Классификация систем параллельной обработки данных. Параллельная обработка

Министерство образования и науки Российской Федерации

ФГБОУ ВПО «Брянская государственная инженерно-технологическая

академия»

Кафедра информационных технологий

Последовательная и параллельная обработка информации

Расчётно-графическая работа № 1

по дисциплине

«Технологии обработки информации»

Вариант № 16

РГР-02068025.230400.084

Брянск 2015

Введение 3

Параллельная обработка информации 4

Системы с разделением памяти 6

Параллельная SQL-обработка 7

Последовательная обработка информации 9

Простые пакетные системы 10

Список литературы 13

Введение

В данной расчетно-графической рассматривается последовательная и параллельная обработка информации. Приведены примеры для каждой из них.

Последовательная обработка информации – это поочередное прохождение информации от входа до выхода через ряд преобразований (этапов), так что в каждый отрезок времени (специфический для данного блока) преобразование осуществляется лишь в одном функциональном блоке, а информация к нему поступает только от предыдущего блока.

Параллельная обработка информации – модель обработки информации, согласно которой информация проходит ряд преобразований в определенных функциональных блоках – так, что в каждый момент времени ее обработка ведется одновременно (параллельно) в нескольких блоках.

Параллельная обработка информации

Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и параллельность.

Параллельная обработка . Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят - ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Казалось бы, конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! Так, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и сделать это за то же время, что машина прежде находилась на конвейере.

Сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры используют тот или иной вид параллельной обработки. В ядре Pentium 4 на разных стадиях выполнения может одновременно находиться до 126 микроопераций. Вместе с тем, сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах.

Функционирование многих приложений, работающих в однопроцессорных компьютерных системах, может заметно улучшиться при использовании средств параллельной обработки информации. Далее представлены основные концепции параллельной обработки и архитектуры многопроцессорных компьютеров.

Когда несколько приложений запрашивают обработку своих заданий на однопроцессорном компьютере, весь объем работы приходится выполнять его единственному процессору. Целью параллельной обработки обычно является повышение производительности приложений. Когда приложение выдает запрос на выполнение задания для многопроцессорного компьютера, компьютер разбивает это задание на логические подзадачи, а затем обрабатывает их с помощью нескольких процессоров параллельно, что уменьшает время выполнения задания. Число подзадач, получаемых в результате разбиения одного большого задания, называется степенью параллельности. Уменьшение времени обработки информации, необходимого для выполнения задачи, прямо пропорционально степени параллельности. Быстродействие систем с параллельной обработкой стараются повышать так, чтобы обеспечить максимальную производительность каждого процессора системы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Северо - Казахстанский государственный университет им. М. Козыбаева

Факультет информационных технологии

Кафедра Информационных систем

Процесс параллельной обработки данных

Выполнила: Махкамбаева А.С.

Проверил: Касимов И. Р.

Петропавловск, 2014

Введение

В однопроцессорных системах имеет место так называемый псевдопараллелизм - хотя в каждый момент времени процессор занят обработкой одной конкретной задачи на другую, достигается иллюзия параллельного исполнения нескольких задач. В многопроцессорных системах задача максимально эффективного использования каждого конкретного процессора также решается путем переключения между процессами, однако тут, наряду с псевдопараллелизмом, имеет место и действительный параллелизм, когда на разных процессорах в один и тот же момент времени исполняются разные процессы.

Идея распараллеливания обработки данных основана на том, что большинство задач может быть разделено на набор меньших задач, которые могут быть решены одновременно. Процессы, выполнение которых хотя бы частично перекрывается по времени, называются параллельными.

В 1967 году Джин Амдал сформулировал закон ограничения роста производительности при распараллеливании вычислений: «В случае, когда задача разделяется на несколько частей, суммарное время ее выполнения на параллельной системе не может быть меньше времени выполнения самого длинного фрагмента». Согласно этому закону, ускорение выполнения программы за счет распараллеливания её инструкций ограничено временем, необходимым для выполнения её последовательных инструкций.

Классификация по Флинну

процесс синхронизация доступ планирование

В основе классификации лежат два понятия: потоки команд и потоки данных. Система с N процессорами имеет N счетчиков команд и, следовательно, N потоков команд.

Потоки команд

Потоки данных

Названия

SISD (Single Instruction, Single Data) -- архитектура компьютера, в которой один процессор выполняет один поток команд, оперируя одним потоком данных. Для данного класса возможен только псевдопараллелизм.

SIMD (Single Instruction, Multiple Data) -- архитектура компьютера, позволяющая обеспечить параллелизм на уровне данных. Основная идея подхода, основанного на параллелизме данных, заключается в том, что одна операция выполняется сразу над всеми элементами массива данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию, созданную единственным блоком управления, относительно разных данных. В любой момент в каждом процессоре выполняется одна и та же команда, но обрабатываются различные данные. Реализуется синхронный параллельный вычислительный процесс.

MISD (Multiple Instruction, Simple Data) -- архитектура компьютера, где несколько функциональных модулей (два или более) выполняют различные операции над одними данными. Отказоустойчивые компьютеры, выполняющие одни и те же команды избыточно с целью обнаружения ошибок, как следует из определения, принадлежат к этому типу.

MIMD (Multiple Instruction, Multiple Data) -- архитектура компьютера, где несколько независимых процессоров работают как часть большой системы. Обработка разделена на несколько потоков (обеспечивается параллелизм), каждый с собственным аппаратным состоянием процессора, в рамках единственного определённого программным обеспечением процесса или в пределах множественных процессов.

Среди систем MIMD можно выделить два подкласса: системы с общей оперативной памятью и системы с распределенной памятью. Для систем первого типа характерно то, что любой процессор имеет непосредственный доступ к любой ячейке этой общей оперативной памяти. Системы с распределенной памятью представляют собою обычно объединение компьютерных узлов. Под узлом понимается самостоятельный процессор со своей локальной оперативной памятью. В данных системах любой процессор не может произвольно обращаться к памяти другого процессора.

OpenMP (Open Multi-Processing) -- открытый стандарт для распараллеливания программ на языках С, С++ и Фортран. Описывает совокупность команд, которые предназначены для программирования многопоточных приложений на многопроцессорных системах с общей памятью. OpenMP реализует параллельные вычисления с помощью многопоточности, в которой «главный» поток создает набор подчиненных потоков и задача распределяется между ними.

Задачи, выполняемые потоками параллельно, также как и данные, требуемые для выполнения этих задач, описываются с помощью специальных директив препроцессора соответствующего языка -- прагм. Программа на C должна включать файл "omp.h".

Следующий цикл складывает массивы «a» и «b» поэлементно. Все, что требуется для параллельного выполнения в этом случае - одна прагма, вставленная непосредственно перед циклом.

#pragma omp parallel for

for (i=0; i < numPixels; i++)

c[i] = a[i]+b[i];

В этом примере используется "распределение нагрузки" - общий термин, применяемый в OpenMP для описания распределения рабочей нагрузки между потоками. Если распределение нагрузки применяется с директивой for, как показано в примере, итерации цикла распределяются между несколькими потоками, так что каждая итерация цикла выполняется только один раз, параллельно одним или несколькими потоками. OpenMP определяет, сколько потоков следует создать, а также наилучший способ создания, синхронизации и уничтожения потоков. Все, что требуется от программиста - указать OpenMP, какой именно цикл следует распараллелить.

Баланс нагрузки (распределение рабочей нагрузки поровну между потоками) является одним из наиболее важных атрибутов параллельного выполнения приложения. Без него некоторые потоки могут завершить работу значительно раньше остальных, что приводит к простою вычислительных ресурсов и потере производительности.

По умолчанию, OpenMP предполагает, что все итерации цикла занимают одинаковое время. В результате OpenMP распределяет итерации цикла между потоками примерно поровну и таким образом, чтобы минимизировать вероятность возникновения конфликтов памяти вследствие ее неправильного совместного использования.

#pragma omp parallel for

for (i=2; i < 10; i++)

factorial[i] = i * factorial;

Если цикл соответствует всем ограничениям и компилятор распараллелил цикл, это не гарантирует правильной работы, поскольку может существовать зависимость данных.

Зависимость данных существует, если различные итерации цикла (точнее говоря, итерация, которая выполняется в другом потоке) выполняют чтение или запись общей памяти.

MPI (Message Passing Interface) -- программный интерфейс для передачи информации, который позволяет обмениваться сообщениями между процессами, выполняющими одну задачу. В первую очередь MPI ориентирован на системы с распределенной памятью. Существуют реализации для языков Фортран, С и С++.

В первой версии MPI количество процессов (ветвей) задается в момент запуска программы, т.е. не существует возможности порождать ветви динамически. В версии 2.0 эта возможность появилась.

При запуске приложения все его порожденные ветви образуют группу ветвей (упорядоченное множество ветвей). С каждой группой связано «коммуникационное поле», описывающее всех участников обмена данными и общие для всех участников данные. Для описания коммуникационного поля служат коммутаторы. Все операции обмена данными могут происходить только внутри одного коммуникационного поля (это обеспечивается с помощью проверки коммутаторов).

Для C, общий формат имеет вид

rc = MPI_Xxxxx(parameter, ...);

Заметим, что регистр здесь важен. Например, MPI должно быть заглавным, так же как и первая буква после подчеркивания. Все последующие символы долны быть в нижнем регистре. Переменная rc - есть некий код возврата, имеющий целый тип. В случае успеха, он устанавливается в MPI_SUCCESS. Программа на C должна включать файл "mpi.h".

Сообщения MPI состоят из двух основных частей: отправляемые/получаемые данные, и сопроводительная информация (записи на конверте /оболочке/), которая помогает отправить данные по определенному маршруту.

Данным соответствует старт буфера, число, тип данных. Буфер - это просто память, которую компилятор выделил для переменной (часто массива) в вашей программе. Старт буфера - адрес, где данные начинаются. Например, начало массива в вашей программе. Число - количество элементов (не байтов!) данных в сообщении. Тип данных определяет размер одного элемента.

К информации «на обложке» относятся ранг в коммуникаторе - идентификатор процесса в коммуникационном поле, тег - произвольное число, которое помогает различать сообщения и сам коммуникатор, проверка которого обеспечивает передачу внутри одного коммуникационного поля.

Параллельная обработка данных

Существует несколько способов разделения обязанностей между процессами:

* делегирование («управляющий-рабочий»);

* сеть с равноправными узлами;

* конвейер;

* «изготовитель-потребитель».

Каждая модель характеризуется собственной декомпозицией работ, которая определяет, кто отвечает за создание потоков и при каких условиях они создаются.

В модели делегирования один поток («управляющий») создает потоки («рабочие») и назначает каждому из них задачу. Управляющему потоку нужно ожидать до тех пор, пока все потоки не завершат выполнение своих задач. Управляющий поток делегирует задачу, которую каждый рабочий поток должен выполнить, путем задания некоторой функции. Вместе с задачей на рабочий поток возлагается и ответственность за ее выполнение и получение результатов. Кроме того, на этапе получения результатов возможна синхронизация действий с управляющим (или другим) потоком.

Если в модели делегирования есть управляющий поток, который делегирует задачи рабочим потокам, то в модели с равноправными узлами все потоки имеют одинаковый рабочий статус. Несмотря на существование одного потока, который изначально создает все потоки, необходимые для выполнения всех задач, этот поток считается рабочим потоком, но он не выполняет никаких функций по делегированию задач. В этой модели нет никакого централизованного потока, но на рабочие потоки возлагается большая ответственность. Все равноправные потоки могут обрабатывать запросы из одного входного потока данных, либо каждый рабочий поток может иметь собственный входной поток данных, за который он отвечает. Рабочие потоки могут нуждаться во взаимодействии и разделении ресурсов.

Модель конвейера подобна ленте сборочного конвейера в том, что она предполагает наличие потока элементов, которые обрабатываются поэтапно. На каждом этапе отдельный поток выполняет некоторые операции над определенной совокупностью входных данных. Когда эта совокупность данных пройдет все этапы, обработка всего входного потока данных будет завершена. Этот подход позволяет обрабатывать несколько входных потоков одновременно. Каждый поток отвечает за получение промежуточных результатов, делая их доступными для следующего этапа (или следующего потока) конвейера Последний этап (или поток) генерирует результаты работы конвейера в целом.

В модели «изготовитель-потребитель» существует поток-«изготовитель», который готовит данные, потребляемые потоком-«потребителем». Данные сохраняются в блоке памяти, разделяемом между потоками «изготовителем» и «потребителем». Поток-изготовитель» должен сначала приготовить данные, которые затем поток-потребитель» получит. Такому процессу необходима синхронизация. Если поток-изготовитель» будет поставлять данные гораздо быстрее, чем поток-«потребитель» сможет их потреблять, поток-«изготовитель» несколько раз перезапишет результаты, полученные им ранее, прежде чем поток-«потребитель» успеет их обработать. Но если поток-«потребитель» будет принимать данные гораздо быстрее, чем поток-изготовитель» сможет их поставлять, поток-«потребитель» будет либо снова обрабатывать уже обработанные им данные, либо попытается принять еще не подготовленные данные.

Синхронные и асинхронные процессы

Синхронные процессы - процессы с перемежающимся выполнением, когда один процесс приостанавливает свое выполнение до тех пор, пока не завершится другой. Например, процесс А, родительский, при выполнении создает процесс В, сыновний. Процесс А приостанавливает свое выполнение до тех пор, пока не завершится процесс В. После завершения процесса В его выходной код помещается в таблицу процессов. Тем самым процесс А уведомляется о завершении процесса В. Процесс А может продолжить выполнение, а затем завершиться или завершиться немедленно.

Асинхронные процессы выполняются независимо один от другого. Это означает, что процесс А будет выполняться до конца безотносительно к процессу В. Между асинхронными процессами могут быть прямые родственные («родитель-сын») отношения, а могут и не быть. Если процесс А создает процесс В, они оба могут выполняться независимо, но в некоторый момент родитель должен получить статус завершения сыновнего процесса. Если между процессами нет прямых родственных отношений, у них может быть общий родитель.

Асинхронные процессы могут совместно использовать такие ресурсы, как файлы или память. Это может потребовать (или не потребовать) синхронизации или взаимодействия при разделении ресурсов.

Синхронизация процессов -- приведение нескольких процессов к такому их протеканию, когда определённые стадии разных процессов совершаются в определённом порядке, либо одновременно.

Синхронизация необходима в любых случаях, когда параллельно протекающим процессам необходимо взаимодействовать. Для её организации используются средства межпроцессного взаимодействия. Среди наиболее часто используемых средств -- сигналы и сообщения, семафоры и мьютексы, каналы, совместно используемая память.

Межпроцессное взаимодействие

Одним из решений проблем синхронизации доступа к критическим ресурсам является запрет всех прерываний непосредственно после входа процесса в критическую секцию и разрешение их перед самым выходом из нее. Если прерывания запрещены, то переключение процессов не происходит, так как передача управления планировщику может быть реализована только с использованием прерываний.

Этот подход, однако, имеет ряд существенных недостатков. Нет никаких гарантий, что процесс, запретивший прерывания, не зациклится в своей критической секции, тем самым приведя систему в полностью неработоспособное состояние. Кроме того, этот метод не годится для многопроцессорной системы, так как запрещение прерываний на одном из процессоров никак не влияет на исполнение процессов на других процессорах ВС, и эти процессоры по-прежнему имеют доступ к разделяемому ресурсу.

Сообщение - метод взаимодействия, когда один процесс посылает сообщение второму, а тот получает его. Если сообщение не пришло - второй процесс блокируется (ожидает сообщения) или сразу возвращает код ошибки.

С системами передачи сообщения связано большое количество проблем. Например, сообщение может потеряться. Чтобы избежать потери, получатель отсылает обратно сообщение с подтверждением приема. Если отправитель не получает подтверждения через некоторое время, он отсылает сообщение еще раз.

Теперь представим, что сообщение получено, а подтверждение до отправителя не дошло. Отправитель пошлет его еще раз и до получателя оно дойдет дважды. Крайне важно, чтобы получатель мог отличить копию предыдущего сообщения от нового. Это легко решается с помощью внедрения номера сообщения в его тело.

Семафор -- объект, позволяющий войти в заданный участок кода (обычно - критическую секцию) не более чем n процессам.

С семафором возможны три операции:

1) init(n); - инициализация счетчика (число, переданное счетчику, является количеством процессов, которые могут одновременно обращаться к критической секции)

2) wait(); - ждать пока счётчик станет больше 0; после этого уменьшить счётчик на единицу.

3) leave(); - увеличить счетчик на единицу.

Перед обращением процесса к критической секции необходимо вызвать метод wait(), после выполнения которого гарантировано, что количество процессов, одновременно обращающихся к ней не превышает n-1. Тогда процесс может продолжить работу и выполнить метод leave() после работы с критической секцией, тем самым дав знать остальным процессам, что “место освободилось”.

Если количество вызовов методов wait() и leave() не совпадает, то работа системы будет не корректной так же, как и в случае взаимной блокировки процессов - ситуации, при которой несколько процессов находятся в состоянии бесконечного ожидания ресурсов, занятых самими этими процессами:

Процесс 1

Процесс 2

Хочет захватить A и B, начинает с A

Хочет захватить A и B, начинает с B

Захватывает ресурс A

Захватывает ресурс B

Ожидает освобождения ресурса B

Ожидает освобождения ресурса A

Взаимная блокировка

Отладка взаимных блокировок, как и других ошибок синхронизации, усложняется тем, что для их возникновения нужны специфические условия одновременного выполнения нескольких процессов (в вышеописанном примере если бы процесс 1 успел захватить ресурс B до процесса 2, то ошибка не произошла бы).

Мьютексы -- это простейшие двоичные семафоры, которые могут находиться в одном из двух состояний -- отмеченном или неотмеченном (открыт и закрыт соответственно). Когда какой-либо поток, принадлежащий любому процессу, становится владельцем объекта mutex, последний переводится в неотмеченное состояние. Если задача освобождает мьютекс, его состояние становится отмеченным.

Задача мьютекса -- защита объекта от доступа к нему других потоков, отличных от того, который завладел мьютексом. В каждый конкретный момент только один поток может владеть объектом, защищённым мьютексом. Если другому потоку будет нужен доступ к переменной, защищённой мьютексом, то этот поток засыпает до тех пор, пока мьютекс не будет освобождён.

Test-and-set -- простая неразрывная (атомарная) процессорная инструкция, которая копирует значение переменной в регистр, и устанавливает некое новое значение. Во время исполнения данной инструкции процессор не может прервать её выполнение и переключится на выполнение другого потока. Если используется многопроцессорная архитектура, то пока один процессор выполняет эту инструкцию с ячейкой памяти, то другие процессоры не могут получить доступ к этой ячейке.

Алгоритм Деккера - первое известное корректное решение проблемы взаимного исключения в конкурентном программировании. Он позволяет двум потокам выполнения совместно использовать неразделяемый ресурс без возникновения конфликтов, используя только общую память для коммуникации.

Если два процесса пытаются перейти в критическую секцию одновременно, алгоритм позволит это только одному из них, основываясь на том, чья в этот момент очередь. Если один процесс уже вошёл в критическую секцию, другой будет ждать, пока первый покинет её. Это реализуется при помощи использования двух флагов (индикаторов "намерения" войти в критическую секцию) и переменной turn (показывающей, очередь какого из процессов наступила).

Одним из преимуществ алгоритма является то, что он не требует специальных Test-and-set инструкций и вследствие этого он легко переносим на разные языки программирования и архитектуры компьютеров. Недостатками можно назвать его применимость к случаю только с двумя процессами и использование Busy waiting вместо приостановки процесса (использование busy waiting предполагает, что процессы должны проводить минимальное количество времени внутри критической секции).

Алгоритм Петерсона -- программный алгоритм взаимного исключения потоков исполнения кода. Хотя изначально был сформулирован для 2-х поточного случая, алгоритм может быть обобщён для произвольного количества потоков. Алгоритм условно называется программным, так как не основан на использовании специальных команд процессора для запрета прерываний, блокировки шины памяти и т. д., используются только общие переменные памяти и цикл для ожидания входа в критическую секцию исполняемого кода.

Перед тем как начать исполнение критической секции, поток должен вызвать специальную процедуру (назовем ее EnterRegion) со своим номером в качестве параметра. Она должна организовать ожидание потока своей очереди входа в критическую секцию. После исполнения критической секции и выхода из нее, поток вызывает другую процедуру (назовем ее LeaveRegion), после чего уже другие потоки смогут войти в критическую область.

Общий принцип алгоритмом Петерсона для 2-х потоков:

Размещено на http://www.allbest.ru/

Планирование процессов

Планирование - обеспечение поочередного доступа процессов к одному процессору.

Планировщик - отвечающая за это часть операционной системы.

Алгоритм планирования без вытеснения (неприоритетный) - не требует прерывание по аппаратному таймеру, процесс останавливается только когда блокируется или завершает работу.

Алгоритм планирования с вытеснением (приоритетный) - требует прерывание по аппаратному таймеру, процесс работает только отведенный период времени, после этого он приостанавливается по таймеру, чтобы передать управление планировщику.

Процессы размещаются в приоритетных очередях в соответствии со стратегией Планирования. В системах UNIX/Linux используются две стратегии планирования: FIFO (сокр. от First In First Out, т.е. первым прибыл, первым обслужен) и RR (сокр. От round-robin, т.е. циклическая).

При использовании стратегии FIFO процессы назначаются процессору в соответствии со временем поступления в очередь.

RR-планирование совпадает с FIFO-планированием с одним исключением: после истечения кванта времени процесс помещается в конец своей приоритетной очереди, и процессору назначается следующий (по очереди) процесс.

Для обеспечения параллельной работы процессов может подойти приоритетное планирование. Каждому процессу присваивается приоритет, и управление передается процессу с самым высоким приоритетом. Приоритет может быть динамический и статический. Динамический приоритет может устанавливаться так: П=1/Т, где Т- часть использованного в последний раз кванта (если использовано 1/50 кванта, то приоритет 50. Если использован весь квант, то приоритет 1).

Часто процессы объединяют по приоритетам в группы, и используют приоритетное планирование среди групп, но внутри группы используют циклическое планирование.

Размещено на Allbest.ur

Подобные документы

    Структура, специфика и архитектура многопроцессорных систем; классификация Флинна. Организация взаимного исключения для синхронизации доступа к разделяемым ресурсам. Запрещение прерываний; семафоры с драйверами устройств. Кластеры распределения нагрузки.

    курсовая работа , добавлен 07.06.2014

    Управление основной и вторичной памятью компьютера. Доступ пользователей к различным общим сетевым ресурсам. Система поддержки командного интерпретатора. Распределение ресурсов между пользователями, программами и процессами, работающими одновременно.

    презентация , добавлен 24.01.2014

    Улучшение параметров модулей памяти. Функционирование и взаимодействие операционной системы с оперативной памятью. Анализ основных типов, параметров оперативной памяти. Программная часть с обработкой выполнения команд и размещением в оперативной памяти.

    курсовая работа , добавлен 02.12.2009

    Основные функции и процессы подсистемы управления процессами. Диспетчеризация процессов (потоков). Алгоритмы планирования выполнения потоков. Назначение и разновидности приоритетов в операционных системах. Функции подсистемы управления основной памятью.

    презентация , добавлен 20.12.2013

    Абстрактные модели и способы параллельной обработки данных, допустимая погрешность вычислений. Понятие параллельного процесса, их синхронизация и гранулы распараллеливания, определение закона Амдаля. Архитектура многопроцессорных вычислительных систем.

    дипломная работа , добавлен 09.09.2010

    Написание программы, реализующей работу мультипроцессорной системы с общей памятью, которая обрабатывает очереди заявок переменной длины. Анализ типовой архитектуры мультипроцессорной системы. Описание процедур и переменных, используемых в программе.

    курсовая работа , добавлен 21.06.2013

    Достоинства многопроцессорных систем. Создание программы, реализующей работу мультипроцессорной системы с общей памятью по обработке различного количества заявок, а также различного количества процессоров. Модели вычислений на векторных и матричных ЭВМ.

    курсовая работа , добавлен 21.06.2013

    Управление процессами - часть операционной системы, влияющая на функционирование вычислительной машины. Контекст дескриптор процесса и алгоритм его планирования. Средства синхронизации и взаимодействия процессов. Критическая секция, тупики и нити.

    лекция , добавлен 05.02.2009

    Сущность и содержание основных понятий операционных систем: процессы, память, файлы. Классификация по различным признакам и типы процессов, направления взаимосвязи. Принципы планирования работы процессора. Порядок управления невиртуальной памятью.

    презентация , добавлен 24.07.2013

    Классификация параллельных ВС. Системы с общей и распределенной памятью. Конвейеры операций. Производительность идеального конвейера. Суперскалярные архитектуры. VLIW-архитектура. Предсказание переходов. Матричные процессоры. Законы Амдала и Густафсона.

Параллельная обработка

Параллельная обработка

Параллельная обработка - модель выполнения прикладного процесса одновременно группой процессоров. Различают три способа реализация параллелизма:
-1- способ SIMD работы с одним потоком команд и несколькими потоками данных, при котором все процессоры, работающие по одной программе, обрабатывают собственные массивы данных под управлением ведущего процессора;
-2- способ MIMD работы с несколькими потоками команд и несколькими потоками данных, при котором процессоры работают по своим программам независимо друг от друга, лишь эпизодически связываясь друг с другом;
-3- способ MISD работы с несколькими потоками команд и одним потоком данных.

По-английски: Parallel processing

Финансовый словарь Финам .


Смотреть что такое "Параллельная обработка" в других словарях:

    Параллельная обработка - Один из видов обработки информации, когда несколько операций могут выполняться одновременно. В отличие от осознанной обработки, которая обычно выполняется последовательно, этот вид обработки происходит без осознанных усилий. Например, читая эти… …

    - (parallel processing) Метод работы на компьютере, при котором две или несколько частей программы выполняются не последовательно, а параллельно. Строго говоря, применение данного метода возможно только на компьютерах, обладающих двумя и более… … Словарь бизнес-терминов

    параллельная обработка - — Тематики электросвязь, основные понятия EN parallel processing …

    параллельная обработка - lygiagretusis apdorojimas statusas T sritis automatika atitikmenys: angl. parallel processing vok. Parallelverarbeitung rus. параллельная обработка, f pranc. traitement en parallèle, m … Automatikos terminų žodynas

    параллельная обработка информации - модель обработки информации в мозге головном, согласно коей информация проходит ряд преобразований в определенных «функциональных блоках» мозга так, что в каждый момент времени ее обработка ведется одновременно (параллельно) в нескольких… … Большая психологическая энциклопедия

    ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ИНФОРМАЦИИ - См. обработка информации, параллельная …

    Способ параллельной обработки данных большим числом процессоров, реализующий способ организации параллелизма MIMD. По английски: Massively Parallel Processing Синонимы английские: MPP См. также: Параллельная обработка Финансовый словарь Финам … Финансовый словарь

    ОБРАБОТКА, ПАРАЛЛЕЛЬНАЯ - Обработка информации, при которой более чем одна последовательность операций по обработке проводятся одновременно, или параллельно. Обработка может включать чрезвычайно низкий уровень, несимволические компоненты, такие, которые используются в… … Толковый словарь по психологии

    параллельная конвейерная обработка - lygiagretusis konvejerinis apdorojimas statusas T sritis radioelektronika atitikmenys: angl. parallel pipelining vok. Parallel Pipelineverarbeitung, f rus. параллельная конвейерная обработка, f pranc. traitement de pipeline parallèle, m … Radioelektronikos terminų žodynas

    одновременная обработка - параллельная обработка — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы параллельная обработка EN simultaneous processing … Справочник технического переводчика

Книги

  • Параллельная обработка данных
  • Параллельная обработка данных , А. О. Лацис. В учебном пособии дан углубленный систематический обзор технологий параллельной обработки данных. Основное внимание уделено традиционным программным технологиям параллельного программирования…

1.2 Параллельная обработка данных

1.2.1 Принципиальная возможность параллельной обработки

Практически все разработанные к настоящему времени алгоритмы являются последовательными. Например, при вычислении выражения a + b × c , сначала необходимо выполнить умножение и только потом выполнить сложение. Если в электронно-вычислительных машин присутствуют узлы сложения и умножения, которые могут работать одновременно, то в данном случае узел сложения будет простаивать в ожидании завершения работы узла умножения. Можно доказать утверждение, состоящее в том, что возможно построить машину, которая заданный алгоритм будет обрабатывать параллельно.

Можно построить m процессоров, которые при одновременной работе выдают нужный результат за один-единственный такт работы вычислителя.

Такие "многопроцессорные" машины теоретически можно построить для каждого конкретного алгоритма и, казалось бы, "обойти" последовательный характер алгоритмов. Однако не все так просто – конкретных алгоритмов бесконечно много, поэтому развитые выше абстрактные рассуждения имеют не столь прямое отношение к практической значимости. Их развитие убедило в самой возможности распараллеливания, явилось основой концепции неограниченного параллелизма, дало возможность рассматривать с общих позиций реализацию так называемых вычислительных сред – многопроцессорных систем, динамически настраиваемых под конкретный алгоритм.

1.2.2 Абстрактные модели параллельных вычислений

Модель параллельных вычислений обеспечивает высокоуровневый подход к определению характеристик и сравнению времени выполнения различных программ, при этом абстрагируются от аппаратного обеспечения и деталей выполнения. Первой важной моделью параллельных вычислений явилась машина с параллельным случайным доступом (PRAM – Parallel Random Access Machine), которая обеспечивает абстракцию машины с разделяемой памятью (PRAM является расширением модели последовательной машины с произвольным доступом RAM – Random Access Machine). Модель BSP (Bulk Synchronous Parallel, массовая синхронная параллельная) объединяет абстракции как разделенной, так и распределенной памяти. Считается, что все процессоры выполняют команды синхронно; в случае выполнения одной и той же команды PRAM является абстрактной SIMD-машиной, (SIMD – Single Instruction stream/Multiple Data stream – одиночный поток команд наряду со множественным потоком данных), однако процессоры могут выполнять и различные команды. Основными командами являются считывание из памяти, запись в память и обычные логические и арифметические операции.

Модель PRAM идеализирована в том смысле, что каждый процессор в любой момент времени может иметь доступ к любой ячейке памяти (Операции записи, выполняемые одним процессором, видны всем остальным процессорам в том порядке, в каком они выполнялись, но операции записи, выполняемые разными процессорами, могут быть видны в произвольном порядке). Например, каждый процессор в PRAM может считывать данные из ячейки памяти или записывать данные в эту же ячейку. На реальных параллельных машинах такого, конечно, не бывает, поскольку модули памяти на физическом уровне упорядочивают доступ к одной и той же ячейке памяти. Более того, время доступа к памяти на реальных машинах неодинаково из-за наличия кэшей и возможной иерархической организации модулей памяти.

Базовая модель PRAM поддерживает конкурентные (в данном контексте параллельные) считывание и запись. Известны подмодели PRAM, учитывающие правила, позволяющие избежать конфликтных ситуаций при одновременном обращении нескольких процессоров к общей памяти.

Моделировать схемы из функциональных элементов с помощью параллельных машин с произвольным доступом (PRAM) позволяет теорема Брента. В качестве функциональных элементов могут выступать как 4 основных (осуществляющих логические операции NOT, AND, OR, XOR – отрицание, логическое И, логическое ИЛИ и исключающее ИЛИ соответственно), более сложные NAND и NOR (И-НЕ и ИЛИ-НЕ), так и любой сложности.

В дальнейшем предполагается, что задержка (т.е. время срабатывания – время, через которое предусмотренные значения сигналов появляются на выходе элемента после установления значений на входах) одинакова для всех функциональных элементов.

Рассматривается схема из функциональных элементов, соединенных без образования циклов (предполагаем, что функциональные элементы имеют любое количество входов, но ровно один выход – элемент с несколькими выходами можно заменить несколькими элементами с единственным выходом). Число входов определяет входную степень элемента, а число входов, к которым подключен выход элемента – его выходной степенью. Обычно предполагается, что входные степени всех используемых элементов ограничены сверху, выходные же степени могут быть любыми. Под размером схемы понимается количество элементов в ней, наибольшее число элементов на путях от входов схемы к выходу элемента называется глубиной этого элемента (глубина схемы равна наибольшей из глубин составляющих ее элементов).

Рисунок 1. Моделирование схемы размера 15, глубины 5 с двумя процессорами с помощью параллельной машины с произвольным доступом (PRAM – машина)

На рисунке 1 приведен результат моделирования схемы размером (общее количество процессоров) n=15 при глубине схемы (максимальное число элементов на каждом из уровней глубины) d=5 с числом процессоров p=2 (одновременно моделируемые элементы объединены в группы прямоугольными областями, причем для каждой группы указан шаг, на котором моделируются ее элементы; моделирование происходит последовательно сверху вниз в порядке возрастания глубины, на каждой глубине по р штук за раз). Согласно теоремы Брента моделирование такой схемы займет не более ceil(15/2+1)=9 шагов.

Работа добавлена на сайт сайт: 2016-06-20

">Лекция " xml:lang="en-US" lang="en-US">6

">Параллельная обработка данных

">Параллелизм – это возможность одновременного выполнения нескольких арифметических, логических или служебных операций. Причем операции могут быть как крупноблочные, так и мелкоблочные.

В основу параллельной обработки могут быть положены различные принципы:

Пространственный параллелизм;

Временной параллелизм:

  1. Конвейеризация.
  2. ">Векторизация.
  3. ">Матричный.
  4. ">Систолический.
  5. ">Организация структуры обработки потока данных.
  6. ">Организация системы на основе структуры гиперкуб.
  7. ">Динамическая перестройка структуры ВС.

">Описание любого алгоритма является иерархическим, основанным на свойстве вложенности. При программировании выделяют уровни вложенности: задания, задачи, подзадачи (процессы), макрооперации, операции.

">1. Ярусно-параллельная форма алгоритма

">Наиболее общей формой представления алгоритмов является информационно-управляющий граф алгоритма. Более определенной формой представления параллелизма задач является аппарат ярусно-параллельной формы (ЯПФ).

">Алгоритм в ярусно-параллельной форме представляется в виде ярусов, причем в нулевой ярус входят операторы (ветви) независящие друг от друга.

">На графе можно обозначить переходы, означающие передачу результатов вычисления примитивной операции из одного яруса к операции из следующего яруса. Ярусы делятся по переходам. Могут быть «пустые» переходы и «пустые» примитивные операции.

">При построении ЯПФ опираются на базовый набор примитивных операций (БНО). Ярусно-параллельная форма характеризуется следующими параметрами:

">1. Длина графа (количество ярусов) – " xml:lang="en-US" lang="en-US">L ">.

">2. Ширина " xml:lang="en-US" lang="en-US">i ">-го яруса - " xml:lang="en-US" lang="en-US">b ;vertical-align:sub" xml:lang="en-US" lang="en-US">i ">.

">3. Ширина графа ярусно-параллельной формы – " xml:lang="en-US" lang="en-US">B ">= " xml:lang="en-US" lang="en-US">max ">(" xml:lang="en-US" lang="en-US">b ;vertical-align:sub" xml:lang="en-US" lang="en-US">i ">).

">4. Средняя ширина графа ЯПФ – В ;vertical-align:sub">ср "> – ">.

">5. Коэффициент заполнения " xml:lang="en-US" lang="en-US">i ">-го яруса – " xml:lang="en-US" lang="en-US">k ;vertical-align:sub" xml:lang="en-US" lang="en-US">i "> – ">.

">6. Коэффициент разброса операций в графе - " xml:lang="en-US" lang="en-US">Q ;vertical-align:super" xml:lang="en-US" lang="en-US">j ;vertical-align:sub" xml:lang="en-US" lang="en-US">i "> – ">, " xml:lang="en-US" lang="en-US">j ">БНО, где ">- количество " xml:lang="en-US" lang="en-US">j ">-го типа операций в " xml:lang="en-US" lang="en-US">i ">-м ярусе.

">7. Минимальное необходимое количество вычислителей (из БНО) для реализации алгоритма, представленного данным графом в ЯПФ.

">8. Минимальное время решения алгоритма (сумма времен срабатывания вычислителей с максимальным объемом вычислений по каждому ярусу) – Т ;vertical-align:sub" xml:lang="en-US" lang="en-US">min ">.

">9. Связность алгоритма (количество промежуточных результатов, которое необходимо хранить в процессе реализации алгоритма) – С.

">2. Автоматическое обнаружение параллелизма

">Возможны два пути построения параллельного алгоритма: непосредственно из постановки задачи или путем преобразования последовательного алгоритма.

">Методы построения параллельного алгоритма из последовательного основаны на выделении в последовательном алгоритме типовых часто встречающихся конструкций, которые по определенным правилам заменяются параллельными.

">Несмотря на меньший уровень параллелизма, достигаемый при построении параллельного алгоритма путем преобразования из последовательного, такой метод находит широкое применение, так как обеспечивает возможность использовать дорогостоящие прикладные программы, разработанные и отлаженные для последовательных СОД.

">В последовательной программе различают явную и скрытую параллельную обработку.

">При анализе программы строится граф потока данных. Чтобы обнаружить явную параллельность процессов, анализируются множества входных (считываемых) переменных " xml:lang="en-US" lang="en-US">R "> и выходных (записываемых) переменных " xml:lang="en-US" lang="en-US">W "> каждого процесса.

">Скрытая параллельная обработка требует некоторой процедуры преобразования последовательной программы, чтобы сделать возможным ее параллельное выполнение. Преобразование может быть следующим:

">а) уменьшение высоты деревьев арифметических выражений (рис.6.3);

">б) преобразование линейных рекуррентных соотношений;

">в) замена операторов;

">г) преобразование блоков условных переходов и циклов к каноническому виду;

">д) распределение циклов.

">Параллельные архитектуры достигают высокой производительности, если преобразование параллелизма учитывает особенности архитектуры ВС, на которой предполагается выполнение алгоритма.

">В качестве примера учета схемы размещения в памяти возьмем память с диагональной адресацией. Для обеспечения параллельной обработки матриц элементы их строк и столбцов должны быть распределены между запоминающими устройствами процессоров таким образом, чтобы можно было их одновременно считывать и обрабатывать. При этом матрица храниться со сдвигом (рис.6.4).

">Любой алгоритм содержит последовательные (скалярные) участки. Доказано, что длина этих скалярных участков является определяющим фактором при реализации алгоритма на параллельной ВС.

">3. Степень и уровни параллелизма

">Степень параллелизма "> (" xml:lang="en-US" lang="en-US">D ">) "> – это порядок числа параллельно работающих устройств в системе при реализации алгоритма задач, при условии, что количество процессоров (обрабатывающих устройств) не ограничено.

">1) Низкая степень: от 2 до 10 процессоров.

">2) Средняя степень: от 10 до 100 процессоров.

">3) Высокая степень: от 100 до 10 ;vertical-align:super">4 "> процессоров.

">4) Сверхвысокая степень: от 10 ;vertical-align:super">4 "> до 10 ;vertical-align:super">6 "> процессоров.

">Графическое представление параметра " xml:lang="en-US" lang="en-US">D ">(" xml:lang="en-US" lang="en-US">t ">) как функции времени называют профилем параллелизма программы. На рис.6.5 показан типичный профиль параллелизма.

">В прикладных программах имеется широкий диапазон потенциального параллелизма. В вычислительно интенсивных программах в каждом цикле параллельно могут выполнятся от 500 до 3500 арифметических операций, если для этого имеется существующая вычислительная среда. Однако даже правильно спроектированный суперскалярный процессор способен поддерживать от 2 до 5,8 команды за цикл. Такое падение связано в первую очередь с коммуникационными и системными издержками.

Более сильное влияние на производительность вычислительных средств, чем степень параллелизма, оказывает уровень параллелизма.

Рассматривают алгоритмический и схемный уровни параллелизма.

Выделяют следующие алгоритмические уровни параллелизма:

1. Уровень заданий:

а) между заданиями;

б) между фазами заданий.

2. Программный уровень:

а) между частями программы;

б) в пределах циклов.

3. Командный уровень (между фазами выполнения команд).

4. Арифметический и разрядный уровень:

">а) между элементами векторной операции;

">б) внутри логических схем АЛУ.

">Каждый из уровней характеризуется определенными свойствами, исходя из которых, разработаны специальные структуры вычислительных средств. Командный уровень реализуется в любых современных ЭВМ, включая и персональные ЭВМ.

">Схемный уровень параллелизма – это аппаратный уровень, на котором осуществляется распараллеливание обработки данных или организация параллельных вычислений.

">Параллельная обработка может быть реализована на следующих схемных уровнях:

">1. На уровне логических вентилей и элементов памяти (рис.6.6).

">2. Уровень логических схем и простых автоматов с памятью (рис.6.7).

">3. Уровень регистров и интегральных схем памяти (рис.6.8).

4. Уровень элементарных микропроцессоров (рис.6.9).

">5. Уровень макропроцессоров, реализующих крупные операции (рис.6.10).

6. Уровень вычислительных машин, процессоров и программ (рис.6.11).

">4. Виды параллелизма

">4.1. Естественный параллелизм и

">параллелизм множества объектов

В информационном графе могут быть выделены «вертикальные» независимые подграфы, которые не используют взаимно каких-либо промежуточных результатов, полученных при реализации примитивных операций другого подграфа. Такой вид параллелизма получил название естественного параллелизма независимых задач.

Задача обладает естественным параллелизмом, если в её исходной постановке она сводится к операции над многомерными векторами, многомерными матрицами или над решётчатыми функциями (рис.6.12).

Параллелизм множества объектов представляет собой частный случай естественного параллелизма. Его смысл в том, что задача состоит в обработке информации о различных, но однотипных объектах, обрабатываемых по одной и той же или почти по одной и той же программе (рис.6.13).

">Здесь сравнительно малый вес занимают так называемые интегральные операции. При параллелизме множества объектов чаще, чем в общем случае, встречаются ситуации, когда отдельные участки вычислений должны выполняться различно для разных объектов.

">4.2. Параллелизм независимых ветвей

Суть параллелизма независимых ветвей состоит в том, что в программе решения задачи могут быть выделены независимые части, называемые ветвями. При наличии в ВС соответствующих аппаратных средств ветви могут выполняться параллельно (рис.6.14).

">Ветвь программы Y не зависит от ветви X, если:

">- между ними нет функциональных связей, т.е. ни одна из входных переменных ветви Y не является выходной переменной ветви X либо какой-нибудь ветви, зависящей от X;

">- между ними нет связи по рабочим полям памяти;

">- они должны выполняться по разным программам;

">- независимы по управлению, т.е. условие выполнения ветви Y не должно зависеть от признаков, вырабатываемых при выполнении ветви X или ветви, от нее зависящей.

">4.3. Параллелизм смежных операций или

">локальный параллелизм

Параллелизм смежных операций имеет место тогда, когда входные данные для текущих операций получены на более ранних этапах вычисления и построение вычислительных средств позволяет совместить выполнение нескольких операций, не связанных между собой выходными данными и результатами.

Локальная оптимизация программ состоит в том, что просматриваются несколько команд, которые должны выполняться подряд, и изменяется порядок следования некоторых из них, возможно, изменяются номера регистров и ячеек памяти, чтобы обеспечить максимально возможный параллелизм смежных операций.

В большинстве случаев показатель связности смежных операций зависит не столько от задачи, сколько от качества выполнения локальной оптимизации.

">5. Модель задачи

Модель задачи строится для сравнительного анализа структур параллельных ЭВМ. Поэтому она должна иметь достаточно общий характер и описывать только состав форм параллелизма и типов связей.

Как правило, любая модель задачи строится на основе анализа моделируемого класса задач. По результатам анализа проводится преобразование алгоритмов к параллельному виду. Исследуемый алгоритм можно представить в виде программы, состоящей из последовательности участков трех типов (рис.6.15):

  1. скалярных участков (СК);
  2. участков с параллелизмом независимых ветвей (ВТ);
  3. векторных участков (ВК).

Модель задачи – это совокупность параметров, характеризующих параллельную программу

При построении модели задачи главная цель – определение относительного времени ее выполнения при реализации исследуемым алгоритмом.

">Рис.6.15. Соотношение общего числа вычислений, приходящихся на разные участки алгоритма в модели задачи

" xml:lang="en-US" lang="en-US">W ">ск

" xml:lang="en-US" lang="en-US">Wвт

" xml:lang="en-US" lang="en-US">W ">вк

" xml:lang="en-US" lang="en-US">m ;vertical-align:sub">ск

" xml:lang="en-US" lang="en-US">m ;vertical-align:sub" xml:lang="en-US" lang="en-US">вт

" xml:lang="en-US" lang="en-US">m ;vertical-align:sub">вк

" xml:lang="en-US" lang="en-US">А

" xml:lang="en-US" lang="en-US">В

" xml:lang="en-US" lang="en-US">C

объем вычислений

относительная длина

Статьи по теме: