Какой производитель ssd лучше. Ресурс работы с запасом

SSD накопители: обзор лучших моделей жестких дисков и рейтинг их особенностей будет интересен всем, кто интересуется вопросами длительного хранения своих данных, и по каким-то причинам не особо доверяет онлайн-хранилищам.

Технологии производства накопителей информации не стоят на месте, и сейчас, чтоб купить жёсткий диск для своего компьютера или ноутбука необходимо понять, как не промахнуться с выбором.

К тому же SSD-диски всё еще стоят недёшево.

Мы расскажем, какими технологиями пользуются производители современных твёрдотельных дисков, популярность которых, по сравнению с HDD растёт день ото дня.

Перед тем, как выбирать конкретные варианты моделей, стоит узнать, какие преимущества есть у SSD, и чем руководствоваться при их выборе.

Плюсы и минусы оборудования

Главные достоинства SSD:

  • высокая скорость чтения и записи данных, в 2–3 раза превышающая даже последние модели HDD;
  • устойчивая передача информации. У HDD скорость перемещения данных меняется в зависимости от её объёма и расположения на диске;
  • быстрый доступ к данным, на уровне 0,1 мс;
  • высокая надёжность использования за счёт отсутствия движущихся частей и минимального нагрева;
  • небольшое потребление энергии (в 10 раз меньше, чем у обычных дисков);
  • небольшой вес, благодаря которому SSD является оптимальным вариантом для нетбуков и ноутбуков.

Среди недостатков оборудования можно отметить высокую стоимость и сравнительно небольшую ёмкость, хотя в настоящее время размеры SSD (и физические параметры и объем хранимой информации) уже практически сравнимы со стандартными жёсткими дисками.

Минусом можно назвать и установленную на твёрдотельных накопителях файловую систему: она требует заботы и оптимизации, а удалённые с SDD данные крайне сложно восстановить, практически невозможно.

Ещё один минус заключается в том, что перепады напряжения в электросети могут привести к сгоранию не только контроллера диска, но и к выходу из строя всего диска.

HDD тоже подвержены этому, но в меньшей степени. В любом случае, для предотвращения такого рода неприятностей стоит пользоваться ИБП и стабилизаторами напряжения.

Особенности выбора

Перед покупкой накопителя стоит обращать внимание на следующие особенности.

Важнейшей характеристикой является объём SSD – он зависит от потребностей и финансовых возможностей пользователя.

Цена 1 ГБ SSD-памяти варьируется от 100–200 руб. для небольших размеров накопителя до 20–30 руб. для вариантов среднего уровня.

Совет: специалисты рекомендуют заполнять разделы диска не более чем на 75%. Так, если диск предназначен только для системной информации и операционной системы, достаточно заполненности 60 ГБ. Для хранения часто перезаписываемых данных подойдут модели на 256–512 ГБ – они сравнительно недороги.

Ещё один важный фактор при выборе – частота шины , от которой будет зависеть и скорость чтения и записи данных.

Самый распространённый вариант – формат SATA2 , передающий до 3000 Мбит информации в секунду. SATA3 вдвое производительнее, однако, может не поддерживаться компьютерами, выпущенными уже 3–4 года назад.

Другие нюансы, которые должны учитываться покупателем:

  • форм-фактор. Для ноутбуков обычно выбирают варианты размером 2,5 дюйма, для компьютеров – 3,5 дюйма;
  • показатель IOPS (количество операций ввода и вывода в секунду). Для устаревших моделей его значение не превышает 50–100 тысяч, для новых дисков – достигает 200000;
  • тип контроллера. Лучшие и самые надёжные варианты – Marvell, Indilinx и Intel.

10 лучших накопителей SSD

Среди самых известных производителей твёрдотельных накопителей – бренды ADATA, AMD, Crucial, Intel, Plextor и Western Digital.

Давно известные компании-производители HDD, флеш-карт иUSB-носителей Kingston, Samsung, SanDisk, Toshiba и Transcend отличились и в производстве SSD-дисков.

Рассматривая различные модели SSD, следует учесть, что оптимальным соотношением цены, объёма и качества на сегодняшний день обладают накопители на 500 ГБ (512, если говорить точнее).

Их размера достаточно для хранения тех же объёмов, что и на обычных жёстких дисках, а цена всего в 2–4 раза больше.

Диска меньшего объёма может и не хватить, а покупать более дорогие варианты на несколько террабайт (с удельной ценой гигабайта выше 30 руб.) пока нет смысла.

  1. Высокий ресурс

Благодаря использованию надёжного контроллера накопитель ADATA Premier SP550 служит в 2–3 раза дольше по сравнению с большинством аналогов за ту же цену.

При этом он не отличается высокой скоростью, зато позволяет перезаписывать до 1/3 всех данных ежедневно.

Скорость при переполнении кэша (4,5 ГБ) может падать до 70–90 Мбайт/с, хотя для выполнения большинства задач перемещения такого объёма данных и не требуется.

Технические параметры:

  • объём 480 ГБ;
  • максимальная скорость чтения – 560 Мбайт/с;
  • технология 16-нм;
  • контроллер: четырёхканальный Silicon Motion SM2256.

  1. Самый выгодный при покупке

Компания AMD не является непосредственным производителем твёрдотельных накопителей, однако предлагает несколько интересных вариантов.

Одним из них является AMD Radeon R3 480, купить который можно примерно за 8500 рублей.

При объёме в 480 ГБ это делает удельную стоимость 1 ГБ меньшей 18 рублей – подобных предложений на рынке практически не найти.

Основные характеристики:

  • объём 480 ГБ;
  • тип контроллера: SM2256;
  • скорость чтения/записи: 520/470 Мбайт/с.

  1. Оптимальное решение для игрового компьютера

Модельный ряд компании Crucial достаточно большой, чтобы найти в нём варианты разного объёма и производительности.

Одна из самых последних моделей объёмом около половины терабайта – Crucial MX300 525. Она может стать наилучшим решением для компьютера, используемого в рабочих целях.

В первую очередь благодаря неплохой скорости и доступной цене (около 10 тыс. руб.), во-вторых, за счёт использования значительного запаса объёма – 576 ГБ вместо заявленных 525.

Параметры устройства:

  • ёмкость: 525 (576) ГБ;
  • скорость (чтение/запись): 530/510 ГБ;
  • контроллер: Marvell 88SS1074.

  1. Самый надёжный

Скорость записи и чтения, предлагаемая большинством современных накопителей, не меньше 500 Мбайт/с.

Максимальное значение для флагманской модели Intel 730 Series 480 составляет 550 Мбайт/с.

Устройство отличается высокой надёжностью и комплектуется надёжной защитой от перебоев с электропитанием.

Такой накопитель выдержит большую нагрузку по сравнению с другими 500-гигабайтными вариантами.

Основные характеристики:

  • максимальная скорость: 550 Мбайт/с;
  • контроллер: серверный PC29AS21CA0;
  • ёмкость: 480 (544) ГБ.

  1. Высокие возможности перезаписи

Особенность устройства Kingston SSDNow UV400 – контроллер Marvell 88SS1074 и приличный размер кэша, при переполнении которого тоже сохраняется неплохая скорость (более 110 Мбайт/с).

Для создания диска использовалась 15-нм технология TLC NAND.

Срок службы SSD продлевается возможностью ежедневной перезаписи более чем 1/3 информации, а цена не превышает 15000 руб.

Параметры накопителя:

  • скорость: до 550 Мбайт/с;
  • контроллер: четырёхканальный Marvell 88SS1074;
  • кэш: 8 ГБ.

  1. Длительная гарантия

Для модели Plextor M6 Pro 512, созданной с использованием сравнительно устаревшего контроллера Marvell 88SS9187, одно из преимуществ – около 100 тысяч IOPS.

Второе – технология TrueSpeed, увеличивающая ресурс и скорость работы диска.

В прошлом году этот накопитель был в числе самых дорогих, а сейчас, при цене от 17000 руб., представляет собой вполне доступное для многих потребителей устройство.

Производитель предлагает 5 лет гарантии на устройство – при стандартных 2–3.

Характеристики SSD:

  • скорость: до 557 Мбайт/с;
  • контроллер: Marvell 88SS9187;
  • технология: 19 нм.

  1. Самый быстрый и лёгкий

При цене накопителя Samsung 950 Pro PCIe SSD более 20 тысяч рублей его скорость чтения в 600–2500 Мбайт/с вполне оправдывает расходы благодаря высокой скорости и лёгкости.

Память имеет 48-слойную структуру и высокую надёжность. Производитель гарантирует 5 лет работы SSD при ежедневной перезаписи на уровне 80–100 ГБ.

Параметры накопителя:

  • контроллер: Samsung UBX;
  • объём: 512 ГБ;
  • масса: 10 г;
  • максимальная скорость: для интерфейса SATA III – до 600 Мбайт, для PCIe – до 2500 Мбайт/с.

  1. Самый прочный

Устройство SanDisk SDSSDEX2-480G-G25 имеет достаточно высокую стоимость, на уровне 25000 руб.

При этом скорость его чтения/записи составляет 850 Мбайт/с, а стойкость к ударам достигает 800G.

Высокая прочность обеспечивается специальным корпусом из серии Extreme 900 Portable, благодаря которому этот внешний SSD-диск легко транспортировать и, в отличие от большинства других моделей, можно ронять.

Весит он, правда, целых 210 г, а в длину превышает 13 см.

Технические характеристики:

  • объём: 512 ГБ;
  • скорость чтения/записи: 850/850 Мбайт/с;
  • интерфейс: USB 3.1.

  1. Сохранность информации

Рассматривая модель Toshiba OCZ VT180 480, можно остановиться на таком её преимуществе как возможность корректного завершения работы даже при непредвиденном отключении питания.

В результате данные сохраняются надёжнее, чем при использовании многих других вариантов.

А дополнительным плюсом при покупке накопителя является его цена – от 10 тыс. руб.

Параметры устройства:

  • контроллер: 8-канальный Barefoot 3;
  • скорость: до 550 Мбайт/с;
  • объём: 480 ГБ.

  1. Оптимальное соотношение цены и возможностей

При скорости на уровне 570 Мбайт/с накопитель Transcend SSD370 512 стоит всего лишь около 12 тыс. рублей.

Среди других достоинств – возможность перезаписи до 3000 раз, размер 2,5 дюйма и комплектация специальными салазками в 3,5-дюймовый отсек.

Основные параметры накопителя:

  • контроллер: Silicon Motion SM2246EN
  • технология: 16-нм;
  • объём: 512 ГБ;
  • скорость чтения/записи: 570/470 Мбайт/с.

Рис.11. Компактный и доступный Transcend SSD370 512

Твердотельные накопители SSD появились на рынке достаточно давно, но все большей и большей популярности они набирают в последнее время. SSD диски стоят достаточно дорого, но при этом они очень сильно улучшают производительность системы, благодаря очень высокой скорости считывания и записи данных.

В отличие от обычных жестких дисков здесь вместо магнитных дорожек используется новая технология - флеш память. Но кроме большого преимущества в производительности здесь появляется еще несколько недостатков - это строк службы, небольшой объем и высокая цена. В этой статье мы попытаемся разобраться как выбрать SSD диск для компьютера, а также рассмотрим какими они бывают и чем отличаются друг от друга. Но сначала нужно выяснить что же такое SSD диски.

SSD или Solid State Drive - это запоминающее устройство без движущихся элементов на основе микросхем памяти или другими словами, твердотельный накопитель.

Обычный жесткий диск состоит из вращающегося на большой скорости магнитного диска и головки для считывания и записи данных. Запоминание данных выполняется путем намагничивания и размагничивания нужных ячеек. Но на работу с ячейкой, изменение скорости вращения диска, а главное, на перемещение записывающей головки уходит слишком много времени. Поэтому жесткий диск не может быть очень быстрым.

Но эту проблему решает SSD диск. Здесь, вместо всего этого сложного механизма используется флеш память. Благодаря этому больше нет необходимости перемещать записывающую головку, запись в любую точку диска выполняется мгновенно.

Но технология памяти на основе микросхем дороже, чем обычные жесткие диски. К тому же флеш память имеет одно очень нежелательное свойство - это ограниченное количество перезаписей. Поэтому производителям приходится придумывать различные способы размещения ячеек и компенсации, чтобы их диски работали максимально долго.

Чтобы вы смогли правильно выбрать ssd диск для своего компьютера сначала нужно рассмотреть какие типы дисков существуют.

Типы SSD дисков

За время развития этой технологии появилось несколько типов SSD дисков, они отличаются размером, способом подключения к компьютеру, скоростью работы и способом размещения ячеек памяти.

Размеры и способы подключения

Размер, способ подключения SSD диска к материнской плате и скорость работы связаны между собой, потому что эти характеристики зависят именно от интерфейса подключения. Рассмотрим самые распространенные способы подключения SSD чтобы вы знали какой ssd выбрать:

  • SATA - эти SSD диски подключаются к тому же самому интерфейсу, что и привычные HDD диски. Для совместимости с местом для установки эти диски имеют корпус размером 9х7х2,5 сантиметров, что соответствует размеру HDD. В наше время они используются чаще всего, поскольку могут быть легко установлены в любой компьютер или ноутбук вместо обычного жесткого диска. Но у такого варианта есть ограничение - максимальная скорость передачи данных - 6 Гб/секунду. Для HDD это очень большая цифра, но некоторые SSD могут развить и больше.
  • mSATA - точно такой же интерфейс подключения, как и у SATA, а поэтому та же скорость работы. Только здесь нет такого большого корпуса. Такой вид SSD часто применяется для ноутбуков. Отличие этого типа дисков только в размере.
  • PCIe - эти диски имеют вид обычной карты PCI и благодаря использованию этого интерфейса могут развивать скорость передачи данных до 30 Гб/сек. Но они могут использоваться только в персональных компьютерах из-за своего размера, а также стоят в два, а то и три раза дороже обычных SATA SSD.
  • NVMe - модификация PCIe SSD дисков, которая дает еще большую производительность благодаря специальным оптимизациям, но на данный момент она совместима только с новыми материнскими платами. Корпус выглядит точно так же как и у PCIe.
  • M.2. - это уменьшенный вариант SSD диска для PCI. Он работает по тому же протоколу и позволяет развивать такую же скорость работы с данными, но вместо большого корпуса выполнен в форме одной небольшой платы. Большинство современных плат уже поддерживают слоты такого типа, но также они могут быть подключены просто через PCI.

Способы организации ячеек памяти

По способу организации ячеек памяти SSD накопители делятся различаются количеством бит, которые хранятся в одной ячейке. Фактически, чем меньше, тем больше ресурс перезаписей и скорость работы, но в то же время и выше цена. Поэтому производители пытаются удешевить производство путем увеличения количества данных в одной ячейке. На данный момент существуют такие типы памяти:

  • SLC NAND - этот тип памяти разработан достаточно давно. В одной ячейке размещается один бит данных. Он гарантирует максимальную производительность и до десяти тысяч перезаписей данных, но стоит очень дорого и поэтому не выпускается.
  • MLC NAND - это следующее поколение флеш памяти, в которой на одну ячейку припадает два бита. Количество возможных перезаписей снижается до трех тысяч раз, и скорость работы падает вдвое. Но зато цена таких устройств уже более-менее приемлемая.
  • TLC NAND - в этом стандарте в одной ячейке уже размещается 3 бита данных и ресурс перезаписи падает до 1000. Но они еще дешевле. Производители нашли выход из ситуации, добавляя различные контроллеры балансировки, которые подменяют вышедшие ячейки на резерв, а также пытаются дать одинаковую нагрузку на все ячейки. Также используется кэш из памяти типа SLC. Все это позволяет гарантировать работу SSD до 3 лет и больше.

Сейчас чаще всего используется TLC и MLC с различными оптимизациями.

Как выбрать SSD диск?

Теперь, когда вы уже знаете какими бывают SSD диски давайте рассмотрим как выбрать SSD диск для компьютера. Новые пользователи обращают внимание только на объем, цену и размер. Но нужно еще учитывать тип размещения памяти, способ подключения и производителя контроллера.

Объем памяти SSD

Чем больше размер тем больше цена устройства, но в то же время больше ресурс перезаписи, потому что контроллер имеет больше пространства чтобы перераспределить нагрузку между всеми ячейками. Чаще всего SSD диски имеют размер 128, 256 Гб и 1 Тб. Чаще всего, под систему пользователи берут SSD размером 128 Гб под систему.

Способ подключения

Фактически существует только два способа подключения: с помощью интерфейса SATA и PCI. SATA более распространенный и универсальный. Такой SSD диск может быть установлен как в компьютер, так и в ноутбук. Но если вы хотите очень большой скорости лучше выбрать интерфейс PCI.

Тип памяти

Чтобы узнать какой ssd лучше выбрать 2016 для компьютера нужно обратить внимание на тип памяти. Первый тип памяти, SLC - сейчас уже не выпускается. На рынке распространены два типа - MLC и TLC. Первый дороже, но имеет ресурс записи 3000 тысяч раз, а скорость работы с данными 50 миллисекунд. Такие диски при обычном использовании могут служить 5-7 лет, но стоят дороже.

Диски, использующие память TLC, имеют ресурс записи 1000 раз, 75 миллисекунд время чтения и около трех лет-пяти лет срок службы. Для домашнего компьютера вполне можно выбирать память TLC. Но если вы очень часто копируете большие файлы, то лучше выбрать MLC.

Производитель чипа

Есть еще один очень важный параметр, на который стоит обратить внимание. Это производитель чипа контроллера. С одной стороны, может показаться что это не имеет значения, но у каждого производителя есть свои особенности и недостатки.

  • SandForce - это один из самых популярных контроллеров. Он достаточно дешев и имеет хорошую производительность. Главная особенность - использование сжатия при записи данных на носитель. Но есть недостаток - при заполнении диска скорость записи существенно падает;
  • Marvel - похожий на SandForce, имеет отличную скорость работы, но она уже не зависит от процента заполнения диска. Недостаток - слишком дорогой;
  • Samsung - тоже достаточно популярные контроллеры. Имеют поддержку шифрования AES на аппаратном уровне, но иногда можно наблюдать снижение скорости из-за проблем с алгоритмом сборки мусора;
  • Fizon - имеет отличную производительность, небольшая цена и отсутствие каких-либо проблем, которые бы снижали скорость. Но тут есть свой недостаток. Он плохо себя показал в операциях с произвольной записью и чтением;
  • Intel - лучше Fizon, но намного дороже.

Основные производители плат памяти - это Samsung, SanDisk, Intel и Toshiba. Но платы памяти не настолько отличаются, поэтому большого значения выбор производителя платы не имеет.

Современные SSD-накопители достаточно надежные, а с учетом того, что цена за 1 ГБ (в долларах) постепенно падает, то использовать SSD во многих случаях даже более рационально, чем работа с HDD. Но какой SSD выбрать?

Полтора года назад журналист Tech Report решил провести эксперимент по выявлению наиболее надежных SSD. Он взял шесть моделей накопителей: Corsair Neutron GTX, Intel 335 Series, Kingston HyperX 3K, Samsung 840, Samsung 840 Pro, и поставил все шесть на цикличный процесс чтения/записи. Объем памяти каждого накопителя составлял 240-256 ГБ, в зависимости от модели.

Сразу стоит сказать, что все шесть моделей успешно выдержали заявленную производителем нагрузку. Более того, большинство моделей выдержало больше циклов чтения-записи, чем это заявлено разработчиками.

Тем не менее, 4 из 6 моделей сдались перед достижением объема в 1 ПБ «прокачанной» через диск информации. Зато 2 модели из тех, что участвовали в этом аттракционе «железной смерти» (Kingston и Samsung 840 Pro) выдержали даже 2 ПБ, и только потом отказали. Конечно, выборка из 6 SSD не может служить показателем работы для всех SSD без исключения, но определенная репрезентативность у этой выборки все же есть. Процедура цикличного чтения-записи тоже не идеальный показатель, ведь накопители могут выходить из строя по самым разным причинам. Но результаты теста очень интересны.

Один из выводов: производители достаточно деликатно подходят к вопросу выбора лимита работы своих накопителей - как уже говорилось выше, все SSD выдержали положенный лимит объема записанной информации.

Что касается самих моделей, то первым вышел из строя Intel 335 Series . У SSD этой модели есть одна особенность - они прекращают работу, как только появляются сбойные сектора. Сразу после этого накопитель входит в режим чтения, а затем и вовсе превращается в «кирпич». Если бы не инструкция «остановись при сбое», возможно, SSD проработал бы и дольше. Проблемы начались с диском уже после прохождения отметки в 700 ТБ. Информация на диске оставалась читаемой до момента перезагрузки, после чего диск превратился в кусок железа.

Samsung 840 Series успешно дошел до отметки в 800 ТБ, но начал показывать большое количество ошибок, начиная с 900 ТБ, и отказал без всяких предупреждений, не дойдя до петабайта.

Следующим отказал Kingston HyperX 3K - у модели тоже есть инструкция прекращать работу при появлении ряда сбойных секторов. К концу работы устройство начало выдавать уведомления о проблемах, позволяя понять, что конец близко. После отметки в 728 ТБ накопитель перешел в режим чтения, и после перезагрузки перестал отвечать.

Corsair Neutron GTX стал следующей жертвой, пройдя отметку в 1.1 ПБ. Но у накопителя уже насчитывались тысячи сбойных секторов, устройство начало выдавать большое количество предупреждений о проблемах. Даже спустя ещее 100 ТБ диск позволят записывать данные. Но после очередного ребута устройство перестало даже определяться системой.

Осталось всего две модели Kingston и Samsung 840 Pro, которые героически продолжали работать, достигнув отметки даже в 2 ПБ.

Kingston Hyper X использует сжатие данных по возможности, но тестировщик стал записывать несжимаемые данные для чистоты теста. Для этого использовалась программа Anvil"s Storage Utilities, служащая для выполнения тестов по чтению-записи данных.

Диск показал хорошие результаты, хотя на промежутке между 900 ТБ и 1 ПБ уже возникли неисправимые ошибки, плюс поврежденные сектора. Ошибок было всего две, но это все равно проблема. После того, как диск отказал на 2.1 ПБ, он перестал определяться системой после ребута.

Последним павшим железным солдатом в этой битве стал Samsung 840 Pro

Прошлый год оказался очень тяжёлым периодом для всей отрасли SSD. На рынке на протяжении всего года ощущался серьёзный дефицит NAND-памяти, и это сдерживало его развитие. Производители не получали необходимых объёмов сырья для сборки накопителей, что серьёзно тормозило весь технический прогресс и подготовку новых моделей накопителей, на которые попросту не находилось необходимых микросхем NAND. Пользователям же частенько приходилось жертвовать объёмами SSD или вообще отказываться от их приобретения из-за серьёзно возросших цен.

Например, по сравнению с показателями на середину 2016 года розничные цены на некоторые популярные модели потребительских SSD выросли чуть ли не в полтора раза.

И это, между прочим, отражает изменение цен на чипы NAND-памяти не в полной мере — сами микросхемы флеш-памяти за тот же срок прибавили в цене почти вдвое. Но к счастью, немного сгладило положение появление новых типов памяти: TLC NAND и 3D NAND с более крупными ядрами и более высокой плотностью хранения информации. Именно их внедрение в SSD позволило немного притормозить безудержное взвинчивание цен.

Тем не менее в конечном итоге мы всё равно пришли к тому, что поставки твердотельных накопителей за прошедший год почти не выросли в штучном выражении. Правда, на этом фоне немного возросла средняя ёмкость реализуемых SSD. Если в 2016 году она составляла 362 Гбайт, то к настоящему моменту среднестатистический накопитель увеличился в объёме до 388 Гбайт. Но вряд ли это можно считать большим достижением для ещё недавно бурно растущего рынка.

Впрочем, не всё так печально. В четвёртом квартале в конце тоннеля забрезжил свет. Похоже, что в начале 2018 года ситуация будет переломлена, поставки микросхем флеш-памяти наконец-то смогут превысить спрос, и это станет сигналом к началу стабилизации и последующего снижения цен на SSD. Спрос на флеш-память со стороны производителей мобильных устройств, как ожидается, серьезно ослабеет, что даст рынку SSD столь необходимые для его развития ресурсы. Имеющиеся оценки сходятся на том, что глобальная потребность в микросхемах NAND в первом квартале наступившего года в сравнении с концом прошлого года снизится на величину до 5 процентов. Основные же производители флеш-памяти при этом продолжат заметно наращивать поставки.

Соотношение спроса на NAND-память и её предложения (по данным DRAMeXchange)

В результате можно ожидать коренного изменения рыночной ситуации. Недопоставки микросхем NAND продолжались почти полтора года и были связаны как с непрекращающимся ростом закупок флеш-памяти для нужд производителей мобильных устройств, так и с достаточно малой скоростью увеличения её производства, обусловленной техническим перевооружением полупроводниковых фабрик для перехода с 2D на 3D-компоновку флеш-памяти. Теперь же процесс замены и пусконаладки нового оборудования либо завершился, либо находится на финальном этапе, так что все основные производители микросхем NAND начинают массово отгружать партнёрам современную 3D NAND с 64 или 72 слоями.

Так, переход крупнейшего производителя флеш-памяти, Samsung, к массовому выпуску 64-слойной 3D V-NAND произошёл в третьем квартале 2017-го, и сейчас компания активно наращивает её поставки, так что к концу года доля новой памяти достигла 50 процентов от общего объёма производства чипов NAND корейским гигантом. В третьем квартале прошлого года запустила производство своей 64-слойной трёхмерной BiCS3-памяти и компания Toshiba. Сейчас такая память составляет где-то треть от всей флеш-продукции японского производителя, но в течение наступившего года выпуск BiCS3 должен будет перевалить за 50-процентную долю. Производственный партнёр Toshiba, компания Western Digital действует по синхронному плану: она тоже интенсивно увеличивает поставки собственных чипов BiCS3.

На выводе на рынок 64-слойной трёхмерной памяти сосредоточены и компаньоны по совместному предприятию IMFT, Micron и Intel. Их 32-слойная память уже широко используется в разнообразных твердотельных накопителях, но в данный момент на фабриках этих компаний происходит интенсивный переход на производство более прогрессивных микросхем NAND с 64 слоями. Что же касается SK Hynix, то она в конце минувшего года успешно освоила выпуск 72-слойной 3D NAND. До сих пор поставки флеш-памяти SK Hynix были не слишком заметны, но компания в ближайшее время собирается переломить тенденцию со своей новой технологией.

Причина всеобщего перехода на выпуск 64-слойной памяти с пространственной компоновкой заключается в том, что за счёт роста плотности размещения ячеек такая память однозначно выгоднее планарной NAND даже с учётом капитальных затрат, более продолжительного производственного цикла и более низкого выхода годных кристаллов. Поэтому нет никаких сомнений в том, что чипы 64-слойной NAND станут основным типом памяти для твердотельных накопителей на ближайшие 12-18 месяцев. Безусловно, впоследствии же нас может ждать и дальнейшее увеличение числа слоёв, но 96- и 128-слойная память начнёт применяться в массовом сегменте лишь в достаточно отдалённой перспективе.

Таким образом, ситуация с производством флеш-памяти вот-вот стабилизируется, и новые потрясения на этом фронте пока не грозят. Вследствие этого цены на твердотельные накопители за первые кварталы 2018 года должны будут понизиться на 20-25 процентов, а рынок в целом вернётся к среднегодовым темпам роста на уровне 15 процентов. Кроме того, можно ожидать, что в 2018 году индустрия SSD станет более интересной и подвижной с технологической точки зрения, ведь разработчики и производители накопителей смогут получать сырьё для своей продукции в достаточных объёмах. Поэтому в наступившем году можно рассчитывать на заметное оживление ситуации в целом - ценовые войны, анонсы новых интересных моделей, появление перспективных технологий.

Прошедший же год, по сути, стал периодом технологического застоя. Единственная заметная тенденция за этот период - быстрое распространение NVMe-накопителей, которые, с одной стороны, наращивали свою популярность в потребительском сегменте, а с другой - стали активно приобретаться для комплектации готовых компьютеров крупными сборщиками. Хотя это и выглядит несколько неожиданно, но в результате доля M.2 PCIe-накопителей в структуре поставок ведущих производителей к концу завершившегося года смогла достичь 50-процентного показателя.

Если же говорить о том, как проявили себя в прошедшем году конкретные производители SSD, то здесь никаких принципиальных изменений не произошло. Крупнейшим игроком осталась компания Samsung, продолжающая контролировать примерно третью часть всего рынка SSD. Положение же остальных участников рынка изменилось в соответствии с тем, насколько близко в цепочке поставок они находились к производителям NAND-памяти и насколько сильно страдали от дефицита. В соответствии с этим принципом смогли заметно увеличить свою рыночную долю Western Digital, Toshiba, SK Hynix и Micron. Но о соперничестве с Samsung речь не идёт. Второй по величине производитель, Western Digital, на данный момент контролирует лишь порядка 19 процентов рынка.

Фирмы, которые относятся ко второму эшелону и не имеют собственного производства флеш-памяти, напротив, снизили своё присутствие на рынке. Особенно сильно пострадали позиции Kingston и Lite-On, доля которых ужалась до 6 процентов, в то время как полтора-два года назад они могли похвастать двузначными процентными показателями рыночных долей.

Рынок SSD в 2017 году был довольно застойным, а дефицит флеш-памяти привёл к тому, что цены на твердотельные накопители росли, а не падали. В середине 2016 года недорогой полутерабайтный SSD можно было купить дешевле $100, а некоторые терабайтные модели были доступны по цене ниже $200. Теперь таких цен нет даже и близко. Печальная картина вырисовывается и в том случае, если говорить не о ценах, а о техническом прогрессе. 2016 год принёс Samsung 960 PRO и Samsung 960 EVO, которые продолжали оставаться лучшими NVMe-накопителями на протяжении всего прошлого года, несмотря на тщетные попытки других производителей SSD превзойти их по потребительским свойствам.

Но говорить о том, что в 2017-м совсем не было никаких прорывов, в корне неверно. Ведь именно в прошлом году Intel начала внедрение своей технологии Optane на массовом рынке. Два с половиной месяца тому назад компания сбросила настоящую бомбу - потребительский накопитель Intel Optane SSD 900p, построенный по совершенно иным относительно привычных SSD на NAND-памяти принципам. И даже несмотря на то, что Optane SSD 900p - пока сугубо нишевой продукт со скудным модельным рядом, ограниченной доступностью и запредельной ценой, он смог продемонстрировать серьёзное улучшение по многим важным для пользователей направлениям, чем привлёк к себе самое пристальное внимание со стороны прогрессивной части компьютерного сообщества.

Футуристическая технология памяти 3D Xpoint, лежащая в основе Optane, была изначально представлена Intel и Micron в 2015 году. Предполагалось, что первые SSD с её использованием появятся ещё в 2016-м, но с практическим внедрением возникли некоторые трудности. Поэтому первые продукты класса Optane, а это были небольшие кеширующие накопители для десктопного сегмента и серверные модели для высоконагруженных серверов, появились лишь весной 2017 года. Однако то были лишь пробные продукты, вышедший же осенью Optane SSD 900p - это та вещь, благодаря которой к новой технологии наконец-то должны захотеть прикоснуться энтузиасты и техноманьяки.

Откровенно говоря, вопреки многим ожиданиям Optane SSD 900p не смог предложить непревзойдённую производительность во всех без исключения областях. Но преимущество этого накопителя формируется благодаря тому, что он очень быстр именно там, где классические SSD упёрлись в непреодолимый барьер: при работе с небольшими блоками данных с короткими очередями запросов. И пусть по скорости последовательного чтения Optane SSD 900p проигрывает классическим скоростным NVNe SSD, зато его скорость записи и в особенности латентности достигают непревзойдённых значений. Поэтому в среднем в типичных потребительских сценариях Intel Optane SSD 900p примерно на 30 процентов превосходит Samsung 960 PRO, а в некоторых видах нагрузки преимущество в быстродействии может даже многократным.

Кроме того, память 3D Xpoint по сравнению с обычной NAND обещает гораздо более высокую надёжность хранения данных. Даже по заявленным характеристикам для Optane SSD 900p разрешается десятикратная перезапись полной ёмкости каждый день в течение пяти лет. И это делает такие накопители не только заведомо гораздо более живучими в сравнении как с привычными SSD, так и с HDD, но и попросту вечными.

Но всё же нам бы не хотелось слишком идеализировать Optane SSD 900p. Сегодня у этого решения существует немало недостатков, из-за которых оно пока не способно стать полноправной заменой для традиционных твердотельных накопителей. Во-первых, расстраивает цена: Optane SSD 900p более чем вдвое дороже, чем самый быстрый из потребительских SSD, Samsung 960 PRO. Во-вторых, определённые проблемы существуют с энергопотреблением и типоразмером, в результате чего использование Optane SSD 900p пока возможно лишь в крупногабаритных десктопах, но никак не в мобильных или компактных системах. И в-третьих, выпускаемые в настоящее время версии Optane SSD 900p имеют объём лишь 280 или 480 Гбайт, а более крупные ёмкости, которые интересны для достаточно большого числа пользователей, попросту не предусмотрены.

Иными словами, Optane SSD 900p несколько опережает своё время. Сегодня этот накопитель стоит воспринимать скорее как удачную демонстрацию новаторской технологии энергонезависимой памяти, но хочется надеяться, что в течение ближайших лет все проблемы удастся решить и построенные на 3D XPoint накопители (и модули памяти) придут в массовый сегмент и довершат начатую революцию.

Кажется, что все проблемы, которые сдерживали рост отрасли SSD, уже позади. Пик цен чипов NAND-памяти пройден, а переход на выпуск флеш-памяти с пространственной компоновкой по большей части завершён. И значит, больше нет никаких препятствий к тому, чтобы 2018 год стал новым периодом бурного развития индустрии. Именно этого мы и ждём в ближайшем будущем.

Поголовье накопителей, основанных на 3D NAND, должно сильно возрасти. К ведущим производителям SSD, которые уже практически завершили перевод своей продукции на новые технологии памяти, должны будут присоединиться и более мелкие игроки. Поэтому ассортимент потребительских моделей SSD в ближайшей перспективе ожидают серьёзные изменения. В первую очередь они затронут сегмент NVMe-накопителей, который на данный момент заполнен огромным числом моделей, построенных на явно устаревшей аппаратной начинке. Этому должны поспособствовать разработчики контроллеров, которые в первом квартале наступившего года собираются предложить новые платформы либо с улучшенными характеристиками, либо со сниженной себестоимостью.

В частности, в 2018 году должны будут наконец появиться накопители, которые смогут сдвинуть с пьедестала производительности пресловутый Samsung 960 PRO. Как минимум обновит своё флагманское предложение сама компания Samsung, но, быть может, какие-то из перспективных решений на разрабатываемых NVMe-контроллерах второго поколения окажутся не хуже.

Не грозит близкая смерть и сегменту SATA-накопителей. Несмотря на то, что SATA SSD частенько стали восприниматься как устаревающие решения, многие производители намерены не только продолжать поставлять такие модели, но и заниматься выпуском новых модификаций, имеющих улучшенные характеристики. В качестве примера можно вновь привести планы лидера - компании Samsung, которая в течение ближайших недель должна будет предложить улучшенную замену для своих серий 850 PRO и 850 EVO. Новую платформу для SATA-накопителей, доступную для применения производителями второго-третьего эшелона готовит и Phison. Благодаря новому контроллеру Phison PS3112-S12 должна будет шагнуть вперёд производительность и надёжность многих ширпотребных моделей SATA-накопителей.

Изменений стоит ждать и в премиальном рыночном сегменте. С одной стороны, компания Intel за счёт развёртывания дополнительных производственных линий в ближайшем будущем сможет увеличить объёмы выпуска своей 3D XPoint-памяти, и это позволит ей добавить в модельный ряд Optane 900p более ёмкие модификации, даже несмотря на убыточность их реализации. С другой - на выход накопителей семейства Optane собирается ответить компания Samsung, разрабатывающая альтернативную технологию Z-SSD, в которой используется классическая трёхмерная NAND. Описание первого представителя класса Z-SSD, накопителя SZ985, уже появилось на сайте компании, и оно обещает такие же, как у Optane, ультранизкие задержки и запредельный ресурс. Правда, насколько эти параметры будут отвечать тому, что мы увидим на практике, пока не известно.

Бытует мнение, что одним из самых существенных недостатков твердотельных накопителей выступает их конечная и притом относительно невысокая надёжность. И действительно, в силу ограниченности ресурса флеш-памяти, которая обуславливается постепенной деградацией её полупроводниковой структуры, любой SSD рано или поздно теряет свою способность к хранению информации. Вопрос о том, когда это может произойти, для многих пользователей остаётся ключевым, поэтому многие покупатели при выборе накопителей руководствуются не столько их быстродействием, сколько показателями надёжности. Масла в огонь сомнений подливают и сами производители, которые из маркетинговых соображений в условиях гарантии на свои потребительские продукты оговаривают сравнительно невысокие объёмы разрешённой записи.

Тем не менее, на практике массовые твердотельные накопители демонстрируют более чем достаточную надёжность для того, чтобы им можно было доверять хранение пользовательских данных. Эксперимент, показавший отсутствие реальных причин для переживаний за конечность их ресурса, некоторое время тому назад проводил сайт TechReport . Им был выполнен тест, показавший, что, несмотря на все сомнения, выносливость SSD уже выросла настолько, что о ней можно вообще не задумываться. В рамках эксперимента было практически подтверждено, что большинство моделей потребительских накопителей до своего отказа способны перенести запись порядка 1 Пбайт информации, а особенно удачные модели, вроде Samsung 840 Pro, остаются в живых, переварив и 2 Пбайт данных. Такие объёмы записи практически недостижимы в условиях обычного персонального компьютера, поэтому срок жизни твердотельного накопителя попросту не может подойти к концу до того, как он полностью морально устареет и будет заменён новой моделью.

Однако убедить скептиков данное тестирование не смогло. Дело в том, что проводилось оно в 2013-2014 годах, когда в ходу были твердотельные накопители, построенные на базе планарной MLC NAND, которая изготавливается с применением 25-нм техпроцесса. Такая память до своей деградации способна переносить порядка 3000-5000 циклов программирования-стирания, а сейчас в ходу уже совсем другие технологии. Сегодня в массовые модели SSD пришла флеш-память с трёхбитовой ячейкой, а современные планарные техпроцессы используют разрешение 15-16 нм. Параллельно распространение приобретает флеш-память с принципиально новой трёхмерной структурой. Любой из этих факторов способен в корне изменить ситуацию с надёжностью, и в сумме современная флеш-память обещает лишь ресурс в 500-1500 циклов перезаписи. Неужели вместе с памятью ухудшаются и накопители и за их надёжность нужно снова начинать переживать?

Скорее всего - нет. Дело в том, что наряду с изменением полупроводниковых технологий происходит непрерывное совершенствование контроллеров, управляющих флеш-памятью. В них внедряются более совершенные алгоритмы, которые должны компенсировать происходящие в NAND изменения. И, как обещают производители, актуальные модели SSD как минимум не менее надёжны, чем их предшественники. Но объективная почва для сомнений всё-таки остаётся. Действительно, на психологическом уровне накопители на базе старой 25-нм MLC NAND с 3000 циклов перезаписи выглядят куда основательнее современных моделей SSD с 15/16-нм TLC NAND, которая при прочих равных может гарантировать лишь 500 циклов перезаписи. Не слишком обнадёживает и набирающая популярность TLC 3D NAND, которая хоть и производится по более крупным технологическим нормам, но при этом подвержена более сильному взаимному влиянию ячеек.

Учитывая всё это, мы решили провести собственный эксперимент, который позволил бы определить, какую выносливость могут гарантировать актуальные сегодня модели накопителей, основанные на наиболее ходовых в настоящее время типах флеш-памяти.

Контроллеры решают

Конечность жизни накопителей, построенных на флеш-памяти, уже давно ни у кого не вызывает удивления. Все давно привыкли к тому, что одной из характеристик NAND-памяти выступает гарантированное количество циклов перезаписи, после превышения которого ячейки могут начинать искажать информацию или просто отказывать. Объясняется это самим принципом работы такой памяти, который основывается на захвате электронов и хранении заряда внутри плавающего затвора. Изменение состояний ячеек происходит за счёт приложения к плавающему затвору сравнительно высоких напряжений, благодаря чему электроны преодолевают тонкий слой диэлектрика в одну или другую сторону и задерживаются в ячейке.

Полупроводниковая структура ячейки NAND

Однако такое перемещение электронов сродни пробою - оно постепенно изнашивает изолирующий материал, и в конечном итоге это приводит к нарушению всей полупроводниковой структуры. К тому же существует и вторая проблема, влекущая за собой постепенное ухудшение характеристик ячеек, - при возникновении туннелирования электроны могут застревать в слое диэлектрика, препятствуя правильному распознаванию заряда, хранящегося в плавающем затворе. Всё это значит, что момент, когда ячейки флеш-памяти перестают нормально работать, неизбежен. Новые же технологические процессы лишь усугубляют проблему: слой диэлектрика с уменьшением производственных норм становится только тоньше, что снижает его устойчивость к негативным влияниям.

Однако говорить о том, что между ресурсом ячеек флеш-памяти и продолжительностью жизни современных SSD существует прямая зависимость, было бы не совсем верно. Работа твердотельного накопителя - это не прямолинейная запись и чтение в ячейках флеш-памяти. Дело в том, что NAND-память имеет достаточно сложную организацию и для взаимодействия с ней требуются специальные подходы. Ячейки объединены в страницы, а страницы - в блоки. Запись данных возможна лишь в чистые страницы, но для того, чтобы очистить страницу, необходимо сбросить весь блок целиком. Это значит, что запись, а ещё хуже - изменение данных, превращается в непростой многоступенчатый процесс, включающий чтение страницы, её изменение и повторную перезапись в свободное место, которое должно быть предварительно расчищено. Причём подготовка свободного места - это отдельная головная боль, требующая «сборки мусора» - формирования и очистки блоков из уже побывавших в использовании, но ставших неактуальными страниц.

Схема работы флеш-памяти твердотельного накопителя

В результате реальные объёмы записи в флеш-память могут существенно отличаться от того объёма операций, который инициируется пользователем. Например, изменение даже одного байта может повлечь за собой не только запись целой страницы, но и даже необходимость перезаписи сразу нескольких страниц для предварительного высвобождения чистого блока.

Соотношение между объёмом записи, совершаемой пользователем, и фактической нагрузкой на флеш-память называется коэффициентом усиления записи. Этот коэффициент почти всегда выше единицы, причём в некоторых случаях - намного. Однако современные контроллеры за счёт буферизации операций и других интеллектуальных подходов научились эффективно снижать усиление записи. Распространение получили такие полезные для продления жизни ячеек технологии, как SLC-кеширование и выравнивание износа. С одной стороны, они переводят небольшую часть памяти в щадящий SLC-режим и используют её для консолидации мелких разрозненных операций. С другой - делают нагрузку на массив памяти более равномерной, предотвращая излишние многократные перезаписи одной и той же области. В результате сохранение на два разных накопителя одного и того же количества пользовательских данных с точки зрения массива флеш-памяти может вызывать совершенно различную нагрузку - всё зависит от алгоритмов, применяемых контроллером и микропрограммой в каждом конкретном случае.

Есть и ещё одна сторона: технологии сборки мусора и TRIM, которые в целях повышения производительности предварительно готовят чистые блоки страниц флеш-памяти и потому могут переносить данные с места на место без какого-либо участия пользователя, вносят в износ массива NAND дополнительный и немалый вклад. Но конкретная реализация этих технологий также во многом зависит от контроллера, поэтому различия в том, как SSD распоряжаются ресурсом собственной флеш-памяти, могут быть значительными и здесь.

В итоге всё это означает, что практическая надёжность двух разных накопителей с одинаковой флеш-памятью может очень заметно различаться лишь за счет различных внутренних алгоритмов и оптимизаций. Поэтому, говоря о ресурсе современного SSD, нужно понимать, что этот параметр определяется не только и не столько выносливостью ячеек памяти, сколько тем, насколько бережно с ними обращается контроллер.

Алгоритмы работы контроллеров SSD постоянно совершенствуются. Разработчики не только стараются оптимизировать объём операций записи в флеш-память, но и занимаются внедрением более эффективных методов цифровой обработки сигналов и коррекции ошибок чтения. К тому же некоторые из них прибегают к выделению на SSD обширной резервной области, за счёт чего нагрузка на ячейки NAND дополнительно снижается. Всё это тоже сказывается на ресурсе. Таким образом, в руках у производителей SSD оказывается масса рычагов для влияния на то, какую итоговую выносливость будет демонстрировать их продукт, и ресурс флеш-памяти - лишь один из параметров в этом уравнении. Именно поэтому проведение тестов выносливости современных SSD и вызывает такой интерес: несмотря на повсеместное внедрение NAND-памяти с относительно невысокой выносливостью, актуальные модели совершенно необязательно должны иметь меньшую надёжность по сравнению со своими предшественниками. Прогресс в контроллерах и используемых ими методах работы вполне способен компенсировать хлипкость современной флеш-памяти. И именно этим исследование актуальных потребительских SSD и интересно. По сравнению с SSD прошлых поколений неизменным остаётся лишь только одно: ресурс твердотельных накопителей в любом случае конечен. Но как он поменялся за последние годы - как раз и должно показать наше тестирование.

Методика тестирования

Суть тестирования выносливости SSD очень проста: нужно непрерывно перезаписывать данные в накопителях, пытаясь на практике установить предел их выносливости. Однако простая линейная запись не совсем отвечает целям тестирования. В предыдущем разделе мы говорили о том, что современные накопители имеют целый букет технологий, направленных на снижение коэффициента усиления записи, а кроме того, они по-разному выполняют процедуры сборки мусора и выравнивания износа, а также по-разному реагируют на команду операционной системы TRIM. Именно поэтому наиболее правильным подходом является взаимодействие с SSD через файловую систему с примерным повторением профиля реальных операций. Только в этом случае мы сможем получить результат, который обычные пользователи могут рассматривать в качестве ориентира.

Поэтому в нашем тесте выносливости мы используем отформатированные с файловой системой NTFS накопители, на которых непрерывно и попеременно создаются файлы двух типов: мелкие - со случайным размером от 1 до 128 Кбайт и крупные - со случайным размером от 128 Кбайт до 10 Мбайт. В процессе теста эти файлы со случайным заполнением множатся, пока на накопителе остаётся более 12 Гбайт свободного места, по достижении же этого порога все созданные файлы удаляются, делается небольшая пауза и процесс повторяется вновь. Помимо этого, на испытуемых накопителях одновременно присутствует и третий тип файлов - постоянный. Такие файлы общим объёмом 16 Гбайт в процессе стирания-перезаписи не участвуют, но используются для проверки правильной работоспособности накопителей и стабильной читаемости хранимой информации: каждый цикл заполнения SSD мы проверяем контрольную сумму этих файлов и сверяем её с эталонным, заранее рассчитанным значением.

Описанный тестовый сценарий воспроизводится специальной программой Anvil’s Storage Utilities версии 1.1.0, мониторинг состояния накопителей проводится при помощи утилиты CrystalDiskInfo версии 7.0.2. Тестовая система представляет собой компьютер с материнской платой ASUS B150M Pro Gaming, процессором Core i5-6600 со встроенным графическим ядром Intel HD Graphics 530 и 8 Гбайт DDR4-2133 SDRAM. Приводы с SATA-интерфейсом подключаются к контроллеру SATA 6 Гбит/с, встроенному в чипсет материнской платы, и работают в режиме AHCI. Используется драйвер Intel Rapid Storage Technology (RST) 14.8.0.1042.

Список моделей SSD, принимающих участие в нашем эксперименте, к настоящему моменту включает уже более пяти десятков наименований:

  1. (AGAMMIXS11-240GT-C, прошивка SVN139B);
  2. ADATA XPG SX950 (ASX950SS-240GM-C, прошивка Q0125A);
  3. ADATA Ultimate SU700 256 Гбайт (ASU700SS-256GT-C, прошивка B170428a);
  4. (ASU800SS-256GT-C, прошивка P0801A);
  5. (ASU900SS-512GM-C, прошивка P1026A);
  6. Crucial BX500 240 Гбайт (CT240BX500SSD1, прошивка M6CR013);
  7. Crucial MX300 275 Гбайт (CT275MX300SSD1, прошивка M0CR021);
  8. (CT250MX500SSD1, прошивка M3CR010);
  9. GOODRAM CX300 240 Гбайт (SSDPR-CX300-240, прошивка SBFM71.0 );
  10. (SSDPR-IRIDPRO-240 , прошивка SAFM22.3);
  11. (SSDPED1D280GAX1, прошивка E2010325);
  12. (SSDSC2KW256G8, прошивка LHF002C);
Статьи по теме: