Введение в новейшие телекоммуникационные технологии. Представления о технических и программных средствах телекоммуникационных технологий

По мере эволюции вычислительных систем сформировались следующие разновидности архитектуры компьютерных сетей:

одноранговая архитектура;

классическая архитектура «клиент-сервер»;

Архитектура «клиент-сервер» на основе Web-технологии. При одноранговой архитектуре (рис. 5.12) все ресурсы вычис­лительной системы, включая информацию, сконцентрированы в центральной ЭВМ, называемой еще мэйнфреймом (main frame - центральный блок ЭВМ). В качестве основных средств доступа к информационным ресурсам использовались однотипные алфавитно-цифровые терминалы, соединяемые с центральной ЭВМ кабелем. При этом не требовалось никаких специальных дей­ствий со стороны пользователя по настройке и конфигурированию программного обеспечения.

Явные недостатки, свойственные одноранговой архитектуре и развитие инструментальных средств привели к появлению вы­числительных систем с архитектурой «клиент-сервер». Особен­ность данного класса систем состоит в децентрализации архитек­туры автономных вычислительных систем и их объединении в глобальные компьютерные сети . Создание данного класса сис­тем связано с появлением персональных компьютеров, взявших

на себя часть функций центральных ЭВМ. В результате появи­лась возможность создания глобальных и локальных вычисли­тельных сетей, объединяющих персональные компьютеры (кли­енты или рабочие станции), использующие ресурсы, и компью­теры (серверы), предоставляющие те или иные ресурсы для об­щего использования. На рис. 5.13 представлена типовая архитек­тура «клиент-сервер», однако различают несколько моделей, от­личающихся распределением компонентов программного обес­печения между компьютерами сети.

Любое программное приложение можно представить в виде структуры из трех компонентов:

Компонент представления, реализующий интерфейс с пользо­вателем;

Прикладной компонент, обеспечивающий выполнение при­кладных функций;

Компонент доступа к информационным ресурсам, или менед­жер ресурсов, выполняющий накопление информации и управле­ние данными.

На основе распределения перечисленных компонентов между рабочей станцией и сервером сети выделяют следующие модели архитектуры «клиент-сервер»:

Модель доступа к удаленным данным;

Модель сервера управления данными;

Модель комплексного сервера;

Трехзвенная архитектура «клиент-сервер».

Модель доступа к удаленным данным (рис. 5.14), при которой на сервере расположены только данные, имеет следующие особен­ности:


Невысокая производительность, так как вся информация об­рабатывается на рабочих станциях;

Снижение общей скорости обмена при передаче больших объемов информации для обработки с сервера на рабочие станции.


При использовании модели сервера управления данными (рис. 5.15) кроме самой информации на сервере располагается менеджер информационных ресурсов (например, система управления базами данных). Компонент представления и прикладной компонент совме­щены и выполняются на компьютере-клиенте, который поддерживает как функции ввода и отображения данных, так и чисто прикладные функции. Доступ к информационным ресурсам обеспечивается либо операторами специального языка (например, SQL в случае использо­вания базы данных), либо вызовами функций специализированных программных библиотек. Запросы к информационным ресурсам на­правляются по сети менеджеру ресурсов (например, серверу базы данных), который обрабатывает запросы и возвращает клиенту блоки данных. Наиболее существенные особенности данной модели:

Уменьшение объемов информации, передаваемых по сети, так как выборка необходимых информационных элементов осуществ­ляется на сервере, а не на рабочих станциях;

Унификация и широкий выбор средств создания приложений;

Отсутствие четкого разграничения между компонентом пред­ставления и прикладным компонентом, что затрудняет совершен­ствование вычислительной системы.


Модель сервера управления данными целесообразно использо­вать в случае обработки умеренных, не увеличивающихся со време­нем объемов информации. При этом сложность прикладного ком­понента должна быть невысокой.

Модель комплексного сервера (рис. 5.16) строится в предполо­жении, что процесс, выполняемый на компьютере-клиенте, огра­ничивается функциями представления, а собственно прикладные функции и функции доступа к данным выполняются сервером.

Преимущества модели комплексного сервера:

Высокая производительность;

Централизованное администрирование;

Экономия ресурсов сети.

Модель комплексного сервера является оптимальной для круп­ных сетей, ориентированных на обработку больших и увеличиваю­щихся со временем объемов информации.

Архитектура «клиент-сервер», при которой прикладной компо­нент расположен на рабочей станции вместе с компонентом пред­ставления (модели доступа к удаленным данным и сервера управ­ления данными) или на сервере вместе с менеджером ресурсов и данными (модель комплексного сервера), называют двухзвенной архитектурой.

При существенном усложнении и увеличении ресурсоемкости прикладного компонента для него может быть выделен отдельный сервер, называемый сервером приложений. В этом случае говорят о трезвенной архитектуре «клиент-сервер» (рис. 5. 17). Первое зве­но - компьютер-клиент, второе - сервер приложений, третье - сер­вер управления данными. В рамках сервера приложений могут быть реализованы несколько прикладных функций, каждая из ко­торых оформляется как отдельная служба, предоставляющая неко­торые услуги всем программам. Серверов приложения может быть несколько, каждый из них ориентирован на предоставление неко­торого набора услуг.


Наиболее ярко современные тенденции телекоммуникационных технологий проявились в Интернете. Архитектура «клиент-сервер», основанная на Web-технологии Представлена на рис. 5. 18.

В соответствии с Web-технологией на сервере размещаются так называемые Web-документы, которые визуализируются и ин­терпретируются программой навигации (Web-навигатор, Web-броузер), функционирующей на рабочей станции. Логически Web-документ представляет собой гипермедийный документ, объ­единяющий ссылками различные Web-страницы. В отличие от бу­мажной Web-страница может быть связана с компьютерными программами и содержать ссылки на другие объекты. В Web-тех­нологии существует система гиперссылок, включающая ссылки на следующие объекты:


125

Другую часть Web-документа;

Другой Web-документ или документ другого формата (напри­мер, документ Word или Excel), размещаемый на любом компьюте­ре сети;

Мультимедийный объект (рисунок, звук, видео);

Программу, которая при переходе на нее по ссылке, будет пе­редана с сервера на рабочую станцию для интерпретации или за­пуска на выполнение навигатором;

Любой другой сервис - электронную почту, копирование файлов с другого компьютера сети, поиск информации и т.д.

Передачу с сервера на рабочую станцию документов и других объектов по запросам, поступающим от навигатора, обеспечивает функционирующая на сервере программа, называемая Web-серве­ром. Когда Web-навигатору необходимо получить документы или другие объекты от Web-сервера, он отправляет серверу соответст­вующий запрос. При достаточных правах доступа между сервером и навигатором устанавливается логическое соединение. Далее сер­вер обрабатывает запрос, передает Web-навигатору результаты об­работки и разрывает установленное соединение. Таким образом, Web-сервер выступает в качестве информационного концентрато­ра, который доставляет информацию из разных источников, а по­том в однородном виде предоставляет ее пользователю.

Дальнейшим развитием Интернета явилась Интернет-технология, рассмотренная в подразд. 6.1.

Интернет - бурно разросшаяся совокупность компьютерных сетей, опутывающих земной шар, связывающих правительствен­ные, военные, образовательные и коммерческие институты, а так­же отдельных граждан.

Как и многие другие великие идеи, «сеть сетей» возникла из проекта, который предназначался совершенно для других целей: из сети ARPAnet, разработанной и созданной в 1969 г. по заказу Агентства передовых исследовательских проектов (ARPA - Advanced Research Project Agency) Министерства обороны США. ARPAnet была сетью, объединяющей учебные заведения, военных и военных подрядчиков; она была создана для помощи исследова­телям в обмене информацией, а также (что было одной из главных целей) для изучения проблемы поддерживания связи в случае ядер­ного нападения.

В модели ARPAnet между компьютером-источником и компью­тером-адресатом всегда существует связь. Сама сеть считается не­надежной; любой ее отрезок может в любой момент исчезнуть (по-

еле бомбежки или в результате неисправности кабеля). Сеть была построена так, чтобы потребность в информации от компьюте­ров-клиентов была минимальной. Для пересылки сообщения по сети компьютер должен был просто помещать данные в конверт, называемый «пакетом межсетевого протокола» (IP, Internet Protocol), правильно «адресовать» такие пакеты. Взаимодействую­щие между собой компьютеры (а не только сама сеть) также несли ответственность за обеспечение передачи данных. Основополагаю­щий принцип заключался в том, что каждый компьютер в сети мог общаться в качестве узла с любым другим компьютером с широким выбором компьютерных услуг, ресурсов, информации. Комплекс сетевых соглашений и общедоступных инструментов «сети сетей» разработан с целью создания одной большой сети, в которой ком­пьютеры, соединенные воедино, взаимодействуют, имея множество различных программных и аппаратных платформ.

В настоящее время направление развития Интернета в основ­ном определяет «Общество Internet», или ISOC (Internet Society). ISOC - это организация на общественных началах, целью которой является содействие глобальному информационному обмену через Интернет. Она назначает совет старейшин IAB (Internet Architecture Board), который отвечает за техническое руководство и ориентацию Интернета (в основном это стандартизация и адреса­ция в Интернете). Пользователи Интернета выражают свои мнения на заседаниях инженерной комиссии IETF (Internet Engineering Task Force). IETF - еще один общественный орган, он собирается регулярно для обсуждения текущих технических и организацион­ных проблем Интернета.

Финансовая основа Интернета заключается в том, что каждый платит за свою часть. Представители отдельных сетей собираются и решают, как соединяться и как финансировать эти взаимные со­единения. Учебное заведение или коммерческое объединение пла­тит за подключение к региональной сети, которая, в свою очередь, платит за доступ к Интернету поставщику на уровне государства. Таким образом, каждое подключение к Интернету кем-то оплачива­ется.

на предыдущую просмотренную, поставить закладку. В этом за­ключается основное преимущество WWW. Пользователя не интере­сует, как организовано и где находится огромное структурирован­ное хранилище данных. Графическое представление подключения различных серверов представляет собой сложную невидимую элек­тронную паутину.

Серверы Web - специальные компьютеры, осуществляющие хранение страниц с информацией и обработку запросов от других машин. Пользователь, попадая на какой-нибудь сервер Web, полу­чает страницу с данными. На компьютере пользователя специаль­ная программа (броузер) преобразует полученный документ в удоб­ный для просмотра и чтения вид, отображаемый на экране. Серве­ры Web устанавливаются, как правило, в фирмах и организациях, желающих распространить свою информацию среди многих поль­зователей, и отличаются специфичностью информации. Организа­ция и сопровождение собственного сервера требует значительных затрат. Поэтому в WWW встречаются «разделяемые» (shared) серве­ры, на которых публикуют свои данные различные пользователи и организации. Это самый дешевый способ опубликования своей ин­формации для обозрения. Такие серверы зачастую представляют своеобразные информационные свалки.

Серверы FTP представляют собой хранилища различных фай­лов и программ в виде архивов. На этих серверах может находиться как полезная информация (дешевые условно бесплатные утилиты, программы, картинки), так и информация сомнительного характе­ра, например порнографическая.

Электронная почта является неотъемлемой частью Интернета и одной из самых полезных вещей. С ее помощью можно посылать и получать любую корреспонденцию (письма, статьи, деловые бума­ги и др.). Время пересылки зависит от объема, обычно занимает минуты, иногда часы. Каждый абонент электронной почты имеет свой уникальный адрес. Надо отметить, что подключение к элек­тронной почте может быть организовано и без подключения к Интернету. Необходимый интерфейс пользователя реализуется с по­мощью браузера, который, получив от него запрос с Интернет-адресом, преобразовывает его в электронный формат и посылает на определенный сервер. В случае корректности запроса, он достигает WEB-сервера, и последний посылает пользователю в ответ инфор­мацию, хранящуюся по заданному адресу. Браузер, получив ин­формацию, делает ее читабельной и отображает на экране. Совре­менные браузеры имеют также встроенную программу для элек­тронной почты.

Среди наиболее распространенных браузеров необходимо выде­лить Microsoft Internet Explorer и Netscape Navigator.

Подсоединение к Интернету для каждого конкретного пользо­вателя может быть реализовано различными способами: от полного подсоединения по локальной вычислительной сети (ЛВС) до дос­тупа к другому компьютеру для работы с разделением и использо­ванием программного пакета эмуляции терминала.

Фактически выход в Интернет может быть реализован несколь­кими видами подключений:

доступ по выделенному каналу;

доступ по ISDN (Integrated Services Digital Network - цифро­вая сеть с интегрированными услугами);

доступ по коммутируемым линиям;

с использованием протоколов SLIP и РРР.

Корпорациям и большим организациям лучше всего использо­вать доступ по выделенному каналу. В этом случае возможно наи­более полно использовать все средства Интернета. Поставщик се­тевых услуг при этом сдает в аренду выделенную телефонную ли­нию с указанной скоростью передачи и устанавливает специаль­ный компьютер-маршрутизатор для приема и передачи сообщений от телекоммуникационного узла организации. Это дорогостоящее подключение. Однако, установив такое соединение, каждый ком­пьютер ЛВС-организации является полноценным членом Интерне­та и может выполнять любую сетевую функцию.

ISDN - это использование цифровой телефонной линии, со­единяющей домашний компьютер или офис с коммутатором теле­фонной компании. Преимущество ISDN - в возможности досту­па с очень высокими скоростями при относительно низкой стои­мости. При этом по Интернету предоставляется такой же сервис, как и по коммутируемым линиям. Услуги телефонных компаний, предоставляющих сервис ISDN, доступны не на всей территории России.

Наиболее простои и дешевый способ получения доступа к сети (Dial - up Access) осуществляется по коммутируемым линиям. В этом случае пользователь приобретает права доступа к компьюте­ру, который подсоединен к Интернету (хост-компьютеру или узлу Интернета). Войдя по телефонной линии (при этом используется модем и программное обеспечение для работы в коммутируемом режиме) с помощью эмулятора терминала в удаленную систему, необходимо в ней зарегистрироваться и далее уже можно пользо­ваться всеми ресурсами Интернета, предоставленными удаленной системе. Пользователь в таком режиме арендует дисковое про­странство и вычислительные ресурсы удаленной системы. Если требуется сохранить важное сообщение электронной почты или другие данные, то это можно сделать в удаленной системе, но не на диске пользовательского компьютера: сначала нужно записать файл на диск удаленной системы, а затем с помощью программы передачи данных перенести этот файл на свой компьютер. При таком доступе пользователь не может работать с прикладными программами, для которых нужен графический дисплей, так как в такой конфигурации с компьютера, подсоединенного к Интерне­ту, нет возможности передать графическую информацию на ком­пьютер пользователя.

При дополнительных финансовых затратах и в коммутируемом режиме можно получить полный доступ к Интернету. Это достига­ется применением протоколов SLIP и РРР. Один называется «меж­сетевой протокол последовательного канала» (Serial Line Internet Protocol - SLIP), а другой - «протокол точка - точка» (Point-to-Point Protocol - РРР). Одно из главных достоинств SLIP и РРР состоит в том, что они обеспечивают полноценное соединение с Интерне-том. Пользовательский компьютер не использует какую-то систему как «точку доступа», а непосредственно подключается к Интернету. Но для подключения средних и больших сетей к Интернету эти протоколы не подходят, поскольку их быстродействия недостаточ­но для одновременной связи со многими пользователями.

Современные сети создаются по многоуровневому принципу. Передача сообщений в виде последовательности двоичных сигна­лов начинается на уровне линий связи и аппаратуры, причем ли­ний связи не всегда высокого качества. Затем добавляется уровень базового программного обеспечения, управляющего работой аппа­ратуры. Следующий уровень программного обеспечения позволяет наделить базовые программные средства дополнительными необхо­димыми возможностями. Расширение необходимых функциональ­ных возможностей сети путем добавления уровня за уровнем при-

водит к тому, что пользователь в конце концов получает по-на­стоящему дружественный и полезный инструментарий.

Моделью Интернета можно считать почтовое ведомство, пред­ставляющее собой сеть с коммутацией пакетов. Там корреспонден­ция конкретного пользователя смешивается с другими письмами, отправляется в ближайшее почтовое отделение, где сортируется и направляется в другие почтовые отделения до тех пор пока не дос­тигнет адресата.

Для передачи данных в Интернете используются интернет-про-токол (IP) и протокол управления передачей (TCP).

С помощью интернет-протокола (IP) обеспечивается доставка данных из одного пункта в другой. Различные участки Интернета связываются с помощью системы компьютеров (называемых мар­шрутизаторами), соединяющих между собой сети. Это могут быть сети Ethernet, сети с маркерным доступом, телефонные линии. Правила, по которым информация переходит из одной сети в дру­гую, называются протоколами. Межсетевой протокол (Internet Protocol - IP) отвечает за адресацию, т.е. гарантирует, что маршру­тизатор знает, что делать с данными пользователя, когда они по­ступят. Некоторая адресная информация приводится в начале каж­дого пользовательского сообщения. Она дает сети достаточно све­дений для доставки пакета данных, так как каждый компьютер в Интернете имеет свой уникальный адрес.

Для более надежной передачи больших объемов информации служит протокол управления передачей (Transmission Control Protocol - TCP). Информация, которую пользователь хочет пе­редать, TCP разбивает на порции. Каждая порция нумеруется, подсчитывается ее контрольная сумма, чтобы можно было на приемной стороне проверить, вся ли информация получена пра­вильно, а также расположить данные в правильном порядке . На каждую порцию добавляется информация протокола IP, таким образом получается пакет данных в Интернете, составленный по правилам TCP/IP.

По мере развития Интернета и увеличения числа компьютер­ных узлов, сортирующих информацию, в сети была разработана доменная система имен - DNS, и способ адресации по доменному принципу. DNS иногда еще называют региональной системой на­именований.

Доменная система имен - это метод назначения имен путем передачи сетевым группам ответственности за их подмножество. Каждый уровень этой системы называется доменом. Домены в именах отделяются друг от друга точками: inr.msk.ru. В имени мо-

жет быть различное число доменов, но практически - не больше пяти. По мере движения по доменам слева направо в имени, число имен, входящих в соответствующую группу возрастает.

Все компьютеры Интернета способны пользоваться доменной системой. Работающий в сети компьютер всегда знает свой собст­венный сетевой адрес. Когда используется доменное имя, напри­мер mx.ihep.ru, компьютер преобразовывает его в числовой адрес. Для этого он начинает запрашивать помощь у DNS-серверов. Это узлы, рабочие машины, обладающие соответствующей базой дан­ных, в число обязанностей которых входит обслуживание такого рода запросов. DNS-сервер начинает обработку имени с его право­го конца и двигается по нему влево, т.е. сначала осуществляет по­иск адреса в самой большой группе (домене), потом постепенно сужает его. Но для начала опрашивается на предмет наличия нуж­ной информации местный узел. Если местный сервер адрес не зна­ет он связывается с корневым сервером. Это сервер, который знает адреса серверов имен высшего уровня (самых правых в имени), здесь это уровень государства (ранга домена ш). У него запрашива­ется адрес компьютера, ответственного за зону su. Местный DNS-сервер связывается с этим более общим сервером и запраши­вает у него адрес сервера, ответственного за домен ihep.su. Теперь уже запрашивается этот сервер и у него выясняется адрес рабочей машины тх.

Важное значение имеют правовые и этические нормы работы в Интернете, так как это не просто сеть, а сеть сетей, каждая из ко­торых может иметь свои собственные правила поведения и обычаи.

Правила эти довольно общи, и все будет в порядке, если поль­зователь помнит некоторые общие положения. К счастью, эти ука­зания не очень строги. Если вы держитесь в отведенном ими про­странстве, вы можете делать все, что угодно. Когда же вы теряете уверенность в правоте своих поступков, свяжитесь с вашим постав­щиком сети и выясните точно, дозволено это или нет. Может быть, вы хотите вполне законного, но выяснение подлинной законности всегда остается на вашей ответственности. Незнание закона, как известно, не освобождает от ответственности.

На законы Интернета влияют три основных положения:

Государство субсидирует большие части Интернета.Эти суб­сидии исключают коммерческое использование;

Интернет - не только национальная, но самая настоящая гло­бальная сеть. При передаче чего бы то ни было через национальные границы начинают действовать экспортные законы; государствен­ные законы в разных местах могут существенно различаться;

При пересылке программного обеспечения (или идеи) из од­ного места в другое, необходимо считаться с интеллектуальной собственностью и лицензионными ограничениями.

Телекоммуникации - это передача и прием любой информации (звука, изображения, данных, текста) на большие расстояния по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим, проводным и беспроводным каналам связи).

Телекоммуникационные сети представляют собой комплекс аппаратных и программных средств, обеспечивающих передачу информационных сообщений между абонентами.

К традиционным телекоммуникационным сетям относятся:

  • v Компьютерные сети (для передачи данных).
  • v Телефонные сети (передача голосовой информации).
  • v Радиосети (передача голосовой информации - широковещательные услуги).
  • v Телевизионные сети (передача голоса и изображения - широковещательные услуги).

На разных этапах развития общества применялись новые методы, средства и технологии передачи информации в телекоммуникационных системах.

В историческом развитии сетей и услуг связи можно выделить четыре основных этапа:

  • v PSTN
  • v IDN
  • v ISDN

Каждый этап имеет свою логику развития, взаимосвязь с предыдущими и последующими этапами. Кроме того, каждый этап зависит от уровня развития экономики и национальных особенностей отдельного государства.

1)Первый этап - построение телефонной сети общего пользования PSTN (Public Switched Telephone Network). В течение длительного времени каждое государство создавало свою национальную аналоговую телефонную сеть общего пользования (ТфОП). ТфОП-это сеть, представляющая собой совокупность устройств и сооружений, обеспечивающих телефонную связь на некоторой территории для доступа к которой используются обычные проводные телефонные аппараты. Телефонная связь предоставлялась населению, учреждениям, предприятиям и отождествлялась с единственной услугой - передачей речевых сообщений. В дальнейшем по телефонным сетям с помощью модемов стала осуществляться передача данных. Тем не менее, даже в настоящее время телефон остается основной услугой связи, принося эксплуатационным организациям более 80% доходов. Различают следующие виды телефонных сетей общего пользования (ТфОП): городские, сельские, зоновые и междугородные.

Структура ТфОП учитывает административно-территориальное деление страны. В соответствии с этим ТфОП объединяет местные и внутризоновые телефонные сети, а также междугородную телефонную сеть.

Коммутационным центром зоновой телефонной сети является автоматическая междугородная телефонная станция (АМТС), с которой непосредственно или через специальные узлы связаны все автоматические телефонные станции (АТС) городских телефонных сетей и центральные станции сельских телефонных сетей.

На рисунке 1 показана упрощенная схема построения ТфОП. Элементы междугородной телефонной сети на схеме выделены жирными линиями.

телекоммуникационный сеть связь канал

Рисунок 1 - Схема построения ТфОП.

  • 2)Второй этап - цифровизация телефонной сети. Для повышения качества услуг связи, увеличения их числа, повышения автоматизации управления и технологичности оборудования, промышленно развитые страны в начале 70-х годов начали работы по цифровизации первичных и вторичных сетей связи. Были созданы интегральные цифровые сети IDN (Integrated Digital Network), предоставляющие также в основном услуги телефонной связи на базе цифровых систем коммутации и передачи. В настоящее время во многих странах цифровизация телефонных сетей практически закончилась. Слово "интегрированная" в IDN подразумевает интеграцию коммутации и передачи данных. IDN рассматривается в контексте телефонной сети и воплощает такую цель, как тотальный перевод телефонной технологии на цифровые методы.
  • 3)Третий этап - интеграция услуг. Цифровизация сетей связи позволила не только повысить качество услуг, но и перейти к увеличению их числа на основе интеграции. Так появилась концепция цифровой сети с интеграцией служб ISDN (Integrated Service Digital Network). Название сети ISDN относится к набору цифровых услуг, которые становятся доступными для конечных пользователей. ISDN предполагает оцифровывание телефонной сети для того, чтобы голос, информация, текст, графические изображения, музыка, видеосигналы и другие материальные источники могли быть переданы коанечныму пользователю по имеющимся телефонным проводам и получены им из одного терминала конечного пользователя. Пользователю этой сети предоставляется базовый доступ (2B+D), по которому информация передается по трем цифровым каналам: два канала В со скоростью передачи 64 Кбит/с и канал D со скоростью 16 Кбит/с. Каналы В используются для передачи речевых сообщений и данных, канал D - для сигнализации и для передачи данных в режиме пакетной коммутации. Для пользователя с большими потребностями может быть предоставлен первичный доступ, содержащий (30B+D) каналов. Концепция ISDN существует около 20 лет, но широкого распространения в мире не получила по нескольким причинам. Во-первых, оборудование ISDN достаточно дорого, чтобы стать массовым; во-вторых, пользователь постоянно оплачивает три цифровых канала; в-третьих, перечень услуг ISDN превышает потребности массового пользователя. Именно поэтому интеграция услуг начинает заменяться концепцией интеллектуальной сети.
  • 4)Четвертый этап - интеллектуальная сеть IN (Intelligent Network). Эта сеть предназначена для быстрого, эффективного и экономичного представления информационных услуг массовому пользователю. Необходимая услуга предоставляется пользователю тогда, когда она ему требуется и в тот момент времени, когда она ему нужна. Соответственно и платить он будет за предоставленную услугу в течение этого интервала времени. Таким образом, быстрота и эффективность предоставления услуги позволяют обеспечить и ее экономичность, так как пользователь будет использовать канал связи значительно меньшее время, что позволит ему уменьшить затраты. В этом заключается принципиальное отличие интеллектуальной сети от предшествующих сетей - в гибкости и экономичности предоставления услуг.

В свою очередь, уменьшение затрат индивидуального пользователя на новые услуги должно увеличить спрос на них, т.е. привести к увеличению прибыли поставщиков услуг. Соответственно расширение спроса на услуги приведет к увеличению поставок необходимого оборудования, т.е. к увеличению прибыли поставщиков оборудования. Таким образом, гибкость предоставления услуг в интеллектуальной сети приводит к объединению экономических интересов трех сторон: пользователей, поставщиков услуг и поставщиков оборудования.

Информатизация современного общества и тесно связанная с ней информатизация образования характеризуются совершенствованием и массовым распространением информационных и телекоммуникационных технологий. Они широко применяются для передачи информации и обеспечения взаимодействия преподавателя и обучаемого в современной системе образования. Важно понимать, что в связи с этим преподаватель в наше время должен не только обладать знаниями в области информационных и телекоммуникационных технологий, но и быть специалистом по их применению в своей профессиональной деятельности.

Слово «технология» имеет греческие корни и в переводе означает науку, совокупность методов и приемов обработки или переработки сырья, материалов, полуфабрикатов, изделий и преобразования их в предметы потребления. Современное понимание этого слова включает и применение научных и инженерных знаний для решения практической задачи. В таком случае информационными и телекоммуникационными технологиями можно считать такие технологии, которые направлены на обработку и преобразования информации.

Информационные и телекоммуникационные технологии – это обобщающее понятие, описывающее различные методы, способы и алгоритмы сбора, хранения, обработки, представления и передачи информации

В это определение умышленно не включено слово «использование». Использование информационных и телекоммуникационных технологий позволяет говорить о еще одной технологии – технологии использования информационных и телекоммуникационных технологий в образовании, медицине, военном деле и многих других областях деятельности человека, что является частью технологий информатизации. Каждая из этих областей накладывает на технологию информатизации свои ограничения и особенности. В качестве примера можно привести технологию Интернет, рассматриваемую как информационную и телекоммуникационную технологию. При этом технологию использования Интернет в образовании разумно считать не информационной и телекоммуникационной технологией, а технологией информатизации образования.



Важно понимать, что понятие технологии информатизации образования значительно шире, чем только технология использования информационных и телекоммуникационных технологий в сфере образования. Это понятие включает в себя весь комплекс приемов, методов, способов и подходов обеспечивающих достижение целей информатизации образования.

Так, например, к технологиям информатизации образования в полной мере могут быть отнесены приемы создания и оценки качества информационных ресурсов образовательного назначения, методы обучения педагогов эффективному использованию информационных и коммуникационных технологий в своей профессиональной деятельности.

В основе средств информационных и телекоммуникационных технологий, используемых в сфере образования, находится персональный компьютер, оснащенный набором периферийных устройств. Возможности компьютера определяются установленным на нем программным обеспечением. Основными категориями программных средств являются системные программы, прикладные программы и инструментальные средства. К системным программам относятся операционные системы, обеспечивающие взаимодействие компьютера с оборудованием и пользователя с персональным компьютером, а также различные служебные или сервисные программы. К прикладным программам относят программное обеспечение, которое является инструментарием информационных технологий – технологий работы с текстами, графикой, табличными данными и т.д. К инструментальным программам относятся программы, предназначенные для разработки программного обеспечения.

В современных системах образования широкое распространение получили универсальные офисные прикладные программы и средства информационных и телекоммуникационных технологий: текстовые процессоры, электронные таблицы, программы подготовки презентаций, системы управления базами данных, органайзеры, графические пакеты и т.п.

С появлением компьютерных сетей обучаемые и педагоги приобрели новую возможность оперативно получать информацию из любой точки земного шара. Через глобальную телекоммуникационную сеть Интернет возможен мгновенный доступ к мировым информационным ресурсам (электронным библиотекам, базам данных, хранилищам файлов, и т.д.). В самом популярном ресурсе Интернет – всемирной паутине WWW опубликовано несколько миллиардов мультимедийных документов.

В телекоммуникационной сети Интернет доступны и многие другие распространенные сервисы, позволяющие людям общаться и обмениваться необходимой информацией, к числу которых относятся электронная почта, ICQ, списки рассылки, группы новостей, чат. Разработаны специальные программы для общения в реальном режиме времени, позволяющие после установления связи передавать тексты, звуки и изображения. Эти программы позволяют организовать совместную работу удаленных пользователей с программой, запущенной на отдельном компьютере.

С появлением новых алгоритмов сжатия данных доступное для передачи по компьютерной сети качество звука существенно повысилось и стало приближаться к качеству звука в обычных телефонных сетях. Как следствие, весьма активно стала развиваться относительно новая технология – Интернет-телефония. С помощью специального оборудования и программного обеспечения через сеть Интернет можно проводить аудио и видеоконференции.

Для обеспечения эффективного поиска информации в компьютерных сетях применяются технологии поиска информации, цель которых – собирать данные об информационных ресурсах глобальной компьютерной сети и предоставлять пользователям возможность быстрого поиска информации. С помощью поисковых систем можно искать документы всемирной паутины, мультимедийные файлы и программное обеспечение, адресную информацию об организациях и людях.

С помощью сетевых средств информатизации становится возможным широкий доступ к учебно-методической и научной информации, организация оперативной консультационной помощи, моделирование научно-исследовательской деятельности, проведение виртуальных учебных занятий (семинаров, лекций) в реальном режиме времени.

К числу значимых информационных и телекоммуникационных технологий относится видеозапись и телевидение.

Видеопленки и соответствующие средства информатизации позволяют большому количеству обучаемых прослушивать лекции лучших преподавателей. При этом видеокассеты с лекциями могут быть использованы как в специально оборудованных аудиториях, так и в домашних условиях. Очень часто основной учебный материал излагается одновременно (согласованно) в печатных изданиях и на видеокассетах. В качестве примера можно привести ставшее традиционным обучение иностранным языкам, в ходе которого обучаемые часто используют печатные издания совместно с магнитофоном или компьютером, оснащенным соответствующей обучающей программой.

В таком случае очень часто возникает вопрос о целесообразности и необходимости использования различных информационных и телекоммуникационных технологий. Так, например, если в ходе обучения необходима визуальная информация, и ее невозможно предоставить обучаемому в печатном виде, то необходимость видеоматериалов очевидна. Если видеопленка или видеодемонстрация, организованная с помощью компьютера, - всего лишь запись лекции без каких-либо дополнительных специальных иллюстраций, то тогда использование информационной технологии может быть оправданным, но не необходимым.

Телевидение, как одна из наиболее распространенных информационных технологий, играет очень большую роль в жизни людей: практически в каждой семье есть хотя бы один телевизор. Обучающие телепрограммы широко используются по всему миру и являются ярким примером практической информатизации образования. Благодаря телевидению, появляется возможность транслировать лекции для широкой аудитории в целях повышения общего развития данной аудитории без последующего контроля усвоения знаний, а также возможность впоследствии проверять знания при помощи специальных тестов и экзаменов.

К сожалению, данная технология может применяться только для большой аудитории, например, для изучающих иностранные языки или основы каких-либо наук. Трудно использовать национальное или даже городское телевидение для курсов более узкой направленности.

Многие обучающие теле- и радиопрограммы передаются через спутниковое телевидение. Например, международная организация INTELSAT, основанная в 1971 году, позволяет транслировать обучающие программы практически на весь мир, предоставляя для этого все свои 15 спутников. Спутниковые каналы позволяют также организовывать коммуникационные сети ISDN, которые позволяют передавать в цифровом виде одновременно видеоизображение, звук, текст и копии документов.

Мощной технологией, позволяющей хранить и передавать основной объем изучаемого материала, являются образовательные электронные издания, как распространяемые в компьютерных сетях, так и записанные на специальных носителях информации: CD-ROM, DVD и т.д. Индивидуальная и коллективная работа с ними может способствовать более глубокому усвоению и пониманию материала. Эта технология позволяет, при соответствующей доработке, приспособить существующие учебные материалы и средства обучения к индивидуальному пользованию, предоставляет возможности для самообучения и самопроверки полученных знаний.

Благодаря современным информационным и телекоммуникационным технологиям, таким как электронная почта, телеконференции или ICQ общение между участниками образовательного процесса может быть распределено в пространстве и во времени. Так, например, педагоги и обучаемые могут общаться между собой, находясь в разных странах, в удобное для них время. Такой диалог может быть растянут во времени – вопрос может быть задан сегодня, а ответ на него получен через несколько дней. С помощью таких подходов становится возможным обмен информацией (вопросы, советы, дополнительный материал, контрольные задания), что позволяет обучаемым и преподавателям анализировать полученные сообщения и отвечать на них в любое удобное время.

Информационные и телекоммуникационные технологии, используемые в сфере образования, можно классифицировать согласно разным критериям. Так, например, при изучении информатизации образования, в качестве критерия удобно рассматривать цель использования метода, способа или алгоритма воздействия на информацию. В этом случае можно выделить технологии хранения, представления, ввода, выводы, обработки и передачи информации.

Известно много различных информационных и телекоммуникационных технологий. С каждым годом появляются новые средства и технологии, важные с точки зрения информатизации образования. Перечислить и, тем более, изучить их все невозможно. Важно понимать, что при определенных условиях многие из этих технологий способны существенно повлиять на повышение качества подготовки специалистов.

Человечество постоянно стремилось расширить возможности своих органов чувств (каналов коммуникаций с окружающей средой). Так были созданы подзорная труба и микроскоп, термометр и газоанализаторы, высокочувствительные микрофоны и радиолокаторы , а также многое другое. Подзорная труба может рассматриваться как аналоговое однонаправленное телекоммуникационное устройство.

Рассмотрим, какие искусственные каналы коммуникаций создал сам человек за последние тысячелетия своего существования. Представьте себе следующую сцену, возможно имевшую место много столетий тому назад.

На горизонте поднялось легкое облачко, которое начало расти и шириться. Постепенно становилось ясно, что это облако пыли, поднятое множеством лошадиных копыт. На вершине холма дозорные настороженно следили за приближением этого отряда, и когда увидели, что это большой отряд противника, старший дал команду разжигать сигнальный костер. Из небольшого очага, где огонь поддерживался круглые сутки, специальным захватом была извлечена пылающая головня и помещена в основание большого сигнального костра. Сначала огонь разгорался медленно, но уже через несколько минут столб дыма и огонь поднялись на многие метры. Тогда его заметил другой сигнальный отряд, размещенный в нескольких верстах от первого, и там тоже зажгли сигнальный костер.

Такая техника позволяла передать 1 бит информации ( логический нуль или логическая единица ) на расстояние до 100 км менее чем за один час (время сильно варьировалось в зависимости от рельефа местности и погоды). Скорость такого метода передачи данных в дневное время можно было удвоить, используя черный или белый дым. Костры часто размещались на специально построенных вышках для увеличения расстояния между ними. Естественно, этот метод был ненадежен - проливной дождь или вьюга могли помешать разжечь костер, да и видимость при этом могла оказаться весьма ограниченной.

Альтернативный метод посылки депеши с всадником позволял передать несравненно больший объем информации, но со скоростью, меньшей почти на порядок, - ведь прямых дорог тогда не было, да и водные преграды или горы могли существенно замедлить движение. В море сходный метод, с использованием сигнального масляного фонаря, давал возможность передавать короткие сообщения в пределах прямой видимости для координации действий кораблей.

Но даже такой технологии хватало для длительного существования гигантских государственных образований (от империи Александра Македонского до Римской империи). Именно со скоростью лошади либо деревянного гребного или парусного бескилевого судна передавались сообщения с периферии в центр, а оттуда в обратном направлении посылались руководящие инструкции или решения. Задержка достигала многих месяцев. Удивительно, но этого было вполне достаточно для стабильного существования государства. Вероятно, чиновники были вынуждены обдуманно принимать решения, так как быстро исправить ошибку было нельзя. Решение проблемы здесь лежит в предоставлении определенной самостоятельности властям провинции (приближение центра принятия решения к объекту управления). Еще одним средством решения проблемы большой задержки в цепи принятия решения ( RTT , в сетевой терминологии) является выработка набора унифицированных правил реагирования на стандартные ситуации (в случае сетей такие правила называются протоколами). Даже применение самых мощных информационных и телекоммуникационных технологий не позволит эффективно управлять из Москвы автомобилем во Владивостоке.

Когда императоры Римской империи попытались в долговременном плане построить жесткую вертикаль власти, империя распалась сначала на две части, а позднее на большое число независимых государств.

Техника телекоммуникаций с временем RTT (Round Trip Time), равным 2-6 месяцам, просуществовала без существенных изменений более 1500 лет .

Только в XIX веке стали появляться железные дороги, пароходы и, что особенно важно, электрический телеграф и телефон. Связь с применением азбуки Морзе в 1840-х годах позволяла передать до 10 бит /с информации на расстояние десятки и сотни километров. Азбука Морзе, пожалуй, была первым широко распространенным телекоммуникационным кодом (см. таблицу 1.1). Коды здесь представляют собой последовательности точек и тире. Отличие точки от тире определяется длительностью сигнала (точке соответствует более короткий сигнал). Возможны варианты, когда точке и тире соответствуют импульсы тока или напряжения разной полярности. Такая схема исключает зависимость идентификации символа от длительности импульса. Максимальная скорость передачи классического телеграфа может составлять 950-1100 слов в час. В 1884 году начала функционировать телеграфная линия Вашингтон–Балтимор. Для линий связи в ту пору использовалась стальная проволока диаметром ~5 мм. В качестве источников электроэнергии применялись батареи с напряжением 40-120 В. Импульсы тока имели амплитуду 10-25 мА. Сама система являлась электромеханической и предполагала использование контактного ключа (вспомните шпионские фильмы периода Второй мировой войны). Позднее ключ был заменен клавиатурой. Нажатие на определенную клавишу вызывало формирование последовательности сигналов, соответствующей определенной букве, что позволяло в несколько раз ускорить процедуру передачи. Такое устройство, получившее название телетайп , было предложено Кляйшмидтом и Моркрамом в 1915 году в США. На первых порах использовались электромеханические приемные устройства, которые печатали точки и тире, что было крайне неудобно. Позднее стали применяться устройства, которые могли дешифровать коды Морзе (или Бодо) и печатать на ленте буквы. Люди старшего поколения, возможно, еще помнят бланки телеграмм, на которые были наклеены куски ленты с текстом, полученные от таких устройств.

Телекоммуникационный канал содержал два провода (см. рис. 1.1), по одному ток течет в одном направлении, по второму - в обратном. Понятно, что железо в качестве проводника не идеально (удельное сопротивление 8,8x10 -6 Ом*см, да и склонность к ржавчине чего стоит), зато дешево. Лучше была бы медь или алюминий (1,56x10 -6 и 2,45x10 -6 Ом*см соответственно). Еще лучше серебро - 1,51x10 -6 Ом x см. Золото по своим электрическим свойствам занимает положение между медью и алюминием. Полагаю, не нужно пояснять, почему каналы коммуникаций никогда не делали из серебра и тем более из золота (и с медью мороки не оберешься…). Омическое сопротивление является причиной ослабления сигнала, что ограничивает предельное расстояние передачи по проводной линии. Поэтому приходится на определенных расстояниях ставить станции ретрансляции.


Рис. 1.1.

Код Морзе Буквы Код Морзе Буквы и символы
Русские Латинские Русские Латинские
x- А Aa x-x- Я
-xxx Б Bb x--- Й Jj
x-- В Ww -xx- Ь, Ъ Xx
--x Г Gg xx-xx; Э OP
-xx Д Dd x---- 1
x Е Ee xx--- 2
xxx- Ж Vv xxx-- 3
--xx З Zz xxxx- 4
xx И Ii xxxxx 5
-x- К Kk -xxxx 6
x-xx Л Ll --xxx 7
-- М Mm ---xx 8
-x Н Nn ----x 9
--- О Oo ----- 0
x--x П Pp xxxxx . (точка)
x-x Р Rr x-x-x- , (запятая)
xxx С Ss -x-x-x ;
- Т Tt ---xxx :
xx- У Uu xx-xx ?
xx-x Ф Ff --xx-- !
xxxx Х Hh ------ /
-x-x Ц Cc xx--x- _ (подчеркивание)
---x Ч _` x-x-x + (конец)
---- Ш Ch -xxx- -
--x- Щ Qq -xxx- знак раздела
-x-- Ы Yy x-x-x-x- начало действия
xx-- Ю gh xxxxxxx исправление ошибки

Рассматривая таблицу кодов Морзе, следует обратить внимание на то, что наиболее часто используемые буквы имеют более короткие коды (это прежде всего е, т, а, и, н и м ). Это очень важный принцип, позволяющий увеличить среднюю скорость передачи данных. Он применяется достаточно широко - можно, например, вспомнить принцип распределения символов на клавиатуре ЭВМ, в центре размещаются наиболее часто используемые буквы. Посмотрите на клавиатуру вашей ЭВМ, в центре и ближе к клавише пробела размещаются именно указанные выше буквы. Используется эта техника и при архивировании данных ( алгоритм Хафмана). Кроме того, весьма важными являются паузы между буквами. Если пауза окажется малой, то трудно будет отличить НН от Ц, АА от Я и т.д.

Позднее было создано много других типов кодов (например, код Бодо для буквопечатающих аппаратов, ASCII или КОИ8) - в них, как правило, каждому символу или сигналу соответствует 5-8 бит . Сигналами отмечается, например, начало/конец передачи или исправление ошибки. Характерной особенностью ранних систем было отсутствие кодов для строчных букв. В мире много национальных алфавитов. Многие из них содержат специфические символы - достаточно вспомнить символьный набор китайского языка (в детстве меня занимал вопрос: как устроена китайская пишущая машинка?). Чтобы решить проблемы кодирования национальных алфавитов, был придуман юникод, где каждому символу ставится в соответствие два октета (байта). Это позволяет расширить многообразие символов с 256 до 65536.

Аналогичные принципы лежат в основе морских флажковых семафоров, где каждой букве соответствует определенное положение рук сигнальщика. Здесь можно также вспомнить французский семафор, изобретенный в 1830 году. Но это, так же как и сигнальные костры, можно считать первыми приложениями, использующими передачу данных по оптическим каналам связи.

Коды Морзе применялись вплоть до второй половины XX века. Их привлекательность была связана с ограниченностью требуемой полосы пропускания канала, а также с тем фактом, что для передачи были пригодны старые, довольно низкокачественные каналы.

Введя модуляцию на частоте 1500 Гц (1936 г.), удалось получить до 24 телексных каналов по одному телефонному каналу с полосой 4 КГц (50 бод). Позднее телексная сеть обрела самостоятельность и была окончательно вытеснена современными средствами связи лишь в конце XX века.

К 1950 годам большинство стран использовало три типа общедоступных сетей:

  1. Телеграфная сеть, которая просуществовала до конца XX века.
  2. Телефонная сеть (аналоговая), имеющая полосу 4 КГц и почти не менявшаяся по принципам работы с 1880-х годов. Импульсная сигнальная система практически сохранилась без изменений с 1910 года.
  3. Телексная сеть, которая применялась в основном для делового обмена.

Рассмотрим причины того, что проводные системы связи, оставшиеся в наследство от телеграфа, малопригодны для современных систем телекоммуникаций. Двухпроводные структуры, применявшиеся там, как правило, навешивались на телеграфные столбы или укладывались в виде кабелей в подземные каналы. Среднегеометрическое расстояние между проводами не было постоянным, более того, оно могло изменяться со временем, например, под действием ветра. Это приводило к тому, что волновые свойства такой структуры варьировались, и это с неизбежностью становилось причиной искажений формы сигнала для длинных участков канала. Такие искажения ограничивали предельно возможную скорость передачи и длину канала без промежуточных ретрансляторов.

На первый взгляд прогресс в области электроники может снять проблему ослабления сигнала из-за омического сопротивления проводов и исключить необходимость использования амплитуд сигналов порядка 40-100 В. Казалось бы, ставя промежуточные усилители, можно поддерживать амплитуду полезного сигнала в заданных пределах. Идеальным примером такого решения могут служить трансокеанские телефонные кабели.

по протяженным каналам через пустынные области, например, по дну океана, как было отмечено выше, требует наличия усилителей, а усилители нуждаются в питании. Обычно питание передается по тому же кабелю, и здесь также вмешиваются омические потери.

Известно, что в оптоволокне сигнал подвергается меньшему погонному ослаблению, чем в медном проводе. Было бы замечательно, если бы был найден способ, передачи энергии для оптоэлектрических усилителей по оптическому волокну.

Тема: Представления о технических и программных средствах телекоммуникационных технологий

Цель: формирование представлений о технических и программных средствах телекоммуникационных технологий

Задачи:

Образовательная – обобщение представлений учащихся об информационной картине мира;

Развивающая – развитие умений выделять главное, существенное, обобщать имеющиеся факты, формирование логического мышления, внимания, интереса к предмету; развитие взаимопомощи, речи, умения выслушивать друг друга;

Воспитательная - воспитание уважения к товарищу, умения достойно вести себя, воспитание культуры общения, работа над повышением грамотности устной речи.

Вопросы:

    Информационная технология

    Компоненты программных компьютерных средств

    Программное обеспечение информационных технологий

Теоретический материал

1. Информационная технология

Информационная технология - процесс, использующий совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта).

Понятие технологии включает применение научных и инженерных знаний, для решения практической задачи. Тогда информационной технологией можно считать процесс превращения знаний в информационный ресурс. Целью информационной технологии является производство информации для ее последующего анализа и принятия на его основе решения по выполнению какого-либо действия.

В приведенных определениях ключевыми словами являются процесс, совокупность методов и средств, а также перечисление различных действий по работе с информацией. Заметим, что в иностранных источниках комплексное понятие "информационная технология" определяется через базовое понятие "технология", а в определениях, данных авторами популярных учебников по информатике, дается свое понимание технологии как "совокупности методов и средств" или как "процесса". В определении 4 технология в качестве существенного признака технологии указывается факт преобразования первичной информации в информационный продукт. На наш взгляд, существенным признаком любой технологии является систематизированная последовательность действий. Оперируя базовыми понятиями и принципом минимизации определения, дадим следующее определение:

Информационная технология - систематизированная совокупность методов, средств и действий по работе с информацией.

Список действий по работе с информацией может быть достаточно большим: поиск, сбор, обработка, преобразование, хранение, отображение, представление, передача и т.д.

Заметим, что последние четыре десятилетия, словосочетание информационные технологии чаще всего употреблялись вместе со словом новые или современные - аббревиатуры НИТ или СИТ (Новые или Современные Информационные Технологии). В первую очередь это связано с автоматизацией процесса получения, обработки, хранения и передачи информации с помощью компьютеров и средств телекоммуникации. В литературе встречается также аббревиатура КИТ (Компьютерная Информационная Технология). Заметим также, что данное понятие употребляется в единственном или множественном числе, что не меняет сути явления.

2. Средства коммуникационных технологий

Средства коммуникационных технологий в настоящее время обладают колоссальными информационными возможностями и не менее впечатляющими услугами. Компьютер, снабженный соответствующим программным обеспечением, и средства телекоммуникаций вместе с размещенной на них информацией входят в ту группу средств коммуникационных технологий, с помощью которых мы не только узнаём о проблемах, происходящих вокруг нас, но и получаем дополнительную информацию, открываем для себя новые горизонты, покоряем неизведанные информационные вершины

Телекоммуникационные технологии -это организационные, педагогические, учебные технологии, формы и методы, предусматривающие применение в образовательном процессе современных компьютерных средств и информационных технологий. Под информационной технологией понимается совокупность методов и технических средств сбора, организации, хранения, обработки, передачи и представления информации, расширяющих знания людей и развивающих их возможности по управлению техническими и социальными процессами.

Технические средства телекоммуникационных технологий:

    средства для записи и воспроизведения звука (электрофоны, магнитофоны, CD-проигрыватели),

    системы и средства телефонной, телеграфной и радиосвязи (телефонные аппараты, факсимильные аппараты, телетайпы, телефонные станции, системы радиосвязи),

    системы и средства телевидения, радиовещания (теле и радиоприемники, учебное телевидение и радио, DVD-проигрыватели),

    оптическая и проекционная кино- и фотоаппаратура (фотоаппараты, кинокамеры, диапроекторы, кинопроекторы, эпидиаскопы),

    полиграфическая, копировальная, множительная и другая техника, предназначенная для документирования и размножения информации (ротапринты, ксероксы, системы микрофильмирования),

    компьютерные средства, обеспечивающие возможность электронного представления, обработки и хранения информации(компьютеры, принтеры, сканеры, графопостроители),

    телекоммуникационные системы, обеспечивающие передачу информации по каналам связи (модемы, сети проводных, спутниковых, оптоволоконных, радиорелейных и других видов каналов связи, предназначенных для передачи информации).

3. Компоненты программных компьютерных средств

Обычно для обозначения основных компонент программно-аппаратных компьютерных средств используют следующие термины:

Software – совокупность программ, используемых в компьютере или программные средства, представляющие заранее заданные, чётко определённые последовательности арифметических, логических и других операций.

Hardware технические устройства компьютера (“железо”) или аппаратные средства, созданные, в основном, с использованием электронных и электромеханических элементов и устройств.

Brainware – знания и умения, необходимые пользователям для грамотной работы на компьютере (компьютерная культура и грамотность).

Работой компьютеров, любых вычислительных устройств управляют различного рода программы. Без программ любая ЭВМ не больше, чем груда железа. Компьютерная программа (англ. “Program”) обычно представляет собой последовательность операций, выполняемых вычислительной машиной для реализации какой-нибудь задачи. Например, это может быть программа редактирования текста или рисования.

Программа - это упорядоченная последовательность команд, предназначенная для решения разных задач с помощью компьютерной техники и технологии; точная и подробная последовательность инструкций на понятном компьютеру языке с указанием правил обработки информации

4. Программное обеспечение информационных технологий

Совокупность программ, используемых при работе на компьютере, составляет его программное обеспечение .

Программное обеспечение (ПО) – это программные средства информационных технологий. Они подразумевают создание, использование компьютерных программ различного назначения и позволяют техническим средствам выполнять операции с машиночитаемой информацией.

Компьютерные программы, также как и любая другая машиночитаемая информация, хранятся в файлах. Пишутся (составляются, создаются) программы программистами на специальных машинных алгоритмических языках высокого уровня (Бейсик, Фортран, Паскаль, Си и др.). Хорошая программа содержит: чётко определённые и отлаженные функции, удобные средства взаимодействия с пользователем (интерфейс), инструкцию по эксплуатации, лицензию и гарантию, упаковку. Программы для пользователей могут быть платными, условно-бесплатными, бесплатными и др.

Существуют классификации программного обеспечения по назначению, функциям, решаемым задачам и другим параметрам.

По назначению и выполняемым функциям можно выделить три основных вида ПО, используемого в информационных технологиях:

    Общесистемное ПО – это совокупность программ общего пользования, служащих для управления ресурсами компьютера (центральным процессором, памятью, вводом-выводом), обеспечивающих работу компьютера и компьютерных сетей. Оно предназначено для управления работой компьютеров, выполнения отдельных сервисных функций и программирования. Общесистемное ПО включает: базовое, языки программирования и сервисное.

    Базовое ПО включает: операционные системы, операционные оболочки и сетевые операционные системы.

    Операционная система (ОС) – это комплекс взаимосвязанных программ, предназначенных для автоматизации планирования и организации процесса обработки программ, ввода-вывода и управления данными, распределения ресурсов, подготовки и отладки программ, других вспомогательных.

ОС запускает компьютер, отслеживает работу локальных и сетевых компьютеров, планирует решение с их помощью задач, следит за их выполнением, управляет вводом-выводом данных и др.

Основная причина необходимости ОС состоит в том, что элементарные операции для работы с устройствами компьютера и управления его ресурсами – это операции очень низкого уровня. Действия, которые необходимы пользователю и прикладным программам, состоят из нескольких сотен или тысяч таких элементарных операций. Например, для выполнения процедуры копирования файла необходимо выполнить тысячи операций по запуску команд дисководов, проверке их выполнения, поиску и обработке информации в таблицах размещения файлов на дисках и т. д. Операционная система скрывает от пользователя эти подробности и выполняет эти процедуры.

Выделяют однопрограммные, многопрограммные (многозадачные), одно и многопользовательские, сетевые и несетевые ОС.

    Сетевые ОС – это комплекс программ, обеспечивающих обработку, передачу, хранение данных в сети; доступ ко всем её ресурсам, распределяющих и перераспределяющих различные ресурсы сети.

    Операционная оболочка – это программная надстройка к ОС; специальная программа, предназначенная для облегчения работы и общения пользователей с ОС (Norton Commander, FAR, Windows Commander, Проводник и др.). Они преобразуют неудобный командный пользовательский интерфейс в дружественный графический интерфейс или интерфейс типа “меню”. Оболочки предоставляют пользователю удобный доступ к файлам и обширные сервисные услуги.

    Языки программирования – это специальные команды, операторы и другие средства, используемые для составления и отладки программ. Они включают собственно языки и правила программирования, трансляторы, компиляторы, редакторы связей, отладчики и др.

    Отладка программы (англ. “debugging”) – это процесс обнаружения и устранения ошибок в компьютерной программе; этап компьютерного решения задачи, при котором происходит устранение явных ошибок в программе. Она осуществляется по результатам, полученным в процессе тестирования компьютерной программы, и производится с использованием специальных программных средств – отладчиков.

    Отладчик (англ. “debugger”) – это программа, позволяющая исследовать внутреннее поведение разрабатываемой программы. Обеспечивает пошаговое исполнение программы с остановкой после каждой оператора, просмотр текущего значения переменной, нахождение значения любого выражения и др.

    Трансляторы – это программы, обеспечивающие перевод с языка программирования на машинный язык компьютеров.

    Сервисное общесистемное ПО для ОС включает драйверы и программы-утилиты.
    Драйверы – это специальные файлы ОС, расширяющие её возможности и включаемые в её состав для организации настройки ОС на использование различных устройств ввода-вывода, установки региональных параметров (языков, форматов времени, даты и чисел) и т.д. С помощью драйверов можно подключать к компьютеру новые внешние устройства или нестандартно использовать имеющиеся устройства.

    Программы-утилиты – это полезные программы, дополняющие и расширяющие возможности ОС. Некоторые из них могут существовать отдельно от ОС. К этому классу программ можно отнести архиваторы, программы резервного копирования и др.

Кроме того, сервисное общесистемное ПО включает тестовые и диагностические программы, программы антивирусной защиты и обслуживания сети.

    Тестовые и диагностические программы предназначены для проверки работоспособности отдельных узлов компьютеров, работы программ и устранения выявленных в процессе тестирования неисправностей.

    Антивирусные программы используют для диагностики, выявления и устранения вирусных программ, нарушающих нормальную работу вычислительной системы.

    Инструментальное программное обеспечение или инструментальные программные средства (ИПО) – это программы-полуфабрикаты или конструкторы, используемые в ходе разработки, корректировки или развития других программ. Они позволяют создавать различные прикладные пользовательские программы. К ИПО относят: СУБД, редакторы, отладчики, вспомогательные системные программы, графические пакеты, конструкторы обучающих, игровых, тестирующих и других программ. По назначению они близки к системам программирования.

    Прикладное программное обеспечение (ППО) или прикладные программные средства используются при решении конкретных задач. Эти программы помогают пользователям выполнять необходимые им работы на компьютерах. Порой такие программы называют приложениями.

ППО носит проблемно-ориентированный характер. В нём обычно выделяют две составляющие: пользовательское и проблемное прикладное программное обеспечение.

    К пользовательскому ППО относят: текстовые, табличные и графические редакторы и другие подобные программы, например, учебные и досуговые.

Набор нескольких пользовательских программ, функционально дополняющих друг друга и поддерживающих единую информационную технологию называют пакетом прикладных программ, интегрированным пакетом программ или интегрированным программным обеспечением. Пакеты программ выполняют функции, для которых ранее создавались специализированные программы. В качестве примера приведём ППП Microsoft Office, в состав которого входят: текстовый и табличный процессор, СУБД Access, Power Point и другие программы.

Кроме перечисленных, отметим следующие прикладные программы: учебные, обучающие и тренажёры, мультимедийные, развлекательные, в т.ч. компьютерные игры, справочные (энциклопедии, словари и справочники) и др.

Любые компьютерные программы работают на каких-либо технических средствах информационных технологий.

Контрольные вопросы:

    что такое компьютерная программа?

    Для чего нужны компьютерные программы?

    Какое бывает программное обеспечение компьютерных информационных технологий?

    Как можно классифицировать и использовать такое программное обеспечение?

    Какие бывают технические средства информатизации и их классификацию?

Литература:

    Информатика: Учебник - 3-е перераб. изд. / Под ред. проф. Н.В. Макаровой. - М.: Финансы и статистика, 2000.- 768 с.

    Программно-технические средства информационные технологии - http://inftis.narod.ru/it/5-6/n8.htm

Статьи по теме: