Макс объем оперативной памяти. Как узнать объем оперативной памяти: понятие ОЗУ, максимальный, минимальный и используемый объем памяти, способы просмотра объема памяти и пошаговая инструкция

Максимальный размер оперативной памяти, который поддерживают 32-разрядные системы

Зададимся вопросом: могут ли 32-разрядные системы работать с физической памятью больше 4 ГБ в принципе и если да, то каким образом.

Главное, что надо сделать в самом начале, это четко разделить между собой три понятия:

Свойства процессора;
32-битная операционная система;
32-разрядное приложение (программа)
Последние два очень часто смешивают в одну кучу, чего в данном случае, делать как раз не следует. Начнем по порядку и издалека – совершим короткий исторический экскурс.

Обратимся к таблице основных характеристик популярных процессоров от Intel:

Эта таблица нужна нам для того, чтобы наглядно показать тот факт, что разрядность адресной шины отнюдь не всегда совпадала с разрядностью архитектуры процессора.
Для начала обратим внимание на 16-разрядные процессоры. Если бы они имели 16-разрядную адресную шину, то максимальный размер доступной им физической памяти составлял бы всего 64 КБ (2 в 16-й степени равно 65536). Однако уже Intel 8086 мог работать с памятью до 1 МБ, а 80286 уже до 16 МБ благодаря 20 и, соответственно, 24 битам шины адреса.
Эпоха процессоров x86 совместимых процессоров с 32-х разряздными регистрами и 4 ГБ ОЗУ началась с Intel 80386 в далеком 1985 году. На протяжении последующих 10 лет 32-х разрядный процессоры архитектуры х86 не имели физической возможности работать с памятью более 4 ГБ.
В 1995 году был представлен процессор Intel Pentium Pro. Наряду с совершенно новой архитектурой ядра этот процессор получил 36-битную адресную шину благодаря чему, как не трудно подсчитать, максимальный размер доступной ему физической памяти увеличился до 64 ГБ (в современных 64-разрядных процессорах используются 37 разрядов, что увеличивает предел адресуемой физической памяти до 128 ГБ).
Кроме того, в процессоре был реализован «хитрый» механизм управления памятью, который отображал физическую память, расположенную за пределами 4 ГБ, в 32-разрядную виртуальную память в диапазоне 0 - 4 ГБ «обманывая» таким образом 32-разрядные приложения. Такой режим управления памятью процессором х86 получил название PAE (Physical Address Extension - расширение физических адресов).
Pentium Pro позиционировался в то время как процессор для серверов и рабочих станций. Действительно, представить себе в 1995 году настольный компьютер с объемом оперативной памяти не то что больше, а хотя бы отдаленно приближающимся к 4 ГБ, было не просто. Память измерялась тогда мегабайтами. К примеру, в 1998 году размер ОЗУ обычного настольного компьютера в 32МБ не считался маленьким. А стоила такая планка памяти от 60$. И в наше то время (2014 год) полным ходом используются компьютеры менее чем с 4 ГБ памяти. Для работы офисных приложений в связке с Windows XP такого объема памяти даже много. Кроме того, процессор Pentium Pro был очень дорогим и имел проблемы с быстродействием при выполнении популярных в то время 16-разрядных приложений.
Можно сказать, что такое решение было новым для 32-разрядных процессоров, однако, в силу того, что ранее подобная практика повсеместно применялась в 16-разрядных процессорах, революционной ее назвать сложно. Ведь еще со времен DOS широко применялся трюк с сегментной адресацией когда вся память была разбита на сегменты в 64КБ и адрес состоял из двух частей: сегмента и смещения внутри сегмента, таким образом удавалось использовать более 64КБ памяти.
Не все, но подавляющее большинство современных процессоров х86 для настольных компьютеров являются 64-разрядными и имеют поддержку PAE. Благодаря этому они не только могут работать с памятью более 4 ГБ, но и предоставляют такую возможность 32-битным операционным системам.

Проще всего определить поддержку режима PAE процессором оказалось в Linux. В Ubuntu, или в любом из ее многочисленных клонов, можно набрать в терминале:
grep -color=always -i PAE /proc/cpuinfo
В результате должно получиться что-то вроде этого:

32-разрядные операционные системы

Первой в ряду 32-разрядных ОС Microsoft стала Windows NT 3.1, выпущенная в 1993 году. Она предназначалась для корпоративного сектора, то есть для серверов и рабочих станций. Двумя годами позже в 1995 году появилась Windows 95 - операционная система для настольных компьютеров и ноутбуков. Между двумя этими событиями в 1994 году была представлена версия 1.0 ядра Linux. 32-разрядная архитектура оказалась столь удачной и «достаточной», что она повсеместно используется до сих пор на протяжении вот уже 2-х десятилетий. Последней 32-битной серверной операционной системой Microsoft стала Windows Server 2008. Однако, новейшая Windows 8 по-прежнему предлагается в двух вариантах. Для реализации дополнительных возможностей режима расширения физических адресов, помимо наличия соответствующего процессора и материнской платы с адекватным чипсетом и нужным количеством разведенных адресных линий, необходима поддержка PAE непосредственно самой операционной системой.
Если у Вас 32-разрядный Linux, то проблем с использованием памяти объемом более 4 ГБ, скорее всего, не возникнет. В операционных системах Linux поддержка PAE появилась в 1999 году в ядре 2.3.23 и используется с тех пор безо всяких ограничений.

Посмотрим таблицу максимально поддерживаемых размеров физической памяти, взятую из статьи 2005 года в msdn.microsoft.com, для Windows 2000, Windows XP и Windows Server 2003 >

Как видно из этой таблицы, режим PAE поддерживается во всех версиях ОС Microsoft начиная с Windows 2000. Вариации размеров максимальной памяти в различных версиях серверных операционных систем объясняются исключительно их позиционированием на рынке компанией Microsoft. Наверное, так проще объяснить их отличающуюся друг от друга стоимость. Для нас особый интерес представляют строки таблицы, которые прямо говорит о том, что во всех версиях Windows XP общее адресное пространство физической памяти ограничено на уровне 4 ГБ. Именно искусственно ограничено в ядре, так как поддержка PAE есть.
Режим PAE может быть включен, может быть выключен. Начиная с Windows XP SP2 PAE включается принудительно для обеспечения работы технологии безопасности DEP (Data Execution Prevention - предотвращение выполнения данных).

DEP – это технология, которая позволяет защитить операционную систему от большого класса вредоносного кода, который изначально внедряется в область памяти, отведенную под данные и маскируется под данные, а затем пытается из нее запуститься. Технология DEP такое выполнение вредоносного кода блокирует. Реализуется технология как программно, так и аппаратно. В последнем случае процессор помечает отдельные страницы памяти как не содержащие исполняемого кода измененным старшим битом в адресной таблице PTE (Page Table Entry) виртуальной памяти, а затем перехватывает и предотвращает запуск исполняемого кода с этих страниц.

32-разрядные приложения
Благодаря диспетчеру памяти процессора, осуществляющему ее распределение в режиме PAE независимо от работы приложений, и поддержке такого режима работы операционной системой, 32-разрядные приложения отделены от физической памяти и не имеют сведений о ее реальном размере. Каждому приложению, так как для них сохраняется 32-битное адресное пространство, по-прежнему доступны только 4 ГБ виртуальной памяти. В Windows под нужды самого приложения из этих 4 ГБ отдается ровно половина, в Linuх - 3 ГБ. В Windows существует возможность принудительно отдать приложению 3 ГБ, но, в большинстве случаев, это является нецелесообразным.
Необходимо иметь в виду, что включение режима PAE отнюдь не эквивалентно переходу на 64-битную систему, в которой каждому приложению выделяется несравнимо больший объем памяти. Если за счет PAE попытаться непосредственно удовлетворить непомерный аппетит некого современного приложения, например, пакета инженерного или графического моделирования, то ничего хорошего не получится. А вот если требуется одновременно запустить несколько требовательных к памяти (но не супертребовательных) приложений, то польза от PAE будет прямая. В первую очередь это касается серверов.
Например, требуется одновременная работа двух виртуальных машин, каждой из которых отведено по 2 ГБ памяти. Что будет без PAE понятно - вторая виртуальная машина, скорее всего, просто не запустится, ну или в системе начнется такой интенсивный обмен со swap-файлом, что процесс перейдет в категорию «пошаговая стратегия». С включенным PAE, при условии достаточного объема физического ОЗУ хостовой машины, обе виртуальные машины смогут благополучно работать.
К недостаткам PAE обычно относят возможное снижение производительности системы из-за уменьшения скорости доступа к памяти, связанной с дополнительными операциями на переключение отображаемых страниц памяти, и плохую работу некоторых драйверов устройств в 36-битном адресном пространстве.

Максимально поддерживаемые различными версиями Windows объемы физической памяти

Посмотрим сколько оперативной памяти поддерживают другие версии Windows, выпущенных после ХР.

В версиях Windows Vista х86 по сравнению с ХР практически ничего не изменилось.

Как видим, опять никаких изменений – абсолютный предел для x86 остался на уровне 4 ГБ. 1 ГБ в Windows Vista Starter и 2 ГБ в Windows 7 Starter только подкрепляют вывод об искусственном характере этих ограничений.

То же для Windows 8

Как видно из представленной таблицы, в плане лимитов памяти в Windows 8 тоже ничего не изменилось. Жаль, могли бы уже, наверное, ограничение снять или, по крайней мере, отодвинуть.

И тут самое время рассмотреть причины, по которым Microsoft ограничивает верхний предел доступной физической памяти в клиентских версиях Windows x86.

Одна из главных причин - Проблемы с безопасностью Windows XP.

Windows XP была выпущена осенью 2001 года и за очень короткий срок завоевала огромную популярность среди пользователей во всем мире. А, как известно, где большая популярность, там и большие проблемы. Моментально для нее было создано огромное количество вредоносного кода в виде разнообразных и многочисленных вирусов. При этом оказалось, что новая операционная система имеет ряд уязвимостей и весьма низкую стойкость ко взлому. Своего полноценного клиентского антивирусного пакета в то время у Microsoft не было. Ситуацию в значительной мере исправляли программные продукты сторонних разработчиков, однако, этого было явно недостаточно и, в целом, положение оставалось весьма напряженным.
Для того чтобы как-то повысить безопасность Windows XP, в 2004 году был выпущен второй пакет обновлений - SP2. И тут возникли проблемы. Одной из главных особенностей этого пакета, с точки зрения безопасности, было включение технологии DEP (Data Execution Prevention - предотвращение выполнения данных). Эта технология, повсеместно используемая и сегодня, позволяет отражать целый класс вредоносных атак благодаря запрету запуска исполняемого кода с непредусмотренных для этого страниц памяти. Но для работы DEP должна быть включена поддержка PAE (Physical Address Extension - расширение физических адресов). Включение режима PAE меняет механизм обращения к страницам оперативной памяти и делает возможным работу с физической памятью размером более 4 ГБ. Однако при подготовке и тестировании Windows XP со вторым пакетом обновлений обнаружились большие проблемы, приводившие к фатальным ошибкам и аварийным отказам в работе операционной системы. Очень быстро причины неприятностей были найдены. Ими оказались драйверы устройств, написанные без учета возможности их работы в режиме PAE.

Небольшое отступление.
В режиме PAE любая страница памяти 32-разрядного виртуального адресного пространства приложений на самом деле может быть расположена в любом месте доступной физической памяти. Обычные приложения это обстоятельство никак не затрагивает, им все равно. А вот для драйверов устройств все значительно хуже – им то надо работать с конкретными физическими адресами, а не с виртуальными. Условно ситуацию можно представить так:

Драйвер пытается считать или записать некую информацию по адресам, которые отведены для работы с устройством. Если драйвер “глупый”, не понимает в каком окружении он работает и не может “договориться” с операционной системой, то, как показано на рисунке, вместо портов ввода/вывода своего устройства он начнет общаться с некими ячейками физической памяти. Результат такого “общения” для работы системы непредсказуем, вплоть до полного "зависания" и перезагрузки.

Для того чтобы решить эту проблему и не блокировать установку SP2 пользователями из-за возможных проблем, Microsoft приняла командирское решение - PAE включить, но тривиально ограничить верхнюю границу доступной оперативной памяти клиентских версий своей операционной системы на уровне 4 ГБ. Адреса при этом транслируются один в один как в “классической” 32-разрядной системе и “глупые” недоделанные драйверы устройств успешно работают.
Ну что же, дешево и сердито. Дешево потому, что производителям оборудования не нужно было спешно заказывать разработку “правильных” драйверов. Сердито потому, что отложенные таким образом до поры до времени проблемы с использованием физической памяти компьютера, были переложены на конечного пользователя.
Много уже гигабайт утекло с момента выхода SP2 для XP, а Windows по-прежнему не видит оперативную память больше 4 ГБ и, как мы видели по таблице “Physical Memory Limits: Windows 8”, изменений в этом плане не предвидится.
И это не совсем понятно: для Windows Vista все равно пришлось писать новые драйвера, значит была возможность переписать их корректно для работы с PAE, но ограничение в 4 ГБ так и осталось.
Сегодня уже очень трудно представить себе 32-разрядные драйверы, которые не умеют работать с памятью более 4 ГБ. Возможно причина в том, что Microsoft таким образом хочет подтолкнуть пользователей к переходу на x64?

А как же серверные версии Windows?
Можно предположить, что для них драйверы устройств сразу разрабатывались с учетом работы в режиме PAE, то есть были “умными” и тщательно тестировались. Этому способствовало и то обстоятельство, что в серверных конфигурациях оборудования не было такого “зверинца” встроенных устройств.
До недавнего времени, например, до появления технологии виртуализации рабочих мест, которая, в том числе, предполагает возможность обработки графики самим сервером, последнему совершенно не нужна была серьезная видеокарта, так как вполне хватало видео, встроенного в материнскую плату. Кроме того, 32-разрядные серверные версии Windows закончили свою историю на Windows Server 2008.

Во второй части секреты распределения памяти в 32-х разрядной Windows и как бороться с ограничением.

стоит не так остро, как раньше, сегодня он по-прежнему волнует многих пользователей. В последнее время даже самые дешевые компьютеры имеют по крайней мере 4 Гб памяти – количество, которое когда-то казалось немыслимым, а в настоящее время является стандартом де-факто. Вопреки этому многие задаются вопросом: этого достаточно? Ускорит ли работу компьютера дополнительная память, или особого эффекта не будет?

Разница между 4, 8, 16 и больше гигабайт RAM несомненно есть, но для массового пользователя связь между объемом установленной памяти и производительностью ПК остается слегка размытой. В этом материале я постараюсь пролить свет на этот вопрос и кратко ответить, каков оптимальный объем оперативной памяти и есть ли смысл в установке дополнительных модулей RAM.

Что такое Random Access Memory (RAM)?

Хотя компьютеры уже давно стали обыденностью, многие люди до сих пор путают понятия «оперативная» и «локальная» память. Заблуждение чаще исходит из того, что оба типа памяти измеряются в одних и тех же единицах – последнее время обычно в гигабайтах (GB). Вопреки тому, что и оперативная, и локальная память служат для хранения информации, они отличаются с точки зрения срока хранения данных. Оперативная память как правило в несколько раз быстрее локальной и служит для временного хранения данных. После выключения компьютера все хранящиеся в ней данные бесследно исчезают. В локальной памяти (жесткие диски и SSD устройства) информация сохраняется независимо от того, включен компьютер или выключен. Именно поэтому оперативную память обычно определяют как энергозависимую, а локальную – как энергонезависимую.

Сколько памяти нужно ПК?

Долгое время Биллу Гейтсу приписывается фраза «640 Кб памяти достаточно для всего». В конечном счете сам Гейтс выступил с официальным заявлением, сказав, что не является автором этого утверждения, которое он назвал чистой глупостью.

Однако в начале 80-х годов прошлого века это звучало не так комично, потому что объемы порядка 100-200 Мб считались огромными. Сегодня даже самые дешевые компьютерные системы имеют 2-4 Гб оперативной памяти, а локальное пространство для хранения информации измеряется в терабайтах.

Базовые конфигурации имеют от 4 до 8 Гб RAM, а high-end модели (мультимедийные или игровые) предлагают 12-16, иногда 32 (и больше) Гб оперативной памяти. Так сколько можно назвать «оптимальным»? К сожалению, дать точный ответ, выраженный в конкретной цифре весьма непросто, так как оптимальное количество зависит от задач, для которых вы используете компьютер. Так, например, на Windows PC только сама операционная система может потребовать больше одного гигабайта для своих системных библиотек. Если вы используете антивирусную программу, то это еще 30-200 мегабайт в фоновом режиме в зависимости от конкретного продукта. Большинство веб-браузеров, офисных приложений и мультимедийных проигрывателей требуют от 100-800 Мб и больше памяти. Если вы запускаете их одновременно (т.е. используете Windows по предназначению – многозадачно), эти объемы становятся совокупными – чем больше запущенных программ, тем выше потребление RAM.

Чемпионами по потреблению оперативной памяти остаются видеоигры. Популярные заглавия типа Call of Duty могут без особых проблем «проглотить» 4-5 Гб памяти.

Большинство современных ноутбуков использует интегрированную графику, которая также является потребителем RAM. Интегрированные в процессор видео ядра не располагают своей собственной памятью (в отличие от дискретных решений) и «съедают» часть доступной оперативной памяти. Поэтому если ваш ноутбук по спецификациям оснащен 4 Гб RAM и интегрированной графикой, Windows сообщит, что вам доступно только 3.9 Гб (или меньше) памяти.

Другие соображения

Оптимальное количество оперативной памяти имеет и софтверный (возможно, правильнее будет сказать системный) аспект. Старые версии операционной системы используют 32-битный метод адресации памяти. В настоящее время он уже устарел и восходит к временам, когда объемы свыше 4 Гб RAM казались немыслимыми. Вот почему 32-разрядные версии Windows просто не могут использовать больше 4 Гб оперативной памяти. Даже если у вас больше памяти 32-разрядная операционная система будет настаивать на том, что вас только 4 Гб (хотя обычно еще меньше – 3-3.5 Гб) оперативной памяти. Для полноценного использования объемов свыше 4 гигов вам понадобится 64-разрядная Windows.

Другой интересный вопрос, связанный с памятью, касается темпа заполнения RAM, а также того, что будет, если исчерпать всю доступную память.

Если системный инструмент «Диспетчер задач» показывает, что весь объем памяти почти полностью исчерпан, т.е. все запущенные процессы занимают 70-80% или даже больше RAM, это еще не повод для беспокойства. Microsoft уже давно серьезно изменила свою философию по отношению к memory management (управление памятью), а потому, начиная с Windows Vista, не используемую RAM компания считает «плохой RAM».

Так как оперативная память во много раз быстрее любого жесткого или даже твердотельного диска, в Microsoft решили, что будет лучше, если Windows будет держать как можно больше часто используемых пользовательских модулей и приложений постоянно загруженными в системную RAM. Благодаря этому при повторном обращении к ним система реагирует гораздо быстрее, нежели когда ей снова и снова приходится считывать их с локального диска.

В этом и суть технологии SuperFetch, которая развивается со времен Vista. Введение этой концепции указывает на один важный вывод – чем большем оперативной памяти есть в распоряжении современных версий Windows, тем лучше (быстрее) они работают. Конечно, речь не идет об экспоненциальном росте – наибольшая разница будет при прыжке с 2 до 4 Гб RAM. С каждым последующим удвоением – 4 до 8 Гб, 8 до 16 и так далее, влияние на общую производительность системы будет снижаться. Однако если вы регулярно работаете с тяжелыми программами, держите десятки открытых вкладок в браузере и активно играете, то принцип выбора оптимального объема памяти сводится к одной простой вещи: чем больше, тем лучше.

Если в какой-то момент имеющийся объем памяти будет исчерпан, Windows не перестанет работать. В таких случаях операционная система опирается на так называемую . Для этой цели используется выделенная на локальном диске область и на нее Windows записывает все данные из оперативной памяти, которые не используется в настоящее время, и по просьбе пользователя снова их считывает, используя ресурсы локального диска. Поскольку локальная память медленнее чипов RAM, процесс чтения данных с диска занимает значительно больше времени, в течение которого компьютер может заметно «подтормаживать». Если система регулярно обращается к виртуальной памяти, это верный признак, что настало время рассмотреть вопрос о расширении оперативной памяти.

Отличного Вам дня!

Объем оперативной памяти значительно влияет на производительность компьютера. Поэтому решившись на обновление конфигурации своей системы большинство пользователей начинает с установки дополнительной памяти.

Но, перед тем как приступать к такой процедуре необходимо узнать, сколько оперативной памяти поддерживает материнская плата. Иначе есть риск купить комплект модулей памяти, который не будет работать.

Итак, для того чтобы узнать сколько оперативной памяти поддерживает материнская плата, нужно сначала узнать точное название модели самой платы. Для этого лучше всего воспользоваться бесплатной утилитой CPU-Z. Скачайте CPU-Z и установите на свой компьютер.

После запуска программы CPU-Z, перейдите на вкладку «Mainboard». Здесь будет доступна вся основная информация о вашей материнской плате. В самом верху окна будет указано .

После того, как вы выяснили название производителя и модель материнской платы, вам нужно найти страничку данной материнской платы на официальном сайте ее производителя. Для этого просто введите название материнской платы в поисковую систему.

И перейдите на официальный сайт производителя материнской платы.

В этом списке вы сможете найти информацию о максимальном объеме оперативной памяти, типе поддерживаемой памяти, количестве слотов под память, а также другие характеристики вашей материнской платы.

Другие ограничения на объем оперативной памяти

Если вы хотите установить себе большой объем оперативной памяти, то нужно учитывать, что ее максимальный объем ограничивается не только материнской платой, но и процессором. Откройте характеристики процессора на официальном сайте производителя и посмотрите, с каким объемом памяти может работать . Например, для процессора Intel Core i5-2310 максимальный объем оперативной памяти составляет 32 Гб.

Кроме этого, максимальный объем оперативной памяти ограничивает и операционная система. Например, для Windows работают следующие ограничения:

Версия Windows

Ограничение для 32 разрядной системы

Ограничение для 64 разрядной системы

Windows 10

Windows 10 Enterprise

Windows 10 Education

Windows 10 Pro
Windows 10 Home

Windows 8

Windows 8 Enterprise

Windows 8 Professional

Windows 8

Windows 7

Windows 7 Ultimate

Windows 7 Enterprise

Windows 7 Professional

Windows 7 Home Premium

Windows 7 Home Basic

Windows 7 Starter

Windows Vista

Windows Vista Ultimate

Windows Vista Enterprise

Windows Vista Business

Windows Vista Home Premium

Windows Vista Home Basic

Windows Vista Starter

Windows XP

Windows XP
Windows XP Starter Edition

Как видно для 32-битных версий Windows ограничения очень серьезные. Но, для 64-битных версий ограничений практически нет, если не учитывать Windows 7 Home Basic и Windows 7 Home Premium для которых установлено ограничение в 8 и16 Гб.

Не все пользователи разбираются в функционировании компонентов системы. Подобные знания помогают разобраться в работе компьютера и в случае необходимости устранить какие-то неполадки. Поэтому частенько нужно знать то, как узнать объем оперативной памяти или другие характеристики ПК.

Понятие ОЗУ

Оперативная память давно стала неотъемлемой частью системы. И если без дискретной видеокарты система может функционировать, то сложнее дела обстоят с оперативной.

Компонент является энергозависимым в системе. Он является частью компьютерной памяти и хранит во время работы ПК. То есть ОЗУ не занимается сбережением данных пользователя, а рассчитано на поддержание работоспособности системы.

К примеру, вы открыли браузер, а в нем несколько вкладок. После вам пришлось прервать работу, на запуск одной из программ. Вы какое-то время с ней поработали и снова вернулись к веб-обозревателю. Чтобы ни та, ни другая информация не была утеряна, она записывается кодом на ОЗУ. Та же ситуация происходит и с компьютерными играми.

Работа ОЗУ

Прежде чем разобраться с тем, как узнать важно понимать, как функционирует ОЗУ. Все данные хранятся в полупроводниках модуля. Все они доступны и могут работать в случае, если на них подается напряжение. То есть в выключенном компьютере Если во время работы ОЗУ прервать подачу электрического тока, то любая хранимая информация может исказиться или уничтожиться.

Возможности ОЗУ

Благодаря оперативке может работать энергосберегающий режим. Она помогает ПК переводить систему в режим сна. В это время сокращается потребление энергии. Но поскольку электричество все равно подается на материнскую плату, модуль ОЗУ функционирует полноценно.

А вот если использовать гибернацию, то в этом случае оперативная память не поможет, поскольку отключает напряжение полностью. Но перед этим система успевает записать всю информацию, которая хранилась на ОЗУ в особый файл, который запустится при следующем включении системы.

Создание ОЗУ

О том, как узнать объем оперативной памяти, раньше и речи не могло быть. Многие изначально не понимали суть этого комплектующего. Но над ним была начата работа еще в 1834 году. Конечно, тогда это были лишь зачатки современного прототипа. Но сама идея появилась благодаря Чарльзу Бэббиджу и его аналитической машине.

За это время устройство пережило огромное количество переработок. Сначала оно было выполнено в качестве магнитных барабанов. После были разработаны магнитные сердечники, а уже в третьем поколении придумали микросхемы.

Объем ОЗУ

Прежде чем устанавливать в систему модуль ОЗУ, нужно понимать, как узнать максимальный объем оперативной памяти на ПК. Сделать это можно программным способом.

Если вы работаете с операционной системой Windows, то будет достаточно перейти в «Мой компьютер». После кликнуть ПКМ по свободной области и выбрать «Свойства». В диалоговом окне станет доступна краткая информация о системе.

Здесь нужно найти строку «Тип системы». Максимальный объем ОЗУ можно будет определить, глядя на разрядность ОС. Если указано, что операционная система 32-разрядная, значит максимальный поддерживаемый объем ОЗУ - 4 Гб. В случае с 64-разрядной системой, этот показатель равен 128 Гб. То есть все современные ПК должны базироваться на ОС х64.

На так просто определить ОЗУ не получится. Все зависит от того, как давно было куплено устройство. Для этого придется обратиться к эксплуатационной документации. Например, модели с 2006 по 2009 гг. получали только 4 Гб, после - до 2012-го, работали с 16 Гб, а до конца 2013 года была доступна ОЗУ объемом 32 Гб.

Материнская плата

Также многое зависит от возможностей материнской памяти. Даже если операционная система работает с 128 Гб ОЗУ, системная плата может не поддерживать этот объем. Для этого придется раскрыть свой ПК и узнать модель материнки. После можно будет поискать информацию о ней. В случае с ноутбуком, достаточно отыскать документацию к нему или найти информацию на официальном сайте производителя.

Ситуация сейчас

Минимальный объем оперативной памяти на нынешнее время - 1 Гб. Этот тот минимум, который еще может выдерживать работу с офисными программами и браузером. Но еще полгода-год и в связи с ресурсоемкостью программ и медийного контента ресурсов ее будет не хватать.

Оптимальным же считается 8-16 Гб ОЗУ. Этого хватит и для тяжелых программ типа «Фотошоп», и для компьютерных игр, и для офисной работы.

Сколько установлено?

Когда вы разберетесь с тем, как узнать максимально поддерживаемый объем оперативной памяти, можно попробовать апгрейд ОЗУ. Но для этого придется узнать, сколько же имеется в системе.

Для этого можно снова перейти в «Мой компьютер», кликнуть ПКМ по свободному месту и выбрать «Свойства». В новом диалоговом окне будет показан общий объем оперативной памяти. Этот вариант больше подходит для того, чтобы понять, как узнать объем оперативной памяти ноутбука, поскольку в лэптопах непросто добраться до модуля.

Также можно установить программу CPU-Z, чтобы получить все данные об ОЗУ. Для этого нужно:

  • скачать программу;
  • установить и открыть ее;
  • перейти во вкладку SPD.

Здесь будет указан тип памяти, его объем, частота работы, производитель и даже серийный номер.

В ПК лучше проверить все воочию:

  • отключить систему от питания;
  • снять боковую крышку;
  • найти на плате модуль;
  • отключить его и проверить информацию на этикетке.

Если в компьютере установлен один модуль, то есть возможность подключить еще один или два. Но для этого придется выбирать такие же модули ОЗУ. Именно поэтому лучше достать устройство из корпуса, чтобы найти идентичные или очень похожие детали и приобрести.

Программа Mem Reduct

Как узнать объем оперативной памяти, используемый компьютером? Для этого можно установить программу Mem Reduct. Эта небольшая утилита дает информацию о том, сколько используется физической, виртуальной памяти и в режиме реального времени. Но, помимо этого, она позволяет очистить ненужные уже данные.

Если система начала подтормаживать, особенно это актуально для компьютеров с 1-4 Гб ОЗУ, то можно установить эту программу. Зайдя в нее, некоторые показатели будут подсвечены оранжевым цветом. Это значит, что память загружена. Достаточно нажать на «Очистить память», чтобы на время разгрузить ее.

Программа очень полезна, поскольку позволяет поддерживать рабочее состояние системы без торможений. Если у вас немного оперативной памяти установлено, лучше чистить ее один раз в час. Конечно, все будет зависеть от процессов.

Информация, с которой работает центральный процессор (ЦП) хранится в оперативном запоминающем устройстве (ОЗУ) или оперативной памяти персонального компьютера (ПК). Теоретически, чем больше этот объём, тем выше общая производительность системы.

В настоящее время ОЗУ организовано в виде отдельных модулей или планок, которые подключаются к (МП) при помощи специальных разъёмов. Каждая МП может работать только с одним видом таких модулей, имеющим сходную организацию, но разные рабочие частоты. Современные ПК используют ОЗУ стандарта DDR3 и DDR4.

Важно! Несмотря на развитие компьютерной индустрии, во многих устройствах до сих пор используются устаревший тип ОЗУ DDR3. Связано это с тем, что быстродействие даже устаревших ПК для решения большинства задач является избыточным.

Многие пользователи для ускорения работы своих ПК либо добавляют дополнительные планки ОЗУ к уже установленным, либо приобретают их на этапе сборки ПК. В этой связи часто возникает вопрос, как узнать сколько оперативной памяти поддерживает материнская плата, чтобы не ошибиться с количеством и не приобрести лишних планки, которые потом невозможно будет использовать. Не менее важно выбрать правильные микросхемы ОЗУ.

Как узнать какую оперативную память поддерживает материнская плата

Существует несколько способов, чтобы определить, тип ОЗУ, с которым работает та или иная МП:

  • прочитать инструкцию к МП;
  • визуально обследовать системную плату.
  • использовать программу системной диагностики;

Первый способ наиболее прост. В спецификации к каждой МП идёт подробное описание вида и объёма используемого ОЗУ. Если инструкция отсутствует, и Интернете можно найти информацию о материнке на сайте производителя и проверить тип памяти поддерживаемой материнкой.

Очень часто непосредственно на поверхности МП рядом с разъёмами для ОЗУ указывается, какие планки используются. Даже если этого не написано, можно при помощи обыкновенной линейки измерить расстояние от левого края разъёма до ключа-выемки. Эта длина составляет 5.4 см для DDR3 и 7.2 см для DDR4.

На работающем ПК рекомендуется воспользоваться любой программой системной диагностики, которая покажет не только тип ОЗУ, но и количество планок, быстродействие, фирму-производителя. В качестве таких программ можно использовать следующие продукты:

  1. AIDA-64;
  2. CPU-Z;
  3. HW-info.

Максимальное адресуемое пространство ОЗУ, поддерживаемое МП, либо указано в спецификации, либо может быть определено визуально по количеству установленных на ней разъёмов.

Теоретически объём одного модуля DD4 составляет 128 Гб, модуля DDR3 – 16 Гб. Соответственно, МП с 4 слотами DDR3 может обращаться к 64 Гб ОЗУ; 8-ми слотовая плата с DDR4 – к 1 Тб.

Однако, не следует слишком надеяться на то, что этот объём будет использован полностью. Существенные ограничения на него накладывает конструкция ЦП, поскольку в современных процессорах устройство прямого доступа к ОЗУ находится внутри его кристалла.

То есть, нельзя говорить о максимальном объёме ОЗУ для МП, определить его можно только для связки МП+ЦП. Так, например, процессора i5 третьего и четвертого поколений поддерживают не более 32 Гб ОЗУ.

Какую частоту оперативной памяти поддерживает материнская плата

Быстродействие системы в целом определяется не только быстротой работы ЦП или количеством ОЗУ на МП. Очень важна и синхронная работа устройств, когда все операции делаются в строгом соответствии с их правильной последовательностью. При этом не желательно, чтобы какой-то из элементов системы обладал меньшим быстродействием, чем другие.

Для этой цели введено понятие системной частоты – показателя работы ПК, определяющего, как быстро будет происходить обмен информацией внутри системы. Грубо говоря, все компоненты системы должны работать синхронно с этой скоростью. Обычно, она задаётся процессором и у каждого процессора имеет строго определённое значение.

Важно! Собственная частота процессора – это не одно и то же, что и системная. Обычно, МП поддерживают несколько её значений.

Поэтому для оптимизации работы ПК недостаточно просто найти или посмотреть максимальный объём оперативной памяти материнской платы, необходимо выбрать именно такие планки памяти, которые поддерживают нужную частоту.

Каждая планка ОЗУ в своём наименовании имеет индекс, указывающий его быстродействие и, соответственно, эффективную скорость передачи. Например, PC4-19200 означает, что максимально возможная скорость передачи данных составляет 19200 Мбит/с. Другое название такого модуля DDR4-2400, где 2400 – это т.н. эффективная скорость, выраженная в миллионах передач в секунду. Для указанного модуля частота шины должна быть 1200 МГц, что для микросхем ОЗУ соответствует 300 МГц собственной.

Обычно, говоря о типе ОЗУ, или о его быстродействии, из этих четырёх цифр указывают либо скорость передачи данных 19200 Мбит/с, либо эффективную скорость 2400. В настоящее время существует семь стандартов быстродействия: от DDR4-1600 (или РС4-12800) до DDR4-3200 (или РС4-25600). Как нетрудно заметить быстродействие последних в два раза выше быстродействия первых.

Поэтому выбирая микросхемы ОЗУ, следует убедиться, будет ли его частота соответствовать тому ряду, которые способна «выдавать» МП.

Обычно, в спецификациях на платы пишут именно эффективную скорость для упрощения выбора микросхем ОЗУ. Например, это может выглядеть так: «Поддержка DDR4-1600/2400/3200»; в некоторых редких случаях могут указать другой параметр.

Узнать эту информацию можно только из инструкции к МП или на сайте поддержки производителя, поскольку визуальная разница между модулями ОЗУ разного быстродействия и разъёмами для них отсутствует.

Так же вы можете посмотреть статьи на темы и .

Статьи по теме: