Контроллер заряда li ion аккумулятора 5 вольт. Защита литий-ионных аккумуляторов (контроллер защиты Li-ion)

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Покупался лот из десяти штук, для переделки питания кое-каких устройств на li-ion аккумуляторы (сейчас в них используется 3АА аккумулятора ), но в обзоре я покажу другой вариант применения этой платы, который, хоть и не задействует все её возможности. Просто из этих десяти штук нужны только будут только шесть, а покупать поштучно 6 с защитой и пару без защиты получается менее выгодно.

Основанная на TP4056 плата заряда с защитой для Li-Ion аккумуляторов c током до 1A предназначена для полноценной зарядки и защиты аккумуляторов (к примеру, популярных 18650 ) с возможностью подключения нагрузки. Т.е. данную плату можно легко встроить в различные устройства, такие как фонарики, светильники, радиоприемники и т.д.,с питанием от встроенного литиевого аккумулятора, и заряжать его не вынимая из устройства любой USB-зарядкой через microUSB разъем. Ещё эта плата отлично подойдет для ремонта сгоревших зарядок Li-Ion аккумуляторов.

И так, кучка плат, каждая в индивидуальном пакетике (тут уже конечно меньше чем покупалось )

Выглядит платка вот так:

Можно рассмотреть поближе установленные элементы

Слева microUSB вход питания, питание также продублировано площадками + и - под пайку.

В центре контроллер заряда, Tpower TP4056, над ним пара светодиодов, отображающих либо процесс заряда (красный) либо окончание заряда (синий), под ним резистор R3, изменяя номинал которого можно изменить ток заряда аккумулятора. TP4056 заряжает аккмуляторы по алгоритму CC/CV и автоматически завершает процесс зарядки, если ток заряда снижается до 1/10 от установленного.

Табличка номиналов сопротивления и зарядного тока, согласно спецификации контроллера.


  • R (кОм) - I (mA)

  • 1.2 - 1000

  • 1.33 - 900

  • 1.5 - 780

  • 1.66 - 690

  • 2 - 580

  • 3 - 400

  • 4 - 300

  • 5 - 250

  • 10 - 130

правее стоит микросхема защиты аккумулятора (DW01A), с необходимой обвязкой (электронный ключ FS8205A 25мОм с током до 4А), и на правом краю есть площадки B+ и B- (будьте внимательны, возможна плата не защищена от переполюсовки ) для подключения аккумулятора и OUT+ OUT- для подключения нагрузки.

С обратной стороны платы нет ничего, так что её можно, например, приклеить.

А теперь вариант применения платы заряда и защиты li-ion аккумуляторов.

Ныне почти во всех видеокамерах любительского формата в качестве источников питания используются li-ion аккумуляторы напряжением 3,7В, т.е. 1S. Вот один из дополнительно купленных аккумуляторов для моей видеокамеры


У меня их несколько, производства (или маркировки ) DSTE модель VW-VBK360 емкостью по 4500мАч (не считая оригинального, на 1790мАч )

Зачем мне столько? Да, конечно, моя камера заряжается от БП с номиналами 5В 2А, и купив отдельно штекер USB и подходящий разъем, я теперь могу её заряжать и от повербанков (и это одна из причин зачем мне, и не только мне, их столько ), да вот только снимать на камеру, к которой ещё и тянется провод - неудобно. Значит надо как-то заряжать аккумуляторы вне камеры.

Я уже показывал в вот такую зарядку

Да-да, это она, с поворачивающейся вилкой американского стандарта

Вот так она легко разделяется

И вот так, в неё вживляется плата заряда и защиты литиевых аккумуляторов

И конечно же, я вывел пару светодиодов, красный - процесс заряда, зеленый - окончание заряда аккумулятора

Вторая плата была установлена аналогично, в зарядку от видеокамеры Sony. Да, конечно, новые модели видеокамер Sony заряжаются от USB, у них даже есть не отсоединяющийся USB-хвостик (глупое на мой взгляд решение ). Но опять же, в полевых условиях, снимать на камеру, к которой тянется кабель от повербанка менее удобно чем без него. Да и кабель должен быть достаточно длинным, а чем длиннее кабель, тем больше его сопротивление и тем больше на нем потери, а уменьшать сопротивление кабеля увеличивая толщину жил, кабель становится более толстым и менее гибким, что не добавляет удобства.

Так что из таких плат для заряда и защиты li-ion аккумуляторов до1А на TP4056 легко можно сделать простое зарядное устройство для аккумулятора своими руками, переделать зарядное устройство на питание от USB, например для зарядки аккумуляторов от повербанка, сделать ремонт зарядного устройства при необходимости.

Все написанное в этом обзоре можно увидеть в видеоверсии:

Не секрет, что Li-ion аккумуляторы не любят глубокого разряда. От этого они хиреют и чахнут, а также увеличивают внутреннее сопротивление и теряют емкость. Некоторые экземпляры (те, которые с защитой) могут даже погрузиться в глубокую спячку, откуда их довольно проблематично вытаскивать. Поэтому при использовании литиевых аккумуляторов необходимо как-то ограничить их максимальный разряд.

Для этого применяют специальные схемы, отключающие батарею от нагрузки в нужный момент. Иногда такие схемы называют контроллерами разряда.

Т.к. контроллер разряда не управляет величиной тока разряда, он, строго говоря, никаким контроллером не является. На самом деле это устоявшееся, но некорректное название схем защиты от глубокого разряда.

Вопреки распространенному мнению, встроенные в аккумуляторы (PCB-платы или PCM-модули) не предназначены ни для ограничения тока заряда/разряда, ни для своевременного отключения нагрузки при полном разряде, ни для корректного определения момента окончания заряда.

Во-первых, платы защиты в принципе не способны ограничивать ток заряда или разряда. Этим должно заниматься ЗУ. Максимум, на что они способны - это вырубить аккумулятор при коротком замыкании в нагрузке или при его перегреве.

Во-вторых, большинство модулей защиты отключают li-ion батарею при напряжении 2.5 Вольта или даже меньше. А для подавляющего большинства аккумуляторов - это ооооочень сильный разряд, такого вообще нельзя допускать.

В-третьих, китайцы клепают эти модули миллионами... Вы правда верите, что в них используются качественные прецизионные компоненты? Или что их кто-то там тестирует и настраивает перед установкой в аккумуляторы? Разумеется, это не так. При производстве китайских плат неукоснительно соблюдается лишь один принцип: чем дешевле - тем лучше. Поэтому если защита будет отключать АКБ от зарядного устройства точно при 4.2 ± 0.05 В, то это, скорее, счастливая случайность, чем закономерность.

Хорошо, если вам достался PCB-модуль, который будет срабатывать чуть раньше (например, при 4.1В). Тогда аккумулятор просто не доберет с десяток процентов емкости и все. Гораздо хуже, если аккумулятор будет постоянно перезаряжаться, например, до 4.3В. Тогда и срок службы сокращается и емкость падает и, вообще, может вспухнуть.

Использовать встроенные в литий-ионный аккумуляторы платы защиты в качестве ограничителей разряда НЕЛЬЗЯ! И в качестве ограничителей заряда - тоже. Эти платы предназначены только для аварийного отключения аккумулятора при возникновении нештатных ситуаций.

Поэтому нужны отдельные схемы ограничения заряда и/или защиты от слишком глубокого разряда.

Простые зарядные устройства на дискретных компонентах и специализированных интегральных схемах мы рассматривали в . А сегодня поговорим о существующих на сегодняшний день решениях, позволяющих оградить литиевый аккумулятор от слишком большого разряда.

Для начала предлагаю простую и надежную схему защиты Li-ion от переразряда, состоящую всего из 6 элементов.

Указанные на схеме номиналы дадут приведут к отключению аккумуляторов от нагрузки при снижении напряжения до ~10 Вольт (я делал защиту для 3х последовательно включенных аккумуляторов 18650, стоящих в моем металлоискателе). Вы можете задать свой собственный порог отключения путем подбора резистора R3.

К слову сказать, напряжение полного разряда Li-ion аккумулятора составляет 3.0 В и никак не меньше.

Полевик (такой как в схеме или ему подобный) можно выколупать из старой материнской платы от компа, обычно их там сразу несколько штук стоит. ТЛ-ку, кстати, тоже можно взять оттуда же.

Конденсатор С1 нужен для первоначального запуска схемы при включении выключателя (он кратковременно подтягивает затвор Т1 к минусу, что открывает транзистор и запитывает делитель напряжения R3,R2). Далее, после заряда С1, нужное для отпирания транзистора напряжение поддерживается микросхемой TL431.

Внимание! Указанный на схеме транзистор IRF4905 отлично будет защищать три последовательно включенных литий-ионных аккумулятора, но совершенно не подойдет для защиты одной банки напряжением 3.7 Вольта. О том, как самому определить подходит полевой транзистор или нет, говорится .

Минус данной схемы: в случае КЗ в нагрузке (или слишком большого потребляемого тока), полевой транзистор закроется далеко не сразу. Время реакции будет зависеть от емкости конденсатора С1. И вполне возможно, что за это время что-нибудь успеет как следует выгореть. Схема, мгновенно реагирующая на коротыш в нагрузке, представлена ниже:

Выключатель SA1 нужен для "перезапуска" схемы после срабатывания защиты. Если конструкция вашего прибора предусматривает извлечение аккумулятора для его зарядки (в отдельном ЗУ), то этот выключатель не нужен.

Сопротивление резистора R1 должно быть таким, чтобы стабилизатор TL431 выходил на рабочий режим при минимальном напряжении аккумулятора - его подбирают таким образом, чтобы ток анод-катод был не меньше 0.4 мА. Это порождает еще один недостаток данной схемы - после срабатывания защиты схема продолжает потреблять энергию от батареи. Ток хоть и небольшой, но его вполне достаточно, чтобы полностью высосать небольшой аккумулятор за какие-то пару-тройку месяцев.

Приведенная ниже схема самодельного контроля разряда литиевых аккумуляторов лишена указанного недостатка. При срабатывании защиты потребляемый устройством ток настолько мал, что мой тестер его даже не обнаруживает.

Ниже представлен более современный вариант ограничителя разряда литиевого аккумулятора с применением стабилизатора TL431. Это, во-первых, позволяет легко и просто выставить нужный порог срабатывания, а во-вторых, схема имеет высокую температурную стабильность и четкость отключения. Хлоп и все!

Достать ТЛ-ку сегодня вообще не проблема, они продаются по 5 копеек за пучок. Резистор R1 устанавливать не нужно (в некоторых случаях он даже вреден). Подстроечник R6, задающий напряжение срабатывания, можно заменить цепочкой из постоянных резисторов, с подобранными сопротивлениями.

Для выхода из режима блокировки, нужно зарядить аккумулятор выше порога срабатывания защиты, после чего нажать кнопку S1 "Сброс".

Неудобство всех вышеприведенных схем заключается в том, что для возобновления работы схем после ухода в защиту, требуется вмешательство оператора (включить-выключить SA1 или нажать кнопочку). Это плата за простоту и низкое потребление энергии в режиме блокировки.

Простейшая схема защиты li-ion от переразряда, лишенная всех недостатков (ну почти всех) показана ниже:

Принцип действия этой схемки очень похож на первые две (в самом начале статьи), но здесь нет микросхемы TL431, а поэтому собственный ток потребления можно уменьшить до очень небольших значений - порядка десяти микроампер. Выключатель или кнопка сброса также не нужны, схема автоматически подключит аккумулятор к нагрузке как только напряжение на нем превысит заданное пороговое значение.

Конденсатор С1 подавляет ложные срабатывание при работе на импульсную нагрузку. Диоды подойдут любые маломощные, именно их характеристики и количество определяют напряжение срабатывания схемы (придется подобрать по месту).

Полевой транзистор можно использовать любой подходящий n-канальный. Главное, чтобы он не напрягаясь выдерживал ток нагрузки и умел открываться при низком напряжении затвор-исток. Например, P60N03LDG, IRLML6401 или аналогичные (см. ).

Вышеприведенная схема всем хороша, но имеется один неприятный момент - плавное закрытие полевого транзистора. Это происходит из-за пологости начального участка вольт-амперной характеристики диодов.

Устранить этот недостаток можно с помощью современной элементной базы, а именно - с помощью микромощных детекторов напряжения (мониторов питания с экстремально низким энергопотреблением). Очередная схема защиты лития от глубокого разряда представлена ниже:

Микросхемы MCP100 выпускается как в DIP-корпусе, так и в планарном исполнении. Для наших нужд подойдет 3-вольтовый вариант - MCP100T-300i/TT . Типовой потребляемый ток в режиме блокировки - 45 мкА. Стоимость мелким оптом порядка 16 руб/шт .

Еще лучше вместо MCP100 применить монитор BD4730 , т.к. у него выход прямой и, следовательно, нужно будет исключить из схемы транзистор Q1 (выход микросхемы соединить напрямую с затвором Q2 и резистором R2, при этом R2 увеличить до 47 кОм).

В схеме применяется микроомный p-канальный MOSFET IRF7210 , без проблем коммутирующий токи в 10-12 А. Полевик полностью открывается уже при напряжении на затворе около 1.5 В, в открытом состоянии имеет ничтожное сопротивление (менее 0.01 Ом)! Короче, очень крутой транзистор. А, главное, не слишком дорогой.

По-моему, последняя схема наиболее близка к идеалу. Если бы у меня был неограниченный доступ к радиодеталям, я бы выбрал именно ее.

Небольшое изменение схемы позволяет применить и N-канальный транзистор (тогда он включается в минусовую цепь нагрузки):

Мониторы (супервизоры, детекторы) питания BD47xx - это целая линейка микросхем с напряжением срабатывания от 1.9 до 4.6 В с шагом 100 мВ, так что можно всегда подобрать под ваши цели.

Небольшое отступление

Любую из вышеприведенных схем можно подключить к батарее из нескольких аккумуляторов (после некоторой подстройки, конечно). Однако, если банки будут иметь отличающуюся емкость, то самый слабый из аккумуляторов будет постоянно уходить в глубокий разряд задолго до того, как схема будет срабатывать. Поэтому в таких случаях всегда рекомендуется использовать батареи не только одинаковой емкости, но и желательно из одной партии.

И хотя в моем металлодетекторе такая защита работает без нареканий уже года два, все же гораздо правильнее было бы следить за напряжением на каждом аккумуляторе персонально.

Всегда используйте свой персональный контроллер разряда Li-ion аккумулятора на каждую банку. Тогда любая ваша батарея будет служить долго и счастливо.

О том, как подобрать подходящий полевой транзистор

Во всех вышеприведенных схемах защиты литий-ионных аккумуляторов от глубокого разряда применяются MOSFETы, работающие в ключевом режиме. Такие же транзисторы обычно используются и в схемах защиты от перезаряда, защиты от КЗ и в других случаях, когда требуется управление нагрузкой.

Разумеется, для того, чтобы схема работала как надо, полевой транзистор должен удовлетворять определенным требованиям. Сначала мы определимся с этими требованиями, а затем возьмем парочку транзисторов и по их даташитам (по техническим характеристикам) определим, подходят они нам или нет.

Внимание! Мы не будем рассматривать динамические характеристики полевых транзисторов, такие как скорость переключения, емкость затвора и максимальный импульсный ток стока. Указанные параметры становятся критично важными при работе транзистора на высоких частотах (инверторы, генераторы, шим-модуляторы и т.п.), однако обсуждение этой темы выходит за рамки данной статьи.

Итак, мы должны сразу же определиться со схемой, которую хотим собрать. Отсюда первое требование к полевому транзистору - он должен быть подходящего типа (либо N- либо P-канальный). Это первое.

Предположим, что максимальный ток (ток нагрузки или ток заряда - не важно) не будет превышать 3А. Отсюда вытекает второе требование - полевик должен длительное время выдерживать такой ток .

Третье. Допустим наша схема будет обеспечивать защиту аккумулятора 18650 от глубокого разряда (одной банки). Следовательно мы можем сразу же определиться с рабочими напряжениями: от 3.0 до 4.3 Вольта. Значит, максимальное допустимое напряжение сток-исток U ds должно быть больше, чем 4.3 Вольта.

Однако последнее утверждение верно только в случае использования только одной банки литиевого аккумулятора (или нескольких включенных параллельно). Если же для питания вашей нагрузки будет задействована батарея из нескольких последовательно включенных аккумуляторов, то максимальное напряжение сток-исток транзистора должно превышать суммарное напряжение всей батареи .

Вот рисунок, поясняющий этот момент:

Как видно из схемы, для батареи из 3х последовательно включенных аккумуляторов 18650 в схемах защиты каждой банки необходимо применять полевики с напряжением сток-исток U ds > 12.6В (на практике нужно брать с некоторым запасом, например, в 10%).

В то же время, это означает, что полевой транзистор должен уметь полностью (или хотя бы достаточно сильно) открываться уже при напряжении затвор-исток U gs менее 3 Вольт. На самом деле, лучше ориентироваться на более низкое напряжение, например, на 2.5 Вольта, чтобы с запасом.

Для грубой (первоначальной) прикидки можно глянуть в даташите на показатель "Напряжение отсечки" (Gate Threshold Voltage ) - это напряжение, при котором транзистор находится на пороге открытия. Это напряжение, как правило, измеряется в момент, когда ток стока достигает 250 мкА.

Понятно, что эксплуатировать транзистор в этом режиме нельзя, т.к. его выходное сопротивление еще слишком велико, и он просто сгорит из-за превышения мощности. Поэтому напряжение отсечки транзистора должно быть меньше рабочего напряжения схемы защиты . И чем оно будет меньше, тем лучше.

На практике для защиты одной банки литий-ионного аккумулятора следует подбирать полевой транзистор с напряжением отсечки не более 1.5 - 2 Вольт.

Таким образом, главные требования к полевым транзисторам следующие:

  • тип транзистора (p- или n-channel);
  • максимально допустимый ток стока;
  • максимально допустимое напряжение сток-исток U ds (вспоминаем, как будут включены наши аккумуляторы - последовательно или параллельно);
  • низкое выходное сопротивление при определенном напряжение затвор-исток U gs (для защиты одной банки Li-ion следует ориентироваться на 2.5 Вольта);
  • максимально допустимая мощность рассеивания.

Теперь давайте на конкретных примерах. Вот, например, в нашем распоряжении имеются транзисторы IRF4905, IRL2505 и IRLMS2002. Взглянем на них поближе.

Пример 1 - IRF4905

Открываем даташит и видим, что это транзистор с каналом p-типа (p-channel). Если нас это устраивает, смотрим дальше.

Максимальный ток стока - 74А. С избытком, конечно, но подходит.

Напряжение сток-исток - 55V. У нас по условию задачи всего одна банка лития, так что напряжение даже больше, чем требуется.

Далее нас интересует вопрос, каким будет сопротивление сток-исток, при открывающем напряжении на затворе 2.5V. Смотрим в даташит и так сходу не видим этой информации. Зато мы видим, что напряжение отсечки U gs(th) лежит в диапазоне 2...4 Вольта. Нас это категорически не устраивает.

Последнее требование не выполняется, поэтому транзистор забраковываем .

Пример 2 - IRL2505

Вот его даташит . Смотрим и сразу же видим, что это очень мощный N-канальный полевик. Ток стока - 104А, напряжение сток-исток - 55В. Пока все устраивает.

Проверяем напряжение V gs(th) - максимум 2.0 В. Отлично!

Но давайте посмотрим, каким сопротивлением будет обладать транзистор при напряжении затвор-исток = 2.5 вольта. Смотрим график:

Получается, что при напряжении на затворе 2.5В и токе через транзистор в 3А, на нем будет падать напряжение в 3В. В соответствии с законом Ома, его сопротивление в этот момент будет составлять 3В/3А=1Ом.

Таким образом, при напряжении на банке аккумулятора около 3 Вольт, он просто не сможет отдать в нагрузку 3А, так как для этого общее сопротивление нагрузки вместе с сопротивлением сток-исток транзистора должно составлять 1 Ом. А у нас только один транзистор уже имеет сопротивление 1 Ом.

К тому же при таком внутреннем сопротивлении и заданном токе, на транзисторе будет выделяться мощность (3 А) 2 * 3 Ом = 9 Вт. Поэтому потребуется установка радиатора (корпус ТО-220 без радиатора сможет рассеивать где-то 0.5...1 Вт).

Дополнительным тревожным звоночком должен стать тот факт, что минимальное напряжение затвора для которого производитель указал выходное сопротивление транзистора равно 4В.

Это как бы намекает на то, что эксплуатация полевика при напряжении U gs менее 4В не предусматривалась.

Учитывая все вышесказанное, транзистор забраковываем .

Пример 3 - IRLMS2002

Итак, достаем из коробочки нашего третьего кандидата. И сразу смотрим его ТТХ .

Канал N-типа, допустим с этим все в порядке.

Ток стока максимальный - 6.5 А. Подходит.

Максимально допустимое напряжение сток-исток V dss = 20V. Отлично.

Напряжение отсечки - макс. 1.2 Вольта. Пока нормально.

Чтобы узнать выходное сопротивление этого транзистора нам даже не придется смотреть графики (как мы это делали в предыдущем случае) - искомое сопротивление сразу приведено в таблице как раз для нашего напряжения на затворе.

В статье расскажем про контроллер заряда Li-Ion на MCP73833.

Рисунок 1.

Предыдущий опыт

До этого момента я использовал контроллеры LT4054 , и честно говоря, был им доволен:

Он позволял заряжать компактные Li-Pol аккумуляторы ёмкостью до 3000мАч

Был ультрокомпактен: sot23-5

Имел индикатор зарядки аккумулятора

Имеет кучу защит, что делает из него практически не убиваемый чип

Рисунок 2.

Дополнительным плюсом является то, что перед тем как я на нём начал что-то делать, я купил их 50 штук, по очень скромной цене.

Недостатки я выявил в работе, и они меня, честно говоря, поставили в частичный ступор:

Максимальный заявленный ток 1А, думал я. Но уже при 300мА в процессе зарядки чип прогревается до 110*С даже при наличии больших полигонов-радиаторов и радиатора прикреплённого к пластиковой поверхности чипа.

Во время включения тепловой защиты, там видимо срабатывает компаратор, который быстро сбрасывает ток. В результате этого микросхема превращается в генератор, который убивает батарейку. Таким образом я убил 2 аккумулятора, пока не понял в чём дело с осциллографом.

В виду вышеперечисленного я получил проблему с временем заряда устройства порядка 10 часов. Конечно, это сильно не устраивало меня и потребителей моей электроники, но что поделать: все хотели увеличить ресурс работы при тех-же параметрах устройства, а они у меня порой потребляют много.

В связи с этим я начал искать контроллер, который был бы с куда лучшими параметрами и возможностями теплоотвода и мой выбор остановился пока на MCP73833 в основном из-за того, что данные контроллеры были у моего друга в наличии, и я свистнув пару штук быстро(быстрее его) запаял прототип и провёл нужные мне испытания.

Немного о самом контроллере.

Давайте я не буду заниматься полным и доскональным переводом даташита(хотя это и полезно), а быстро и просто расскажу о том, на что я смотрел в первую очередь в данном контроллере и нравилось ли мне это или нет.

1. Общая схема включения – это то, что бросается в глаза с начала. Легко заметить, что за исключением индикации (которую можно и не делать) обвязка состоит всего из 4 деталей. В них входят два фильтрующих конденсатора, резистор программирования тока заряда аккумулятора и терморезистор на 10к для контроля перегрева Li-Ion аккумулятора. Данная схема показана на рисунке 3. Это определённо здорово.

Рисунок 3. Схема подключения MCP73833

2. У неё в разы лучше с теплом. Это видно даже по схеме подключения, так как видны одинаковые ножки, которые можно использовать под отвод тепла. Дополнительно к этому, взглянув на то, что микросхема выпускается в корпусах msop-10 и DFN-10, которые больше по площади поверхности чем sot23-5. Тем более в корпусе DFN-10 есть специальный полигон, который можно и нужно использовать как отвод тепла на большую поверхность. Если не верите, то сами смотрите на рисунок 4. На нём приведены выводы ножек у DFN-10 корпуса и рекомендуемая производителем трассировка печатной платы, с отводом тепла при помощи полигона.

Рисунок 4.

3. Наличие терморезистора на 10к. Конечно, в большинстве случаев я им пользоваться не буду, так как я уверен, что не перегрею батарейку, но: есть задачи, в которых я подразумеваю полный заряд батарейки всего за 30 минут работы от блока питания. В таких случаях, возможен вариант перегрева самого аккумулятора.

4. Достаточно сложная система индикации зарядки аккумулятора. Как я понял и попробовал: там 1 светодиод отвечает за то, подведено ли питание со стороны заряжающего блока питания. По идее, штука не такая нужная, но: у меня были случаи, когда я разбивал разъём и просто контроллер не получал 5В на вход. В таких случаях сразу было понятно, что не так. Крайне полезная фишка для разработчиков. Для потребителей она легко заменяется просто светодиодом по линии 5В входа, установленного с ограничивающим его ток резистором.

5. Два остальных светодиода разбиты на стадии зарядки. Это позволяет разгрузить МК(если не требуется например показывать на дисплее заряд аккумулятора) в плане обработки заряда на батарейке во время зарядки(индикация зарядился или нет).

6. Программирование тока заряда в широких пределах. Лично я попробовал вытащить на плате, показанной на рисунке 1 зарядный ток в 1А, и на отметке 890мА плата в стабильном режиме работы уходила в тепловую защиту. Как говорят люди вокруг, при больших полигонах они отлично вытаскивали с данного контроллера и 2А, а по техническому описанию предельный ток заряда 3А, но у меня есть ряд сомнений, связанных с тепловой нагрузкой на микросхему.

7. Если верить даташиту, то в данной микросхеме есть: Low-Dropout Linear Regulator Mode – режим пониженного входного напряжения. В этих режимах вы, с помощью DC-DC преобразователя аккуратно можете на время начала заряда немного снизить напряжение на входе микросхемы, для уменьшения её тепловыделений. Лично я пробовал снижать напряжение, и тепла становилось логично меньше, но на данной микросхеме должно падать хотя бы 0,3-0,4В, чтобы она могла удобно ей заряжать батарейку. Чисто технически я собираюсь сделать небольшой модуль, который это делает автоматически, но денег и времени на это у меня нет, по этому радостно прошу в почту всех заинтересовавшихся. Если вас наберётся несколько ещё человек, то такую штуку нашим сайтом мы выпустим.

8. Не понравилось, что корпус совсем маленький. Паять его без фена (DFN-10) сложно, и качественно не получится, как ни крути. С msop-10 по лучше, но у новичков уходит значительное время обучиться технике его пайку.

9. Не понравилось, что в данном контроллере нет встроенного BMS(защиты аккумулятора от быстрого заряда/разряда и ещё ряда проблем). Но такие штуки есть у более дорогих контроллеров у тех-же TI.

10. Понравилась цена. Данные контроллеры не дорогие.

Что дальше?

А дальше я собираюсь внедрять данную микросхему в различные свои идеи по устройствам. К примеру, сейчас уже производиться на заводе пробная версия отладочной платы на базе STM32F103RCT6 и 18650 аккумуляторов. У меня уже есть отладочная плата на данном контроллере, которая себя очень хорошо зарекомендовала и я хочу дополнить её носимой версией для того, чтобы я мог взять свой рабочий проект с собой и не думать о питании и поиски розетки, в которую можно вставить блок питания.

Так-же я буду использовать её во всех решениях, где требуются зарядные токи более 300мА.

Надеюсь и вы, сможете применить данную полезную и простую микросхему в своих устройствах.

Если вообще интересно про батарейное питание, то вот моя личная видеозапись по поводу батарейного питания устройств.

Литиевые аккумулятор (Li-Io, Li-Po) являются самыми популярными на данный момент перезаряжаемыми источниками электрической энергии. Литиевый аккумулятор имеет номинальное напряжение 3.7 Вольт, именно оно указывается на корпусе. Однако, заряженный на 100% аккумулятор имеет напряжение 4.2 В, а разряженный “в ноль” – 2.5 В, вообще нет смысла разряжать аккумулятор ниже 3 В, во-первых, он от этого портится, во-вторых, в промежутке от 3 до 2.5 В аккумулятор отдаёт всего пару процентов энергии. Таким образом, рабочий диапазон напряжений принимаем 3 – 4.2 Вольта. Мою подборку советов по эксплуатации и хранению литиевых аккумуляторов вы можете посмотреть вот в этом видео

Есть два варианта соединения аккумуляторов, последовательное и параллельное.

При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.

В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.

Особенности зарядки аккумуляторов китайскими модулями

Стандартный покупной зарядно-защитный модуль за 20 рублей для литиевого аккумулятора (ссылка на Aliexpress )
(позиционируется продавцом как модуль для одной банки 18650) может и будет заряжать любой литиевый аккумулятор вне зависимости от формы, размера и емкости до правильного напряжения 4,2 вольта (напряжение полностью заряженного аккумулятора, под завязку). Даже если это огромный литиевый пакет на 8000mah (разумеется речь идет про одну ячейку на 3,6-3,7v). Модуль дает зарядный ток 1 ампер , это значит что им можно без опаски заряжать любой аккумулятор емкостью от 2000mah и выше (2Ah, значит зарядный ток – половина емкости, 1А) и соответственно время зарядки в часах будет равно емкости аккумулятора в амперах (на самом деле чуть больше, полтора-два часа на каждые 1000mah). Кстати аккумулятор можно подключать к нагрузке уже во время заряда.

Важно! Если вы хотите заряжать аккумулятор меньшей емкости (например одну старую банку на 900mah или крошечный литиевый пакетик на 230mah), то зарядный ток 1А это много, его следует уменьшить. Это делается заменой резистора R3 на модуле согласно приложенной таблице. Резистор необязательно smd, подойдет самый обычный. Напоминаю, что зарядный ток должен составлять половину от емкости аккумулятора (или меньше, не страшно).

Но если продавец говорит, что этот модуль для одной банки 18650, можно ли им заряжать две банки? Или три? Что если нужно собрать емкий пауэрбанк из нескольких аккумуляторов?
МОЖНО! Все литиевые аккумуляторы можно подключать параллельно (все плюсы к плюсам, все минусы к минусам) ВНЕ ЗАВИСИМОСТИ ОТ ЕМКОСТИ. Спаянные параллельно аккумуляторы сохраняют рабочее напряжение 4,2v а их емкость складывается. Даже если вы берете одну банку на 3400mah а вторую на 900 – получится 4300. Аккумуляторы будут работать как одно целое и разряжаться будут пропорциональной своей емкости.
Напряжение в ПАРАЛЛЕЛЬНОЙ сборке ВСЕГДА ОДИНАКОВО НА ВСЕХ АККУМУЛЯТОРАХ! И ни один аккумулятор физически не может разрядиться в сборке раньше других, здесь работает принцип сообщающихся сосудов. Те, кто утверждают обратное и говорят что аккумуляторы с меньшей емкостью разрядятся быстрее и умрут – путают с ПОСЛЕДОВАТЕЛЬНОЙ сборкой, плюйте им в лицо.
Важно! Перед подключением друг к другу все аккумуляторы должны иметь примерно одинаковое напряжение, чтобы в момент спаивания между ними не потекли уравнительные токи, они могут быть очень большими. Поэтому лучше всего перед сборкой просто зарядить каждый аккумулятор по отдельности. Разумеется время зарядки всей сборки будет увеличиваться, раз вы используете все тот же модуль на 1А. Но можно спараллелить два модуля, получив зарядный ток до 2А (если ваше зарядное устройство может столько дать). Для этого нужно соединить перемычками все аналогичные клеммы модулей (кроме Out- и B+, они продублированы на платах другими пятаками, уже и так окажутся соединенными). Либо можно купить модуль (ссылка на Aliexpress ), на котором микросхемы уже стоят в параллель. Этот модуль способен заряжать током в 3 Ампера.

Простите за совсем очевидные вещи, но люди по-прежнему путают, поэтому придется обсудить разницу между параллельным и последовательным соединением.
ПАРАЛЛЕЛЬНОЕ соединение (все плюсы к плюсам, все минусы к минусам) сохраняет напряжение аккумулятора 4,2 вольта, но увеличивает емкость, складывая все емкости вместе. Во всех пауэрбанках применяется параллельное соединение нескольких аккумуляторов. Такая сборка по-прежнему может заряжаться от USB и повышающим преобразователем напряжение поднимается до выходных 5v.
ПОСЛЕДОВАТЕЛЬНОЕ соединение (каждый плюс к минусу последующего аккумулятора) дает кратное увеличение напряжения одной заряженной банки 4,2в (2s – 8,4в, 3s – 12,6в и так далее), но емкость остается прежняя. Если используются три аккумулятора на 2000mah, то емкость сборки – 2000mah.
Важно! Считается что для последовательной сборки священно обязательно нужно использовать только аккумуляторы одинаковой емкости. На самом деле это не так. Можно использовать разные, но тогда емкость батареи будет определяться НАИМЕНЬШЕЙ емкостью в сборке. Складываете 3000+3000+800 – получаете сборку на 800mah. Тогда спецы начинают кукарекать, что тогда менее емкий аккумулятор будет быстрее разряжаться и умрет. А это неважно! Главное и действительно священное правило – для последовательной сборки всегда и обязательно нужно использовать плату защиты BMS на нужное количество банок. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. В случае с банкой на 800 она и разрядится, БМС отключит нагрузку от батареи, разряд остановится и остаточный заряд по 2200mah на остальных банках уже не будет иметь значения – нужно заряжаться.

Плата BMS в отличии от одинарного зарядного модуля НЕ ЯВЛЯЕТСЯ ЗАРЯДНЫМ УСТРОЙСТВОМ последовательной сборки. Для зарядки нужен настроенный источник нужного напряжения и тока . Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.

Можно ли заряжать последовательную сборку, соединив несколько одинарных зарядных модулей?
На самом деле при некоторых допущениях – можно. Для каких-то самоделок зарекомендовала себя схема с использованием одинарных модулей, соединенных также последовательно, но для КАЖДОГО модуля нужен СВОЙ ОТДЕЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ. Если заряжаете 3s – берёте три телефонных зарядки и подключаете каждую к одному модулю. При использовании одного источника – короткое замыкание по питанию , ничего не работает. Такая система также работает и как защита сборки (но модли способны отдавать не более 3 ампер) Либо же просто заряжайте сборку побаночно, подключая модуль к каждому аккумулятору до полного заряда.

Индикатор заряженности аккумулятора

Тоже насущная проблема – хотя бы примерно знать сколько процентов заряда остается на аккумуляторе, чтобы он не разрядился в самый ответственны момент.
Для параллельных сборок на 4,2 вольта самым очевидным решением будет сразу приобрести готовую плату пауэрбанка, на которой уже есть дисплей отображающий проценты заряда. Эти проценты не супер-точные, но всё же помогают. Цена вопроса примерно 150-200руб, все представлены на сайте Гайвера. Даже если вы собираете не пауэрбанк а что-то другое, плата эта довольно дешевая и небольшая, чтобы разместить ее в самоделке. Плюс она уже имеет функцию заряда и защиты аккумуляторов.
Есть готовые миниатюрные индикаторы на одну или несколько банок, 90-100р
Ну а самым дешевым и народным методом является использование повышающего преобразователя МТ3608 (30 руб.), настроенного на 5-5,1v. Собственно если вы делаете пауэрбанк на любом преобразователе на 5 вольт, то даже не нужно ничего докупать. Доработка заключается в установке красного или зеленого светодиода (другие цвета будут работать на другом выходном напряжении, от 6в и выше) через токоограничивающий резистор 200-500ом между выходной плюсовой клеммой (это будет плюс) и входной плюсовой (для светодиода это получится минус). Вы не ошиблись, между двумя плюсами! Дело в том, что при работе преобразователя между плюсами создается разница напряжения, +4,2 и +5в дают между собой напряжение 0,8в. При разряде аккумулятора его напряжение будет падать, а выходное с преобразователя всегда стабильно, значит разница будет увеличиваться. И при напряжении на банке 3,2-3,4в разница достигнет необходимой величины, чтобы зажечь светодиод – он начинает показывать, что пора заряжаться.

Чем измерять емкость аккумуляторов?

Мы уже привыкли в мнению, что для замера нужен Аймакс b6, а он стоит денег и для большинства радиолюбителей избыточен. Но есть способ замерить емкость 1-2-3баночного аккумулятора с достаточной точностью и дешево – простой USB-тестер.

Статьи по теме: