все вопросы отвечает «Да» или «Нет». Какое наименьшее количество вопросов нужно задать, чтобы гарантированно угадать число?

5. Для обмена сообщениями используют последовательности символов одинаковой длины, состоящие только из символов «А» «B». Какова быть минимальная длина этих последовательностей, чтобы каждая из них кодировала любое из 50 различных сообщений?

6. Световое табло состоит из лампочек, каждая из которых может находиться в двух состояниях («включена» или «выключена»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 200 различных сигналов?

7. Эллочка-людоедка (в лексиконе которой, как известно, было 30 слов) произносит фразу, состоящую из 50 слов. Какое количество информации в битах сообщает Эллочка?

8. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем в битах сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

9. Репетиционный экзамен в школе сдают 125 человек. Каждому из них выделяют специальный номер. При регистрации участника для записи его номера используют минимально возможное количество бит, одинаковое для каждого участника. Каков объем информации в битах, записанный устройством, после регистрации 60 участников?

10. Для передачи секретного сообщения используют код, состоящий из десятичных цифр. При этом все цифры кодируются одним и тем же (минимально возможным) количеством бит. Определите информационный объем в битах такого сообщения длиной в 150 символов.

11. Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100 процентов, которое записывается при помощи минимального возможного количества бит. Станция сделала 80 измерений. Определите информационный объем в битах результатов измерения.

12. Для записи результатов детской игры «Зарница» используется таблица, в каждой клетке которой записано либо количество баллов, полученных командой в соответствующем виде состязаний (1, 2, 3), либо прочерк (если команда в этом виде соревнований не участвовала). В «Зарнице» соревнуются 30 команд в 10 видах соревнований. Какое количество информации в битах содержит таблица?

13. Вася передает Пете сообщение, состоящее только из символов (заглавных и строчных) латинского алфавита, пробелов и знаков препинания (. , ! ?) за 2мин. Сообщение состоит из 200 символов. Какова скорость передачи информации (бит в секунду)?

14. Вождь племени, в лексиконе которого всего 64 различных слова, произносит пламенную речь перед своими соплеменниками, состоящую из 100 слов в течение 2мин. Какова скорость передачи информации (бит в секунду)?

15. Флажковый сигнальщик использует для передачи сообщения 36 различных жестов. Сообщение, состоящее из 50 жестов, сигнальщик передает за 30 секунд. Какова скорость передачи сообщения (бит в секунду)?

16. Сколько килобайт информации содержит сообщение объемом 224 бит?

17. Сколько килобит информации содержит сообщение объемом 214 байт?

18. Во время передачи кабельного телевидения система собирает информацию от телезрителей относительно фильма, который они хотели бы посмотреть. На выбор предлагается 4 фильма. Для кодирования каждого пожелания используется минимально возможное количество бит. Всего высказали свое мнение 102400 телезрителей. Какое количество килобайт должна проанализировать система?

19. Скорость передачи данных через ADSL-соединение равна 128000 бит/с. Через данное соединение передают файл размером 625Кбайт. Определите время передачи файла в секундах.

20. Саша хочет скачать из Интернета видеоролик объемом 240Мбит. Скорость скачивания ограничена 16 килобайтами в секунду. Сколько минут потребуется Саше?

21. Через канал связи со скоростью 64 килобайта в секунду передают файл в течение 10 минут. Из скольких мегабайт состоит файл?

22. Скорость передачи данных через ADSL-соединение равна 256000 бит/с. Через данное соединение передают файл за 2 минуты. Определите информационный вес файла в килобайтах.

23. Световое табло состоит из лампочек. Каждая лампочка может находиться в одном из трех состояний («включено», «выключено» или «мигает»). Какое наименьшее количество ламп должно находиться на табло, чтобы с его помощью можно было передать 27 различных сигналов?

24. Азбука Морзе позволяет кодировать символы для радиосвязи, задавая комбинацию точек и тире. Сколько различных символов можно закодировать, используя код Морзе длиной не менее пяти и не более шести сигналов?

25. Вася и Петя передают друг другу сообщения, используя синий, красный и зеленый фонарики. Это они делают, включая по одному фонарику на одинаково короткое время в некоторой последовательности. Количество вспышек в одном сообщении – 3 или 4. Между сообщениями – паузы. Сколько различных сообщений могут передавать мальчики?

26. Для передачи 300 различных сообщений используют 5 последовательных цветовых вспышек. Цветовые лампы включаются на одинаково короткое время в некоторой последовательности. Лампы скольких различных цветов должно использоваться при передаче (минимальное количество)?

27. Для передачи 1000 различных сообщений используют 5 последовательных цветовых вспышек. Цветовые лампы включаются на одинаково короткое время в некоторой последовательности. Лампы скольких различных цветов должно использоваться при передаче (минимальное количество)?

28. В озере плавает 12500 окуней, 25000 пескарей, 6250 карасей и 6250 щук. Какое количество информации мы получим, когда поймаем какую–нибудь рыбу?

Замечание: все «отдельные вероятности» должны давать в сумме 1.

29. После экзамена по информатике объявляются оценки («2», «3», «4» или «5»). Какое количество информации несет сообщение об оценке учащегося А, который выучил лишь половину билетов, и сообщение об оценке учащегося Б, выучившего все билеты?

30. В княжестве есть только черные, белые и серые автомобили. Белых автомобилей 18. Сообщение о том, что в аварию попал черный автомобиль, несет 7бит информации. Сообщение о том, что в аварию попал не серый автомобиль, несет 5бит информации. Сколько черных автомобилей в княжестве?

Статьи по теме: