Телевизор на квантовых точках - описание SUHD технологии, преимущества и недостатки, лучшие модели с ценами. Дисплей на квантовых точках

В последнее время наряду с набирает популярность технология , о которой не так давно мы рассказывали на страницах Mediasat. В этот раз мы хотим познакомить читателей с технологией квантовых точек.

Как пишут журналисты The Conversation UK, корейская компания-производитель электроники LG задала тон всем прочим, объявив еще на январской выставке CES-2015 о грядущем выпуске на рынок телевизоров ультравысокой чёткости (Ultra HD) с дисплеями, при производстве которых использована технология квантовых точек – улучшенный метод производства цветных дисплеев.

Что же такое на самом деле «квантовая точка»?

Принцип действия технологии, ставшей новым значительным шагом в производстве дисплеев после , заключается в пропускании лучей синего света через нано-кристаллы размером от двух до десяти нанометров (нм), которые поглощают свет с одной длиной волны и излучают при этом свет другой, определённой длины волны. Каждая точка, в зависимости от своего размера, излучает свет определённого цвета. Перед блоком подсветки экрана помещается плёнка, состоящая из квантовых точек, имеющих размеры, необходимые для излучения красного и зелёного света. Достижение эффекта свечения при помощи квантовых точек сужает длину волн получаемого таким образом красного и зелёного цвета, что значит уменьшение количества света, задерживаемого LCD-фильтром. А это значит, что мы получаем более чёткую цветопередачу и более яркие цвета.

Кадмиевые квантовые точки дают особенно чистую передачу зелёного цвета. NASA

Своим объявлением компания LG опередила других производителей, желающих завоевать лидерские позиции путём улучшения показателей контрастности, насыщенности и расширения цветовой гаммы (диапазона цветов, которые может воспроизводить дисплей) – то есть, всего того, что может дать использование квантовых точек. Всё это делает подобные дисплеи такими, которые идеально подходят для просмотра контента высокой и ультравысокой чёткости, а также для всех тех, кто работает в области графического дизайна, производства фото и видео.

Переход к новому уровню качества телевещания

Переход к Ultra HD телевидению означает не только увеличение числа пикселей и производство экранов более высокого разрешения. Производители и вещатели желают обеспечить создание среды, в которой видео- и фотоизображения, доставляемые зрителю, должны иметь максимально высокий динамический диапазон при сохранении экономической рентабельности для производителя.

И это не что-то из серии «далёкого будущего». На самом деле, новые стандарты – то есть, то, что необходимо для внедрения в жизнь любой новой технологии – уже чётко определены. Стандарт ITU-rec 2020 для телевидения ультравысокой чёткости предусматривает трансляцию телепрограмм на скорости до 120 кадров в секунду, с более высоким битрейтом, а также с расширенной цветовой гаммой и улученной контрастностью.

В настоящее время контент, известный как «программы в стандарте высокой чёткости», транслируется в разрешении 1920 x 1080 пикселей, с определённой частотой кадров, диапазоном цветов и контрастностью, позволяющей воспроизводить его без проблем на любых совместимых дисплеях. Однако как вещательная, так и киноиндустрия уже способны производить материал, который по своему качеству выходит за рамки утвержденного стандарта. Проблема теперь заключается в отсутствии на рынке должного количества устройств, которые могли бы отображать видеоматериал в столь высоком качестве – а стало быть, нет особого смысла производить большое количество контента, который особо не на чем смотреть.

Таким образом, использование квантовых точек расширяет возможности дисплеев ультравысокой чёткости, позволяя в будущем передавать зрителям контент с расширенным динамическим диапазоном. Есть и дополнительное преимущество: квантовые точки намного дешевле всех прочих конкурирующих технологий, используемых для производства дисплеев высокого качества – таких как, например OLED, органические светодиоды. На прошлых выставках CES технология была громко представлена, как следующая величайшая технология будущего, однако, похоже, её звезда начала закатываться, не успев толком взойти на небосвод.

В настоящее время квантовые точки используются лишь в сочетании с другими технологиями подсветки, однако вполне возможна разработка методов, позволяющих использовать их в качестве отдельной технологии. В любом случае, с 2015 года и в ближайшем будущем лучшее в мире качество воспроизведения видео- и фотоконтента в режиме высоких разрешений будут связывать с использованием квантовых точек.

Квантовые точки - это крошечные кристаллы, излучающие свет с точно регулируемым цветовым значением. Технология Quantum dot LED существенно повышает качество изображения, не влияя при этом на конечную стоимость устройств, в теории:).

Обычные жидкокристаллические телевизоры могут охватывать лишь 20–30% цветового диапазона, который способен воспринимать человеческий глаз. Изображение на обладает большой реалистичностью, но данная технология не ориентирована на массовое производство больших диагоналей дисплеев. Кто следит за рынком телевизоров, помнит, что еще в начале 2013 года Sony представила первый телевизор на основе квантовых точек (Quantum dot LED, QLED) . Крупные производители телевизоров выпустят модели телевизоров на квантовых точках в этом году, Samsung их уже представил в России под названием SUHD, но об этом в конце статьи. Давайте узнаем, чем отличаются дисплеи, произведенные по QLED технологии, от уже привычных ЖК-телевизоров.

В ЖК-телевизорах отсутствуют чистые цвета

Ведь жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный , зеленый , синий ). Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками

В телевизорах QLED в качестве источника света выступают квантовые точки - это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением. Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек . В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

QLED телевизор с дисплеем на основе технологии квантовых точек от Samsung

Компания Samsung Electronics представила в России премиальные телевизоры, изготовленные по технологии квантовых точек. Новинки с разрешением 3840 × 2160 пикселей оказались не из дешёвых, а флагманская модель вовсе оценена в 2 млн рублей.

Нововведения. Изогнутые телевизоры Samsung SUHD на квантовых точках отличаются от распространённых ЖК-моделей более высокими характеристиками цветопередачи, контрастности и энергопотребления. Интегрированный процессор обработки изображения SUHD Remastering Engine позволяет масштабировать видеоконтент низкого разрешения в 4K. Помимо этого, новые телевизоры получили функции интеллектуальной подсветки Peak Illuminator и Precision Black, технологии Nano Crystal Color (улучшает насыщенность и естественность цветов), UHD Dimming (обеспечивает оптимальный контраст) и Auto Depth Enhancer (автоматическая настройка контрастности для определённых областей картинки). В программной основе телевизоров лежит операционная система Tizen с обновлённой платформой Samsung Smart TV.

Цены. Семейство Samsung SUHD TV представлено в трёх сериях (JS9500, JS9000 и JS8500), где стоимость начинается со 130 тыс. рублей. Во столько российским покупателям обойдётся 48-дюймовая модель UE48JS8500TXRU. Максимальная цена на телевизор с квантовыми точками достигает 2 млн рублей - за модель UE88JS9500TXRU с 88-дюймовым изогнутым дисплеем.

Телевизоры нового поколения по технологии QLED готовят южнокорейские Samsung Electronics и LG Electronics, китайские TCL и Hisense, а также японская Sony. Последняя уже выпустила LCD-телевизоры, изготовленные по технологии квантовых точек, о чем я упоминал в описании технологии Quantum dot LED.

Нанотехнология в телевизорах Sony нового поколения

В январе, на выставке CES 2013 Sony анонсировала несколько новых ЖК телевизоров с технологией подсветки «Triluminos». Новый метод подсветки должен обеспечить "насыщенные, достоверные цвета, и великолепное воспроизведение красной и зеленой частей цветового спектра". Если копнуть глубже, оказывается, что Triluminos включает в себя оптическую технологию «Сolor IQ» от американской компании QD Vision с использованием так называемых квантовых точек в качестве источников подсветки ЖК панели.

А что же такое квантовые точки?

Квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы. Чем меньше размер кристалла, тем больше расстояние между энергетическими уровнями. При переходе электрона на энергетический уровень ниже, испускается фотон. Регулируя размер квантовой точки, мы можем изменять энергию испускаемого фотона, а значит, можем изменять цвет испускаемого квантовой точкой света. Основное преимущество квантовой точки заключается в возможности, изменяя размер, точно настраивать длину волны излучаемого света.

Если вы не хотите вдаваться в подробности, можете считать, что квантовые точки – это миниатюрные элементы с уникальными свойствами, в том числе со способностью излучения света только в определенном, узком диапазоне волн. Вроде как микроскопические излучатели, которые светятся зеленым, красным или синим цветом, в зависимости от размера элементов.


Красный, зеленый и синий спектр квантовых точек

Все телевизоры создают изображение путем смешивания трех основных цветов: красного, зеленого и синего (RGB). Правда, Sharp добавляет еще и желтый, дополнительный цвет. Но это ни в коем случае не меняет сути системы создания в телевизоре цветного изображения. Источники подсветки со строго заданной длиной волны более оптимальны в системе подсветки, чем белый свет. Чем более точными будут RGB цвета подсветки, тем естественнее будут оттенки цвета на экране. А смешивание в различных пропорциях источников RGB дает все возможные для нынешней системы телевидения оттенки цвета.

Обычные ЖК дисплеи создают эти цвета с помощью цветных фильтров. Плазменные дисплеи создают RGB цвета с помощью люминофора, который светится одним из трех основных цветов (подобным образом работали и кинескопные телевизоры). В OLED телевизорах LG и Samsung сегодня используются разные методы. Технология LG использует белые OLED источники, закрытые цветными фильтрами. Samsung использует самосветящиеся красный, зеленый и синий субпиксели OLED.

Итак, каким же образом Sony использует квантовые точки?

Телевизоры Sony X9005 и W905

Из моделей телевизоров Sony 2013 года с использованием квантовых точек делается подсветка в телевизорах Серий X9005 и W905. В традиционных ЖК LED моделях используются синие светодиоды, покрытые специальным желтым люминофором для создания светового потока в относительно широкой полосе, со спектральным максимумом в желтой области. Что достаточно эффективно, по сравнению с другими технологиями (например, CCFL ЖК и плазма), но по-прежнему впустую расходуется много энергии.

Triluminos использует синие светодиоды, но они не закрываются желтым люминофором, синий свет от светодиода проходит через оптический элемент IQ, содержащий красную и зеленую квантовые точки. Таким образом, синие светодиоды выполняют две функции: создание первичного источника света и возбуждение красного и зеленого источника в виде квантовых точек. Примерно две трети световой энергии синих светодиодов используется для возбуждения квантовых точек.

На рисунке схематично представлены принципы действия традиционной боковой LED подсветки ЖК панели (вверху) и подсветки в телевизорах Sony Triluminos. В традиционной системе свет от белого LED источника распространяется по световоду вдоль панели (позади ее) и отражаясь от рефлектора освещает пиксельные ячейки панели. На нижнем рисунке принцип распространения света такой же. Но в Triluminos свет синего светодиода проходит через красную и зеленую квантовые точки.

Возможно, кто-то помнит телевизоры под маркой "Triluminos", которые Sony производила ранее с использованием цветных светодиодов. Но вариант "Triluminos" 2013 года отличается не только применением квантовых точек. Сегодня в моделях Sony Triluminos используется конструкция с боковой подсветкой ЖК панели, тогда как в 2008 году был задействован полный массив RGB источников позади панели.

Что дают квантовые точки в телевизоре?

Sony утверждает, что по сравнению с ЖК телевизорами, использующими белые светодиоды, ее новая технология подсветки расширяет цветовую гамму в сторону потенциально достижимых оттенков, т. е. при наличии соответствующих источников видео. Но поскольку все современные телевизоры способны полностью воспроизводить все имеющиеся в стандартных видеоисточниках оттенки цвета, это заявление в некотором смысле является маркетинговой гиперболой.

Тем не менее, преимущества у новой технологии есть, даже если абстрагироваться от назойливого маркетинга и преимуществ, предполагаемых в последующем при появлении видео источников с расширенной цветовой гаммой. Когда мы оценивали цветопередачу откалиброванных в соответствии с требованиями REC. 709 проекторов с LED источниками отметили, что цвет от RGB светодиодов выглядит более естественно, чем аналогичный, но созданный с помощью цветных фильтров (проекторы DLP), двухцветных зеркал (проекторы LCD / LCOS) или ртутных проекционных ламп. Один из специалистов по ТВ технологиям заметил, что свет от LED источников, это как картина, написанная более чистыми красками.

А некоторые обозреватели cnet.com при тестировании обычных ЖК LED телевизоров отмечают в своих отзывах голубоватый оттенок на экранах, по сравнению, скажем, с плазменными дисплеями. Этот эффект, как правило, наиболее часто отмечается в темных областях, но я замечал легкий голубоватый " холод "и в более ярких материалах, и на телесном тоне. В некоторых случаях это заметно даже несмотря на, казалось бы, отличный цвет по результатам измерений.

Так что, вполне вероятно, что при одинаковых измеренных результатах точности цветопередачи, картинка на дисплеях с квантовыми точками окажется более реалистичной. А вот насколько, неизвестно? Но не приведет ли смешение перенасыщенных цветов к другим проблемам? Как будут действовать цветные фильтры, которые по-прежнему используются на ЖК дисплее, при «чистом» цвете подсветки? Ответы на эти предположения и вопросы следует искать в обзорах новых телевизоров серии X9005 и любых других телевизоров с подсветкой на квантовых точках.

Кликните на картинку для ее увеличения

Нынешнее поколение технологии квантовых точек в телевизорах использует первичный источник света, как синие светодиоды в Sony Triluminos. Но это необязательно и не всегда так будет. Можно возбуждать квантовые точки и непосредственно. Таким образом, полностью на квантовых точках можно создать систему подсветки ЖК панели. Но на квантовых точках можно сделать и не только подсветку. Можно сделать и непосредственно самосветящийся дисплей, подобный OLED дисплеям. Но вместо органических светодиодов будут использоваться самоизлучающие квантовые точки трех основных цветов. Компания QD Vision называет такие дисплей «QLED», и они могут иметь характеристики подобные тем, что демонстрируют сегодня дисплеи OLED (например, бесконечная контрастность). Смогут ли они при этом обеспечить еще лучшую цветопередачу и меньшее энергопотребление? На данный момент, пока не ясно. Учитывая технологические трудности в процессе освоения массового производства OLED телевизоров, очень обнадеживающим является тот факт что в перспективе есть еще одна технология, которая может обладать аналогичными потенциально захватывающими возможностями.

Кликните на картинку для ее увеличения

Заключение

В отличие от многих новых технологий, демонстрируемых сегодня на выставках, технология квантовых точек уже реально используется и имеет хорошие потенциальные возможности для дальнейшего совершенствования. На данный момент квантовые точки используются лишь в системе подсветки некоторых из лучших ЖК телевизоров Sony. Но, как и дисплеи на OLED источниках, они могут стать перспективной основой дисплеев будущего. Насколько это возможно? Поживем, увидим.


2.
3. SUHD-телевизоры Samsung 2016: технология Quantum Dot
4.

Квантовые точки - это полупроводниковые кристаллы размером от 5 до 10 нанометров (чуть больше размеров молекулы ДНК). В зависимости от размера и материала, из которого изготовлены нанокристаллы, под воздействием электрического тока или света они излучают различные цвета. А 10-битная матрица новых телевизоров Samsung позволяет отображать до 1 млрд цветовых оттенков, что делает цветопередачу невероятно точной и насыщенной.

Чем технология Quantum Dot отличается от других?

Какие же преимущества обеспечивает технология Quantum Dot? Первые ЖК-телевизоры уступали современным как в яркости, так и в цветопередаче. ЖК-телевизоры с LED-подсветкой последних поколений сделали существенный шаг вперед в плане увеличения яркости, но не обеспечивали идеальную цветопередачу.

Технология OLED – это компромиссное решение, реализующее качественную цветопередачу, но при небольшой яркости. Использование же квантовых точек позволяет достичь максимального результата как в отношении цветопередачи, так и в отношении яркости, без каких-либо компромиссов. Дисплеи на квантовых точках воспроизводят наиболее яркую и одновременно реалистичную картинку.

В телевизорах Samsung SUHD источником света являются квантовые точки. Они излучают свет, который передает естественные цвета и создает реалистичное изображение.

Технология квантовых точек была разработана чтобы преодолеть недостатки OLED. Так, в экранах Quantum Dot используются материалы неорганического происхождения, которые имеют существенно больший срок работы. А для телевизоров, которые эксплуатируются по 7-10 лет, это немаловажно. Кроме того, у телевизоров на базе технологии Quantum Dot полностью отсутствует проблема выгорания, которая имеет место быть при использовании OLED.

Реализована технология квантовых точек в следующих линейках телевизоров SUHD TV Samsung, доступных на российском рынке: топовые KS9000 (изогнутые) и KS8000 (плоские) с диагоналями от 49 до 78 дюймов, а также серии KS7500 (изогнутые) с диагоналями от 49 до 65 дюймов и KS7000 (плоские) с диагоналями от 49 до 60 дюймов.


Нано-технология покрытия экрана Samsung Ultra Black позволяет поглощать блики света, отражаемого экраном, даже в ярко освещенной комнате.

Что еще используется для улучшения изображения?

Помимо квантовых точек, в SUHD-телевизорах Samsung используется еще несколько важных технологий для улучшения качества изображения. Например, технология Ultra Black, которая реализована в новых телевизионных панелях, по структуре похожих на строение глаза мотылька.

Такая конструктивная особенность позволяет минимизировать блики на экране, снизив отражение внешнего света до 99,7%, и повысить контраст на 35%. В итоге зритель может насладиться отличной глубиной черного цвета при просмотре телевизора в дневное время суток даже в хорошо освещенной комнате.


Технология HDR 1000 (справа) обеспечивает исключительно точную цветопередачу в широком диапазоне оттенков и высокий уровень детализации.

Еще одна технология, воплощенная в SUHD-телевизорах Samsung 2016 года - HDR 1000. Она позволяет воссоздавать реалистичный динамический диапазон яркости, сохраняя насыщенные цвета как в темных, так и в светлых участках изображения. В итоге если кадр содержит как очень темные, так и очень светлые области, они будут выглядеть гораздо более естественно, чем на экране телевизора без поддержки HDR. Пиковый показатель яркости новых телевизоров Samsung составляет 1000 нит, что и отражено в названии технологии. Но чтобы насладиться HDR-эффектом, потребуется соотвествующий контент.

Панели RGB против RGBW: какую выбрать?

Телевизоры с разрешением 4К появились сравнительно недавно. При этом на рынке уже имеются устройства с разными типами матриц. Например, есть модели, содержащие только RGB-пиксели (используются в телевизорах Samsung), а есть панели, в которые добавлен пиксель белого цвета - RGBW. Пользователь, который не разбирается в технологических тонкостях, вряд ли почувствует здесь подвох.

А он есть и заключается в следующем: если в телевизоре с RGB-матрицей каждый пиксель состоит из трех субпикселей красного, синего или зеленого цветов, то в RGBW-матрице таких пикселей на 75% меньше. В остальных один из основных цветов, использующихся в дисплеях для формирования полной палитры оттенков, заменен белым. В результате в таких телевизорах только часть пикселей способна отображать все оттенки.

В рамках разработанной организацией ICDM методики измерения качества дисплеев (IDMS) примечателен показатель Contrast Modulation (CM) или «Модуляция контрастности», который позволяет говорить о том, насколько полно дисплей способен отображать картинку.

Данный показатель для RGBW-телевизоров в полтора раза ниже, чем для RGB: в первом случае он составляет 60%, во втором - 95%. В некоторых странах информация о модуляции контрастности уже указывается, наряду с информацией о разрешении.

Без специальных измерительных приборов заметить отличия в качестве изображения тоже можно: например, когда на экране появляются четкие границы цветовых переходов, на телевизорах с RGB-панелью они отображаются корректно, а на RGBW края переходов представляют немного лестничную структуру.

Кроме того, при отображении на RGBW-матрице RGB-сигнала происходит потеря части цветовой информации, в результате чего фильм предстанет перед вами в несколько ином виде, нежели задумывалось режиссером.

Фото: Компании-производители; PlasmaChem GmbH; Samsung Electronics

Еще совсем недавно дисплеи телевизоров на органических светодиодах (OLED) считались последним словом в развитии дисплейных технологий. Однако прогресс не стоит на месте и вниманию покупателей представляется новинка – жидкокристаллические дисплеи на основе квантовых точек.

В переводе с английского означает, собственно, квантовые точки. Они представляют собой мельчайшие частицы с диаметром всего в несколько нанометров. Увидеть невооруженным взглядом их невозможно. Но это является их основным преимуществом. Регулируя размер и придавая определенную форму этому полупроводнику, можно осуществлять точный контроль над электроводностью, а значит, и менять цветность света, исходящего от квантовой точки. Крупные точки будут казаться красными, более мелкие – синими, средние – зелеными. Благодаря своей стабильности, а также точному контролю над размерами частиц, стало возможным получить именно тот цвет, который необходим. При этом заданный оттенок будет практически вечным.

Преимущества нанокристаллов перед LED

Дисплеи современных жидкокристаллических телевизоров со светодиодной подсветкой (LED) имеют большой недостаток: их изображение зависит от светодиодов, которые излучают не чисто белый свет, при этом с узким цветовым спектром. Есть определенные технологии, позволяющие приблизить белый к идеалу, но на выходе полученные цвета все равно не обладают одинаковой интенсивностью (зеленый и синий будут ярче красного). Чтобы как-то сгладить эту разницу используют специальные настройки цветов в телевизоре, понижая значения синего и зеленого, но в результате изображение становится гораздо бледнее, чем необходимо.

Проблема поиска источника идеального белого света, который обеспечил бы при преломлении весь световой спектр с цветами одинаковой интенсивности, была решена при использовании квантовых точек.

Так, при создании дисплеев с использованием нанокристаллов была использована следующая технология. На специальную пленку наносятся квантовые частицы красного и зеленого оттенков. Они не разбиты на субпиксели как в модели RGB, а просто смешаны друг с другом. За этим слоем расположены светодиоды синего цвета. При попадании света от диода, квантовые точки начинают излучать свои красные и зеленые цвета. И как раз в процессе смешивания всех трех цветов получается искомый источник идеального белого света. Это обеспечивает правильную цветопередачу без искажения цветового спектра и потери интенсивности цветов.

Таким образом, квантовый механизм позволят разрешить целый ряд проблем, имеющихся у обычных ЖК-дисплеев с подсветкой. Среди основных преимуществ технологии QD-LED можно выделить следующие:

  1. Применение источника идеального белого света.
  2. Отсутствие проблемы с потерями контраста и яркости. Все цвета светового спектра имеют одинаковую степень интенсивности. Ни один цвет не преобладает над другим.
  3. Увеличение реалистичности цветопередачи более чем на 50 процентов (около миллиарда оттенков).
  4. Насыщенность цветов возрастает на 40 процентов.

Преимущества нанокристаллов перед OLED

OLED-дисплеи, работа которых основана на органических светодиодах, стали очередной ступенью в развитии электроники. По сравнению с обычными жидкокристаллическими дисплеями OLED имеют ряд преимуществ:

  • качество изображения не меняется в зависимости от угла обзора;
  • отсутствует подсветка;
  • уменьшается вес и габариты изделия;
  • повышается яркость и контрастность изображения.

Однако, несмотря на все преимущества, у данной технологии имеется целый ряд недостатков. Так, например, срок эксплуатации у OLED-дисплеев небольшой. Синие светодиоды имеют ограниченный несколькими годами непрерывной работы срок службы. А при выходе их из строя точность цветопередачи значительно искажается. Яркость изображения также отражается на длительности работы дисплеев и энергопотреблении: чем выше яркость, тем меньше срок эксплуатации и большее потребление энергии. Но самой значительной проблемой использования органических светодиодов является их серийное производство. Данная технология требует полной замены аппаратуры и конвейеров на заводах-изготовителях, а это приведет к значительному удорожанию продукции.

Использование же квантовых точек требует лишь небольших изменений и усовершенствования имеющихся конвейеров. Это прямо отразится на итоговой стоимости дисплеев. К тому же использование нанокристаллов решает проблему с недолговечностью цветопередачи и энергоэффективностью. В результате выходит качественное изображение, сопоставимое с OLED при этом более доступное для приобретения. /Более подробно читайте в нашем сайте.

Таким образом, квантовые точки становятся новой вехой в развитии жидкокристаллических дисплеев. Хотя кто знает, может не за горами будет новое научное открытие, которое перевернет наши сегодняшние представления о совершенных технологиях.

Статьи по теме: